Deadly Embrace: Sovereign and Financial Balance Sheet Doom Loops

Emmanuel Farhi Jean Tirole

January 23, 2020
Sovereign Yields in Europe
Renationalization of Sovereign Debt
Doom Loop

Ireland

Greece

Ireland announces bank bailouts on Sept 30, 2008.
Bailouts

- Bank bailouts:
 - guarantees
 - liquidity assistance
 - recapitalizations

- International bailouts:
 - debt forgiveness
 - international loans and debt forgiveness
Euro Crisis

- Euro construction: financial integration
- Euro crisis: financial fragmentation
- Segmentation/renationalization of sovereign bond markets
- Doom loops between banks and sovereigns
- Bank bailouts and international bailouts
- Major impetus for banking union
Many Questions

- Why did segmentation/renationalization occur?
- What is the link with the doom loop?
- Why were foreign creditors worried?
- Why did domestic supervisors let it happen?
- What should the policy response be?
Theories?

- This paper: double-decker bailout theory
- Link renationalization and doom loop
- Alternative theories for renationalization:
 - discrimination
 (Broner et al. 2013)
 - risk-shifting
 (Genaioli et al. 2014, Uhlig 2014, Achary 2015, Acharya et al. 2015)
 - financial repression
 (Chari et al. 2014)
- Alternative theories for doom loop in closed economies
 (Acharya et al. 2015, Cooper and Nikolov 2015, Bocola 2016)
Outline

- Doom loop

- Single-decker bailout:
 - renationalization as supervisory arbitrage

- Double-decker bailout (debt forgiveness, transfers):
 - renationalization as strategic supervisory leniency
 - rationale for banking union
 (centralized supervision + fiscal backstop)
Setup

- Three periods $t = 0, 1, 2$
- Uncertainty:
 - State s revealed at date 1, density $d\pi(s)$
 - Residual uncertainty revealed at date 2
International Investors

- Large continuum of international investors

- Date-t utility $V_t^* = \mathbb{E}_t[\sum_{s=t}^{2} c_s^*]$
Domestic Consumers

- Mass-1 continuum of domestic consumers
- Endowment E at date 2
- Consume at date 2 endowment net of taxes
- Utility $V_t^C = \mathbb{E}_t[c_2^C]$
- Density $f(E|s)$
Mass-1 continuum of banking entrepreneurs

Endowment A at date 0

Investment opportunity:

- $I(s)$ at date 1
- return $\rho_1(s) > I(s)$ at date 2, not pledgeable
- $A \geq \max_{s\in S} I(s)$

Consume at date 2

Utility $V^B_t = E_t[c^B_2]$
Shocks

- High s is good news
- Fiscal: \(\frac{\partial (f(E|s)/(1-F(E|s)))}{\partial s} \leq 0 \)
- Financial: \(\frac{dl(s)}{ds} \leq 0 \) and \(\frac{d\rho_1(s)}{ds} \geq 0 \)
Assets

- Domestic banking entrepreneurs invest in assets at date 0, and liquidate them at date 1 to finance investment.
- Safe foreign bonds b^*
- Risky domestic bonds b_0: price p_0, $p_1(s)$
Government

- Outstanding bonds B_0, maturing at date 2
- Date 1: bank bailout $X(s)$, debt issuance $B_1(s) - B_0$
- Date 2: default at cost Φ or repay, fiscal capacity E
- Government decides without commitment to maximize welfare

\[W_t = \mathbb{E}_t[c_2^C + \beta^B c_2^B + \beta^I(s) \mu(s) l(s)] \]

- $\beta^B < 1$ so pure transfers costly
- $\beta^I(s)$ high enough so that banks bailed out
- Φ high enough that no default if can repay
• Domestic debt market clears at p_0 (WTP of foreign investors)
• Supervisor chooses $r \leq \bar{r}$ (unobserved by market)
• Banks observe r and privately select their portfolios $\{b_0, b_0^* \geq r\}$ such that $A = b_0^* + p_0 \cdot b_0$.

• State of nature s is realized, determining fiscal prospects $f(E|s)$ and financial needs $I(s)$.
• Government issues $B_1(s) - B_0$ to finance rescue package $X(s)$.
• Banks invest $I(s)$ if they can.

Government (non-selectively) defaults iff $E < B_1(s)$.

Figure: Timeline.
Equilibrium

- Banks load up on domestic debt $b_0^* = r$

- Bank net worth at date 1
 \[A_1(s) = r + (A - r) \frac{p_1(s)}{p_0} \]

- Bailout
 \[X(I(s), r, p_1(s); p_0) = \max\{I(s) - A_1(s), 0\} \]

- Bond prices
 \[p_0 = \int p_1(s) d\pi(s) \]
 \[p_1(s) = 1 - F(B_1(s)|s) \]

- Date-1 bond issuance
 \[p_1(s)[B_1(s) - B_0] = X(I(s), r, p_1(s); p_0) \]
Doom Loop

- Two key equations

\[p_1(s) = 1 - F(B_1(s)|s) \]

\[p_1(s)[B_1(s) - B_0] = X(l(s), r, p_1(s); p_0) \]

- Doom loop

\[\frac{dp_1}{ds} = \frac{-F_s - \frac{f}{1-F} X_l \frac{dl}{ds}}{1 - \frac{f}{1-F} \left(\frac{X}{p_1} - X_{p_1} \right)} \]
Consolidated Balance Sheet

- Balance sheets: banks \(((b_0, b_0^*))\) and Sovereign \((-B_0, 0))\)

- Can be consolidated \(((b_0 - B_0, b_0^*)\) sufficient statistic)?
 - to predict \(B_1(s)\) and default probability
 - in bailout region, yes
 - in no-bailout region, no
 - to predict domestic welfare (level and distribution), no
Equilibrium Welfare

- Equilibrium welfare
 \[W_0 = E_0 - R_0 \]

- Efficiency term (legacy debt repayment and default costs)
 \[E_0 = \int \left[\int_{B_1(s)}^{\infty} [E - B_0] f(E|s) dE + \int_0^{B_1(s)} [E - \Phi] f(E|s) dE \right] d\pi(s) + \text{tiop} \]

- Distributive term (rents of bankers vs. domestic consumers)
 \[R_0 = (1 - \beta^B) \int \max\{l(s) - r - (A - r) \frac{p_1(s)}{p_0}, 0\} d\pi(s) \]
Off-Equilibrium Welfare

- Off-equilibrium welfare (for supervisory decision \(r \))

\[
W_0 = E_0 - R_0 + C_0
\]

- New distributive term (rents of bankers vs. legacy creditors)

\[
C_0 = \beta^B \int \left[r + (A - r) \frac{p_1(s)}{p_0} - A \right] d\pi(s)
\]
Benefits of Supervision

- No supervisory leniency $r = \bar{r}$
 \[(E_0 \uparrow, R_0 \downarrow, C_0 \uparrow, W_0 = E_0 - R_0 + C_0 \uparrow) \]

- Benefits of high supervisory capacity \bar{r}
 \[(E_0 \uparrow, R_0 \downarrow, W_0 = E_0 - R_0 \uparrow) (B_0 \text{ or } p_0 B_0 \text{ constant}) \]

- Underlying reason:
 - inability of government not to bail out banks
 - magnified by doom loop
 - macroprudential
Letting banks purchase domestic debt \approx debt buy-back

BR (88): debt buy-backs are bad deals

Connection with our results?

Focus on “benefits of high supervisory capacity” (B_0 constant)
Bulow-Rogoff (88)

▶ Zero default costs

▶ Mechanical defaults

▶ Date-0 debt buy-back to $B_0 + \Delta B_0 < B_0$

▶ New No-Default states $\Delta ND = [B_0 + \Delta B_0, B_0]$

▶ Change in welfare from debt buy-back

$$\Delta W_0^* = \mathbb{E}_0[B_0 1\{E(s) \in \Delta ND\}] > 0$$

$$\Delta W_0 = -\Delta W_0^* < 0$$

▶ Zero-sum game between sovereign and foreign creditors

▶ Default costs?
Default Costs and Mechanical Defaults

- Nonzero default costs Φ
- Mechanical defaults
- Change in welfare from debt buy-back

\[
\Delta \mathcal{W}_0^* = \mathbb{E}_0[B_01\{E(s) \in \Delta ND\}] > 0
\]

\[
\Delta \mathcal{W}_0 = \mathbb{E}_0[(\Phi - B_0)1\{E(s) \in \Delta ND\}]
\]

- Positive sum game between sovereign and foreign creditors
- Overturns BR (88) if Φ large: $\Delta \mathcal{W}_0 > 0$
Connection with Bulow-Rogoff (88)

- Large default costs Φ and mechanical default...
- ...by themselves make debt buy-backs desirable...
- ...but not by domestic banks!
- New default states $\Delta D(s) = [B_1(s), B_1(s) + \Delta B_1(s)]$
- Change in welfare from debt buy-back

$$\Delta \mathcal{W}_0^* = -\mathbb{E}_0 [B_0 1_{\{E(s) \in \Delta D(s)\}}] < 0$$

$$\Delta \mathcal{W}_0 = -\mathbb{E}_0 [(\Phi - B_0) 1_{\{E(s) \in \Delta D(s)\}}] - (1 - \beta^B) \mathbb{E}_0 [\Delta X(s)] < 0$$

- Efficiency and distributive gains of tough supervision
Collective Moral Hazard

- Possibility of evading regulation...cost $\Psi(r - b_0^*(i))$
- Strategic complementarities across banks of choice of $b_0^*(i)$
- Amplification of bad (risk-increasing) shocks via renationalization
 (feedback loop...riskiness of sovereign debt / evasion)
- First mechanism for renationalization
Legacy Laffer Curve and Debt Forgiveness

- Legacy Laffer curve $p_1(s; \tilde{B}_0)(\tilde{B}_0 - b_0)$
- Suppose \tilde{B}_0 on wrong side of Laffer curve
- Legacy creditors make take-it-or-leave-it offer to reduce debt to peak $B_0(s)$ of Laffer curve
- Doom loop increases incentives to forgive debt
Strategic Supervisory Leniency

- Set $r < \bar{r}$ if “bailout-shifting” (debt forgiveness when bailouts)
- Concession from legacy creditors $E_0 \uparrow$
- Distributive costs $R_0 \uparrow, C_0 \downarrow$
- Benefits outweigh costs $W_0 = E_0 - R_0 + C_0 \uparrow$
- Second mechanism for renationalization
Rationale for Centralized Supervision

- Add ex-ante legacy debt issuance stage \((p_0 B_0\) constant)
- Future debt forgiveness priced in issuance price \(p_0\)
- Country hurt by inability to commit to tough supervision ex-post
- Country benefits from delegating supervision to international supervisor
 \((E_0 \uparrow, R_0 \downarrow, W_0 = E_0 - R_0 \uparrow)\)
- Rationale for banking union (centralized supervision)
Country Solidarity and International Transfers

- Neighboring countries:
 - spillover cost $\Gamma > 0$ of in case of default
 - can make (state-contingent) transfer $T \geq 0$ at $t = 1$

- Similar implications as debt-forgiveness
Strategic Supervisory Leniency

- Set $r < \bar{r}$ if “bailout-shifting” (transfers when bailouts)
- Doom loop makes transfers more attractive for neighboring countries
- Third mechanism for renationalization
Rationale for Banking Union

- Transfers improve risk-sharing
- Benefits from lower issuance at $t = 0$ not internalized by foreigners
- Centralized supervision alone can reduce welfare
- Pareto-improvement possible if combined with commitment to transfers
 (complementarity centralized supervision / fiscal integration)
- Rationale for banking union
 (centralized supervision + fiscal backstop)
Specialness of Sovereign Debt

- Doom loop
- Return covariance
- Renationalization robust to multiple risky countries
Summary

- Doom loops:
 - misleading to consolidate balance sheets
 - amplification mechanism

- Generates or amplifies debt re-nationalization:
 - collective MH
 - debt forgiveness, transfers and supervisory leniency

- Rationale for banking union:
 - centralized supervision
 - fiscal backstop
Many Open Questions

- Non-fiscal (LOLR) bailouts
- Strategic defaults
- ...

...
Extension 1: Debt Maturity

- Compare issuing short-term instead of long-term debt
- Require raising same amount of date-0 revenues
- Debt maturity trade-off...with short-term debt:
 - Insulate banks from sovereign credit risk $R_0 \downarrow$ (commitment benefits)
 - Higher expected default costs $E_0 \downarrow$ (maturity mismatch \rightarrow less risk sharing)
 - Welfare $W_0 = E_0 - R_0$?
- Higher welfare with LT debt iff b_0^* high enough
Extension 2: Diversification Rat Race

- Suppose not always enough funds to bail out all banks
- Pecking order of bailout: priority to banks with highest $b_0^*(i)$
- Banks trade off:
 - probability of having enough liquidity
 - value of bailout
- Asymmetric equilibrium...distribution of $b_0^*(i) > 0$...even if $r = 0$
- Countervailing force: diversification rat-race
Extension 3: Leverage

- Introduce pledgeable return $\rho_0(s) < \rho_1(s)$

- Financing need:
 - $I(s) - \rho_0(s)$ if no joint default
 - $I(s) - \rho_0(s)\rho_1(s)$ if joint default

- Leverage strengthens feedback loop, especially if joint default
Extension 4: Banks in Safe Countries

- Back to one domestic risky country, one foreign safe country
- Banks in foreign safe country...same as domestic banks
- Only difference between home and foreign: risky vs. safe sovereign bonds
- No strategic supervisory leniency in foreign country
- Supervisory externality:
 - foreign welfare increases with supervisory effort of the domestic country
 - domestic welfare is independent of the supervisory effort of foreign country
- Further rationale for centralized supervision