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1. Introduction

In this paper, we’ll prove the Feynman-Kac theorem, a result relating probability theory and analysis. It
has numerous applications in fields such as physics, statistics, finance, chemistry, and others, and provides an
interesting case study in the connections between solutions to elliptic and parabolic differential equations and
stochastic processes. In particular, it allows one to represent the solution to a partial differential equation
as an expectation of a stochastic functional. In a way, this means some deterministic partial differential
equations can be seen as a type of “mean” of a stochastic differential equation. Before proving the theorem
however, we’ll need some results from the theory of stochastic processes, namely the construction of the
stochastic integral (the Itô integral), and Itô’s formula.

2. Definitions from Probability Theory

In probability theory, randomness is modeled by a probability space (Ω,F , P ), a σ-finite measure space
with P (Ω) = 1. Here Ω is called the sample space, F is called the event space, and P is called the probability
measure. A random variable is a measurable function X : (Ω,F) → (Rd,B(Rd)), where B(Rd) is the Borel
σ-algebra on Rd. It assigns to each sample an element of Euclidean space, and to each event a Borel-subset
of Euclidean space. For a random variable X on a space (Ω,F , P ), the expected value of X is defined as

E(X) =

∫
Ω

X(ω)dP (ω).

Definition 1 (Stochastic Process). A stochastic process is a collection of random variables {Xt : t ∈ I}
(typically t is thought of as time). A sample path is a map t 7→ Xt(ω), where ω ∈ Ω is fixed. A filtration
is a nondecreasing family Fs ⊆ Ft ⊆ F : 0 ≤ s < t < ∞, of sub σ-fields of F . A stochastic process Xt is
F-measurable if the function

([0,∞)× Ω,B([0,∞)⊗F) → (Rd,B(Rd)

(t, ω) 7→ Xt(ω)

is measurable. A process is adapted to a filtration {Ft} if for each t, Xt is an Ft-measurable random variable.

Throughout this paper, we assume that all filtrations Ft are right-continuous and contain all P -negligible
events in F . This is for technical purposes, but intuitively this means that for infinitesimal steps forward in
time, no additional information is gained - the stream of information into the system is continuous.

Definition 2 (Martingale). A martingale is an adapted process X such that for all 0 ≤ s < t < ∞,
E(XT | F) = Xs (both the left and right side here are random variables). That is, the expected value given
information up to time s is the process at time s. A right-continuous martingale X is square-integrable if
E(X2

t ) < ∞ for all t ≥ 0. If X0 = 0, we say X ∈ M2. The norm of a square-integrable martingale is

‖X‖t =
√
E(X2

t ),

‖X‖ =

∞∑
n=1

‖X‖n ∧ 1

2n
.
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The metric space of all square-integrable martingales X with X0 = 0 induced by the norm ‖·‖ is denoted
M2, and the subspace of continuous square-integrable martingales is denoted Mc

2. Note that the norm ‖X‖t
is an ordinary L2-norm on (Ω,Ft, P ).

Lemma 3. For a right-continuous martingale {Xt,Ft}, an interval [0, T ] ⊂ R+, and 0 < λ ∈ R, we have

P

(
sup

0≤t≤T
Xt ≥ λ

)
≤ E(max(XT ))

λ
.

Proof. See [5], theorem 1.3.8. �

Proposition 4. The space M2 defined above is a complete metric space, and the subset Mc
2 of continuous

martingales is closed.

Proof. Take a Cauchy sequence {X(n)} in M2. Observe that for fixed t, by definition of the M2 norm
‖·‖, the sequence {X(n)

t } is Cauchy also for ‖·‖t. Since ‖X‖t is an ordinary L2-norm, the Cauchy sequence
{X(n)

t } has a limit Xt in L2(Ω,Ft, P ).
Now, take A ∈ Fs. By Cauchy-Schwarz, we have E(IA · (X(n)

s − Xs)] → 0 and E(IA(X(n)
t − Xt)) → 0.

Since X(n) is a martingale, E(IAX(n)
t ) = E(IAX(n)

s ) for each n, and thus E(IAXt) = E(IAXs). So X is a
martingale, and choosing a right-continuous representative, X ∈ M2. This shows that M is complete.

Now, let {X(n)} be a sequence in Mc
2. It has a limit X in M2 by the above. For ε > 0, lemma 3 implies

P

(
sup

0≤t≤T

∣∣∣X(n)
t −Xt

∣∣∣ ≥ ε

)
≤ 1

ε2

∥∥∥X(n) −X
∥∥∥2
T
,

which converges to 0 as n → ∞. Then for some subsequence (nk),

P

(
sup

0≤t≤T

∣∣∣X(nk)
t −Xt

∣∣∣ ≥ 1

k

)
≤ 1

2k
.

Thus
∞∑
k=1

P

(
sup

0≤t≤T

∣∣∣X(nk)
t −Xt

∣∣∣ ≥ 1

k

)
< ∞,

and by the Borel-Cantelli lemma there exists an Nk such that

P

(
sup

0≤t≤T
|Xnk

t −Xt| ≥
1

k

)
= 0

for all nk ≥ Nk. That is, Xnk
t converges uniformly almost surely to Xt on [0, T ]. Since the X

(nk)
t are

continuous, then so is X, which proves that M c
2 is closed.

�

Definition 5 (Stopping Time). For a measurable space (Ω,F) with a filtration Ft, a stopping time T is an
F-measurable random variable taking values in [0,∞] such that for all t ∈ R+, the event {T ≤ t} belongs to
Ft. Intuitively, a time is a stopping time if given information up to time t, we can determine whether the
stopping has occurred or not. For a process X and a stopping time T , XT is defined as XT (ω) = XT (ω)(ω).

Definition 6 (Quadratic Variation). For a square integrable martingale X, the quadratic variation of X is
the unique martingale 〈X〉 such that X2 − 〈X〉 is a martingale. Alternatively let 0 = t0 ≤ t1 ≤ · · · ≤ tm = t

be a partition of [0, t]. Then the quadratic variation is the limit of
m∑

k=1

(Xtk −Xtk−1
)2

as max1≤k≤m |tk − tk−1| → 0.

2 Forrest Flesher



STOCHASTIC PROCESSES AND THE FEYNMAN-KAC THEOREM

Definition 7 (Covariation). For square integrable processes X and Y , the covariation of X and Y is the
process

〈X,Y 〉 = 1

2
(〈X + Y 〉 − 〈X〉 − 〈Y 〉) .

Alternatively, it is the limit of
m∑

k=1

(Xtk −Xtk−1
)(Ytk − Ytk−1

)

as max1≤k≤m |tk − tk−1| → 0.

Example 8. Consider the following scenario: we start at 0 and at each of 5 time steps, either add one
or subtract one. In this case, the sample space Ω is the space of paths starting at the origin and moving
up, down, or staying the same with equal probability for 5 steps; the event space F is the set of subsets of
these paths; the probability measure P takes each event E ∈ F and assigns it a number between 0 and 1; a
filtration Ft might be the set of E ∈ F such that all paths in E pass through the same point at time t, along
with complements and unions; an example of a martingale is a function Xt : Ω → R which takes a path to
its value at time t.

While the above example is very useful for intuition about the definitions and interpretations of the
concepts of probability theory, we will mostly be dealing with continuous time processes. Our next example
is that of Brownian motion, one of the most important continuous time stochastic processes.

Example 9 (Brownian Motion). A one dimensional Brownian motion (also called a Wiener process) is a
continuous, adapted process {Wt,Ft, t ∈ R+} which satisfies the following properties:

(1) W0 = 0 almost surely;
(2) W has independent increments: for all 0 ≤ s < t, the increment Wt −Ws is independent of Fs;
(3) B has normal increments: for all 0 ≤ s < t, the increment Wt − Ws is normally distributed with

mean 0 and variance t− s.
After reading the above definition, the reader may have ask: does a Brownian motion exist? The answer

is yes, but the construction is non-trivial, and we do not prove it here. For the construction of Brownian
motion, see [4], chapter 2.

A Brownian motion W is square integrable and satisfies 〈W 〉t for t ≥ 0. Such a process can often be
thought of a “scaling limit” of a random walk: for t ∈ [0, 1] and i.i.d. random variables ξ1, ξ2, . . . with mean
0 and variance 1, define

Wn(t) =
1√
n

∑
1≤k≤bntc

ξk.

Then in the limit n → ∞, Wn approaches a Brownian motion, a result known as Donsker’s theorem. For a
proof, see [5], theorem 2.4.20.

3. Construction of a Stochastic Integral

Our goal is to prove results about partial differential equations, their solutions, and stochastic processes.
In order to do this, we will need a calculus of stochastic processes. We begin by constructing a stochastic
integral: the Itô integral. To understand why such a construction is necessary, recall the conditions of the
Lebesgue-Stieltjes integral. We can integrate

∫ b

a
f(x)dg(x) when f : [a, b] → R is a bounded Borel measurable

function, and g : [a, b] → R is a right continuous function of bounded variation. Unfortunately, martingales
are almost never of bounded variation (only constant processes are of bounded variation), so defining an
integral IT (X) =

∫ T

0
Xt(ω)dMt(ω) pathwise in the Lebesgue-Stieltjes sense will not work.

However, our hope is that because continuous, square integrable martingales have finite quadratic varia-
tion, then we will be able to construct a suitable integral. Since the quadratic variation is finite, our starting
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point is the integral
∫ T

0
Xt(ω)d 〈M〉t (ω), where 〈M〉t is the quadratic variation process defined above. We

define a measure µM on the combined time-sample space ([0,∞)× Ω,B([0,∞))⊗F) by

µM (A) :=

∫ ∞

0

χA((t, ω))d 〈M〉t (ω).

We then define an equivalence class of measurable Ft-adapted processes by almost-everywhere equivalence
in the measure µM . From now on we will refer to equivalence classes by their representatives.

Let L be the set of measurable, Ft-adapted processes such that

[X]2T := E

(∫ ∞

0

X2
t d 〈M〉t

)
< ∞

for all T > 0. So [X]T is an ordinary L2 norm on the space [0, T ]×Ω under the measure µM . We also define
more generally

[X] :=

∞∑
n=1

min(1, [X]n)

2n
,

which gives a metric on L by [X − Y ].
Thus far, the only assumptions we have made on M are square integrability and continuity. We now

additionally make the assumption that t 7→ 〈M〉t (ω) is absolutely continuous (w.r.t. the Lebesgue measure)
for almost all ω. While one can define an integral without this assumption, this will allow us to integrate
the widest class of integrands, namely all of L as defined above - without this assumption, we can integrate
only the narrower class of progressively measurable processes inside L. Since we’ll be primarily concerned
with the case of M being Brownian motion, which has 〈B〉t = t, this is enough for our purposes.

The construction of the stochastic integral proceeds along similar lines as that of the Lebesgue-Stieltjes
integral. We begin by integrating simple processes, prove that such processes are dense, and then define the
integral of a general process as a limit of simple processes.

Definition 10 (Simple Process). A process H is called simple if it is of the form

Ht(ω) = ξ0(ω)χ{0}(t) +

∞∑
i=0

ξi(ω)χ(ti,ti+1](t),

where {tn}∞n=0 is a strictly increasing sequence with t0 = 0, tn → ∞, and {ξn}∞n=0 is a sequence of random
variables such that there exists a constant C with supn≥0 |ξn(ω)| ≤ C. The class of simple process is denoted
L0.

Proposition 11. For each continuous, square integrable martingale M with t 7→ 〈M〉t (ω) absolutely con-
tinuous for almost all ω, the space L0 of simple processes is dense in L with respect to the metric [·], defined
above.

Proof. See [5], proposition 3.2.8. �

We now proceed with the definition of the stochastic integral for simple processes, and then extend to
arbitrary L processes.

For H ∈ L0 of the form

Ht(ω) = ξ0(ω)χ{0}(t) +

∞∑
i=1

ξi(ω)χ(ti,ti+1](t),

the stochastic integral is defined as the process

It(X) =

∞∑
i=0

ξi(Mt∧ti+1 −Mt∧ti).

Since limn→∞ tn = ∞, and since t is a finite real number, this is a finite sum. Here we’ve used the notation
∧, which we use throughout to mean a ∧ b = min(a, b).

Proposition 12. If G,H are simple processes, then the following hold:
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(1) I0(G) = 0 almost surely in P ;
(2) E(It(G) | Fs) = Is(G) almost surely in P , i.e. It(G) is a martingale;
(3) E(It(G))2 = E

∫ t

0
X2

rd 〈M〉r;
(4) ‖I(G)‖ = [G].
(5)

E((It(G)− It(G))2 | Fs) = E

(∫ t

s

X2
rd 〈M〉r | Fs

)
,

almost surely in P ;
(6) I(aG+ bH) = aI(G) + bI(H).

Proof. See [5], section 3.2.B. �

Given X ∈ L, proposition 11 gives a sequence of simple processes H(n) with [H(n) −X] → 0 as n → ∞.
Then [H(n)−H(m)] → 0 so (H(n))n is Cauchy, and by above property (4), so is (I(H(n)))n. Since the space of
continuous martingales is complete and closed, there is some process I(X) such that

∥∥I(H(n))− I(X)
∥∥→ 0

as n → ∞. Furthermore, if H(n) and G(n) satisfy [H(n) − X] → 0 and [G(n) − X] → 0, then so does the
sequence

F (n) :=

{
H(n) n odd
G(n) n even.

Then the limit of I(F (n)) is equal to that of both I(G(n)) and I(H(n)). So I(X) does not depend on the
choice of the sequence of simple functions converging to it, and is therefore well defined. This allows us to
define the integral of X.

Definition 13. For X ∈ L, the stochastic integral, or Itô integral, of X with respect to M is the unique
process I(X) such that

∥∥I(X(n))− I(X)
∥∥ → 0 as n → ∞ for all sequences of simple functions X(n) with

[X(n) −X] → 0. The integral is written

It(X) =

∫ t

0

XsdMs.

Proposition 14. The Itô integral satisfies the properties in proposition 12.

Definition 15 (Continuous local martingale). A continuous adapted process M is said to be a continuous
local martingale if there exists a non decreasing sequence of stopping times (Tn) with P (Tn → ∞) = 1 such
that {Mt∧Tn

;Ft} is a martingale for each n.

For the local case, we will be able to integrate processes satisfying a weaker condition than square inte-
grability, namely the property that

P

(∫ T

0

X2
t d 〈M〉t < ∞

)
= 1

for all T ∈ [0,∞). Recall before that we required this integral to have finite expectation, while now we require
only that it is finite with probability 1.

Proposition 16. A bounded local martingale is a martingale.

Proof. Let Tn be the sequence of stopping times for a bounded local martingale M . Then Mt∧Tn
is a

martingale for each n. Since M is bounded, we apply the dominated convergence theorem to get Ms =

E(Mt | Fs). �

For a continuous local martingale, there is a nondecreasing sequence of stopping times (Tn)n satisfying
the conditions in the definition. There also exists a sequence of stopping times (Sn)n defined by

Sn(ω) = min

(
n, inf

{
t :

∫ t

0

X2
s (ω)d 〈M〉s (ω) ≥ n

})
.
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This sequence is nondecreasing and satisfies Sn → ∞ almost surely in P . Let Rn = Tn∧Sn, and define M (n)

as the process M stopped at Rn, namely M
(n)
t = Mt∧Rn , and let X(n) be the process X(n)

t = Xt ·It≤Tn . Then
M (n) is a continuous, square integrable ordinary martingale, and X(n) is in L(M (n)). We can then take the
stochastic integral It,M(n)(X(n)) as above, and we define the integral It(X) as It,M(n)(X(n)) for 0 ≤ t ≤ Rn.

4. Itô’s Lemma

Definition 17. A continuous semimartingale is an adapted process of the form

Xt = X0 +Mt +At,

where M is a local continuous martingale, and At is a finite variation process.

We now state Itô’s lemma, the “fundamental theorem” of stochastic calculus.

Theorem 18 (Itô’s Lemma). Let X1, . . . , Xd be d continuous semimartingales, and let f : R+ × Rd be a
C1,2 function (C1 in the first argument and C2 in the second). Then, almost surely in P ,

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂t
f(s,Xs)ds+

d∑
i=1

∫ t

0

∂f

∂xi
(s,X1

s , . . . , X
d
s )dX

i
s

+
1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
f(s,X1

s , . . . , X
d
s )d

〈
Xi, Xj

〉
s
.

The one-dimensional version of this, namely that for f : R → R of class C1,2, and an adapted process
Xt = X0 +Mt +At, then

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂t
f(s,Xs)ds+

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d 〈M〉s . (1)

This is often written in the more convenient differential form as

df(t,Xt) =
∂f

∂t
dt+

∂f

∂Xt
dXt +

1

2

∂2f

∂X2
t

d 〈M〉t .

The last term is what distinguishes stochastic calculus from ordinary calculus. The term arises due to the
nonzero quadratic variation - one cannot “ignore” as many higher order terms in the Taylor expansion as
one often does in ordinary calculus.

Rather than prove Itô’s lemma (the proof is long and somewhat technical), we will give a heuristic proof
sketch of the lemma for the important special case of Itô processes, which are processes satisfying the
stochastic differential equation

dXt = µtdt+ σtdWt,

where Wt is a Brownian motion, and µ and σ are Ft-adapted processes. In this case, the lemma states that

df(Xt, t) =

(
∂f

∂t
+ µt

∂f

∂Xt
+

1

2
σ2
t

∂2f

∂X2
t

)
dt+

(
σt

∂f

∂Xt

)
dWt.

Itô processes are continuous semimartingales, and are useful in various applications, such as option pricing
in finance or drift diffusion problems in physics.

The proof sketch we give here contains a trick is often useful in stochastic calculus: the multiplication
rules

(dt)2 = 0

(dWt)(dt) = 0

(dWt)
2 = dt.
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Proof. Expand the Taylor series for f(Xt, t) this function to second order:

df(Xt, t) = f(Xt+dt, t+ dt)− f(Xt, t)

=
∂f

∂t
dt+

∂f

∂Xt
dXt +

1

2

∂2f

∂t2
(dt)2 +

1

2

∂2f

∂X2
t

(dXt)
2 +

1

2

∂2f

∂t∂Xt
(dXt)(dt).

Using the stochastic calculus multiplication rules mentioned above and expanding Xt,

(dXt)
2 = µt(dt)

2 + 2µtσt(dt)(dWt) + σ2
t (dWt)

2

= σ2
t dt,

(dXt)(dt) = µt(dt)
2 + σt(dWt)(dt)

= 0

and so

df(Xt, t) =
∂f

∂t
dt+

∂f

∂Xt
dXt +

1

2

∂2f

∂X2
t

σ2
t dt

=

(
∂f

∂t
+ µt

∂f

∂Xt
+

1

2
σ2
t

∂2f

∂X2
t

)
dt+

(
σt

∂f

∂Xt

)
dWt,

as desired. �

Corollary 19 (Itô’s product rule). Suppose Xt and Yt are two continuous semimartingales, with

Xt = X0 +Mt +At

Yt = Y0 +Nt +Bt.

Then
dXtdYy = XtdYt + YtdXt + d 〈M,N〉t .

This is also known as Itô’s integration by parts formula.

5. The Feynman-Kac Formula

We’ll need the following two short lemmas in the proof of the Feynman-Kac theorem.

Lemma 20. For x ∈ (0,∞), then ∫ ∞

x

e−u2/2du ≤ 1

x
e−x2/2 (2)

For a ∈ R, this implies

P x(Bt ≥ a) =

√
t

2π

1

a− x
e−(a−x)2/2t,

where P x represents the probability measure for a Brownian motion centered (started) at x.

Proof. To prove (2), note that t > x in the region of integration, so∫ ∞

x

e−u2/2du ≤
∫ ∞

x

u

x
e−u2/2du =

1

x
e−x2/2. (3)

The second part of the lemma follows from substitution and the fact that the distribution of Bt at time t is
N (x, t). �

Lemma 21. Let Bt be a Brownian motion and b ∈ R, and let Tb be the first time that Bt hits b. Then
P 0(Tb < t) = 2P 0(Bt < b).

Proof. If Bt has hit b by time t, then it lies on a path which passes through b. The paths which pass through
b before time t are the paths such that Bt > b, and the paths such that Bt < b which are reflections over
the axis b. That is, for each path with Bt > b, there are exactly two paths lying on paths which hit b before
time t. (include picture). Thus, the probability that the event Tb < t occurs is twice the probability that a
path lies above b at time t, or P 0(Bt > b). �
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The version of the Feynman-Kac theorem we state here is a result about representations of solutions to
PDEs. That is, we do not prove here the existence of solutions, rather we suppose that solutions exist and
then show they have a certain form. The representation in the theorem does imply that solutions are unique.

Theorem 22 (Feynman-Kac). Let f : Rd → R, k : Rd → R+, and g : [0, T ] × Rd → R be continuous
functions. Let v : [0, T ]× Rd → R be a function which is C1,2 on [0, T )× Rd, such that

−∂v

∂t
+ kv =

1

2
∆v + g; on [0, T )× Rd, (4)

v(T, x) = f(x); x ∈ Rd. (5)

Furthermore, suppose that

max
0≤t≤T

|v(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea|x|
2

(6)

for all x ∈ Rd and some K > 0 and 0 < a < 1
2dT . Then we can write v as

v(t, x) = Ex

(
f(WT−t)e

−
∫ T−t
0

k(Ws)ds +

∫ T−t

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ

)
.

To a reader who has studied physics, this might seem almost familiar: set g = 0, and recall that expectation
values are integrals over state space, which here is a space of paths. Viewing this as a sort of “integral over
paths” might also allow the reader to guess why the name Feynman appears in the name of this theorem.
Indeed, the theorem was proved by Feynman and Kac in attempt to rigorously justify Feynman’s quantum
mechanical path integrals. Why does quantum mechanics show up here? Notice that if we replace our time
t by the imaginary time −it. For more on the physics of this theorem, the interested reader can see [2, 6].

The Feynman-Kac formula also has numerous applications in quantitative finance, for example in deducing
the existence of a risk-neutral measure from the Black-Scholes equation [1]. For more on stochastic calculus
methods in quantitative finance see [1, 3, 5].

The proof involves a number of calculations, but generally proceeds in three steps: first we apply Itô’s
lemma to a suitable process, then integrate up to a stopping time, and finally take expectations.

Proof. Suppose that a function v satisfies (4). By Itô’s lemma, fixing a value t and introducing a variable θ,
we have

dv(t+ θ,Wθ) =

(
∂v

∂θ
+

1

2
∆v

)
dθ +

d∑
i=1

∂v

∂xi
dW

(i)
θ

= (k(Wθ)v(t+ θ,Wθ)− g(t+ θ,Wθ))dθ +

d∑
i=1

∂v

∂xi
(t+ θ,Wθ)dW

(i)
θ .

Now consider the process Y (θ) = v(t + θ,Wθ)e
−

∫ θ
0
k(Ws)ds. By Itô’s product rule, we have (since the

exponential part of the process is deterministic)

dY =dv(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)ds + v(t+ θ,Wθ)

∂

∂θ

(
e−

∫ θ
0
k(Ws)ds

)
=

(
k(Ws)v(t+ θ,Wθ)dθ − g(t+ θ,Wθ)dθ +

d∑
i=1

∂

∂xi
v(t+ θ,Wθ)dW

(i)
θ

)
e−

∫ θ
0
k(Ws)ds+

+ v(t+ θ,Wθ) · (−k(Wθ)dθ)e
−

∫ θ
0
k(Ws)ds

=

(
−g(t+ θ,Wθ)dθ +

d∑
i=1

∂

∂xi
v(t+ θ,Wθ)dW

(i)
θ

)
e−

∫ θ
0
k(Ws).
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Next, define the stopping time Sn = inf{t ≥ 0 : ‖Wt‖ ≥ n
√
d}, and let 0 < r < T − t. We’ll eventually pass

to the limit n → ∞ and r → T − t. Integrating dY on [0, r ∧ Sn] gives

Y (r ∧ Sn)− Y (0) =

∫ r∧Sn

0

(
−g(t+ θ,Wθ)dθ +

n∑
i=1

∂

∂xi
v(t+ θ,Wθ)dW

(i)
θ

)
e−

∫ θ
0
k(Ws)ds

=−
∫ r∧Sn

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ

+

∫ r∧Sn

0

(
d∑

i=1

∂

∂xi
v(t+ θ,Wθ)

)
e−

∫ θ
0
k(Ws)dsdWθ

Taking expectation values, the stochastic integral is zero - the expectation of Brownian motion given fixed
information is constant. Thus

Ex(Y (r ∧ Sn)− Y (0)) = −
∫ r∧Sn

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ. (7)

We can also explicitly evaluate Y (r ∧ Sn) and Y (0), which are

Y (r ∧ Sn) = v(t+ r ∧ Sn,Wr∧Sn)e
−

∫ r∧Sn
0

k(Ws)ds,

Y (0) = v(t,W0),

Ex(Y (0)) = v(t, x), (8)

so we can write the expectation of Y (r ∧ Sn) as

Ex(Y (r ∧ Sn)) =Ex
(
Ir<Snv(t+ r,Wr)e

−
∫ r
0
k(Ws)ds

)
+

+ Ex
(
ISn<rv(t+ Sn,WSn

)e−
∫ Sn
0

k(Ws)ds
)
. (9)

Combining (7), (8) (8), we have

v(t, x) =Ex

(∫ r∧Sn

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ

)
(10)

+ Ex
(
Ir<Snv(t+ r,Wr)e

−
∫ r
0
k(Ws)ds

)
(11)

+ Ex
(
ISn<rv(t+ Sn,WSn)e

−
∫ Sn
0

k(Ws)ds
)
. (12)

We now pass to the limit n → ∞ and r → T − t. Since k ≥ 0, the first term (10) is bounded in absolute
value by ∫ T−t

0

|g(t+ θ,Wθ)|dθ,

which by our assumption (6) along with dominated convergence becomes

Ex

(∫ T−t

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ

)
.

Similarly, the second term (11) converges to

Ex
(
v(T,WT−t)e

−
∫ T−t
0

k(Ws)ds
)
= Ex

(
f(WT−t)e

−
∫ T−t
0

k(Ws)ds
)
.

To finish the proof, it suffices to show that the third term (12) is zero. Since k ≥ 0 and r < T − t,
the term is less than Ex(|v(t+ Sn,WSn

)| · ISn≤T−t). Using our assumption (6) and the definition of Sn,
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|v(t+ Sn,WSn)| ≤ Keadn
2 . Applying this bound and using the definitions of expectation value and Brownian

motion, we have

Ex(|v(t+ Sn,WSn
)| · ISn≤T−t) ≤ Keadn

2

P x(Sn ≤ T )

= Keadn
2

P x

(
max
0≤t≤T

‖Wt‖ ≥ n
√
d

)
= Keadn

2

P x

(
max
0≤t≤T

(∣∣∣W (i)
t

∣∣∣2 + · · ·+
∣∣∣W (n)

t

∣∣∣2)1/2

≥ n
√
d

)

= Keadn
2

P x

(
max
0≤t≤T

d∑
i=1

∣∣∣W (i)
t

∣∣∣2 ≥ n2d

)

≤ Keadn
2

d∑
i=1

P x

(
max
0≤t≤T

∣∣∣W (i)
t

∣∣∣ ≥ n

)
By lemma 21,

Keadn
2

d∑
i=1

P x

(
max
0≤t≤T

∣∣∣W (i)
t

∣∣∣ ≥ n

)
≤ 2Kean

2d
d∑

i=1

(
P x(W

(i)
t ≥ n) + P x(W

(i)
T ≤ −n)

)
.

But by lemma 20,

ean
2dP x(WT ≥ n) ≤ ean

2d

√
T

2π

1

n− x
e−(n−x)2/2T .

In the limit n → ∞, this converges to 0. Thus the third term (12) converges to 0 in the limit n → ∞.
Combining these results, we have

v(t, x) = Ex

(
f(WT−t)e

−
∫ T−t
0

k(Ws)ds +

∫ T−t

0

g(t+ θ,Wθ)e
−

∫ θ
0
k(Ws)dsdθ

)
,

which finishes the proof.
�
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