
GIBBS STATES AND THE MERMIN-WAGNER THEOREM

FORREST FLESHER

Mixed States and Gibbs States

We are used to thinking about a “quantum state” as a vector ψ in some Hilbert space H, or an equivalence
class of such vectors, ψ ∼ eiθψ. However, this notion of a state is not suited well to describe quantum systems
and subsystems. For example, consider a system of two spinless distinguishable particles in R3, described by
some unit vector ψ(~x, ~y) ∈ H = L2(R6), where ~x is the position of the first particle and ~y is the position of
the second particle. If ψ(~x, ~y) = ψ1(~x)ψ2(~y), a product, then we can say that the state of the first particle
is ψ1 and the state of the second particle is ψ2. That is, we are able to canonically describe the subsystems
of this system of two particles.

Now suppose instead that
ψ(~x, ~y) = ψ1(~x)ψ2(~y) + φ1(~x)φ2(~y).

For this state ψ, it isn’t clear how to describe the state of the first particle. We could try to say that it is
ψ1(~x) + φ1(~x), but then we could rewrite ψ as

ψ(~x, ~y) = (αψ1(~x))(
1

α
ψ2(~y)) + (βφ1(~x))(

1

β
φ2(~y)),

and our choice for state of the first particle becomes αψ1(~x) + βφ1(~x), which isn’t the same state as before.
This is only for a particular system of two particles - in general the way to interpret the state of subsystems
becomes even less clear.

In the example above, although not much can be said about the state of each particle, we are still able
to take expectation values. Suppose we want to find the expected value of the j’th component of position
the first particle, xj . Let X(1)

j be the operator of multiplication by this component xj , which is a map
R3 × R3 → C. The expected value of the j’th component of the position of the first particle is then〈

ψ,X
(1)
j ψ

〉
=

∫
R6

xj |ψ(~x, ~y)|2d~xd~y.

We can similarly take any self-adjoint operator O on L2(R3) for a one particle system, and promote it to
an operator in the two particle system L2(R6), by acting trivially on the other particle. From this, we can
extract expectation values for subsystems of this composite system. This leads us to and expanded notion of
“state.” Instead of defining the state of a quantum system as a vector in some Hilbert space, we define it by
the particular family of expectation values associated to it. This leads us to the notion of density matrices.

Denote by B(H) the set of bounded linear operators on the Hilbert space H. Observables are typically
unbounded linear operators, but expectation values for bounded operators determine expectation values for
unbounded operators (see [1]), so we work with B(H). Recall that the trace of a non-negative self-adjoint
operator A is defined as tr(A) =

∑
i 〈ei, Aei〉, for an orthonormal basis {ei}.

Definition 1. A bounded linear operator ρ ∈ B(H) is a density matrix on H if ρ is self-adjoint, non-
negative, and tr(ρ) = 1.

This density matrix will be our notion of a “state” of a system. It is associated to a family of expectation
values, as made precise below.

Definition 2. A linear map Φ : B(H) → C is a family of expectation values if the following conditions
hold.

(1) Φ(id) = 1.
(2) If an operator A is self-adjoint, then Φ(A) ∈ R.
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(3) If an operator A is self-adjoint and non-negative, then Φ(A) ≥ 0.
(4) If An ∈ B(H) is a sequence, and if ‖Anψ −Aψ‖ → 0 for all ψ ∈ H, then Φ(An) → Φ(A).

Proposition. If ρ is a density matrix on H, then Φρ := tr(ρA) = tr(Aρ) is a family of expectation
values. Furthermore, for any family of expectation values Φ, there exists a unique density matrix ρ such that
Φ(A) = tr(ρA) for all A ∈ B(H).

For a proof of this proposition, the interested reader can see [1]. The first part is a straightforward check
of the definition, and the second part is an application of the Riesz representation theorem.

For this notion to make sense, we need to make sure the “density matrix” notion of a state agrees with the
“vector in Hilbert space” notion for relevant systems. Let |ψ〉〈ψ| ∈ B(H) be the outer product of the vector
|ψ〉 ∈ H. Since it is an orthogonal projection |ψ〉〈ψ| is bounded, self-adjoint, and non-negative. Choosing an
orthonormal basis {ei} with e1 = |ψ〉, then tr(|ψ〉〈ψ|) = 1. So |ψ〉〈ψ| is a density matrix. If A ∈ B(H) is an
operator, then

tr(|ψ〉〈ψ|A) =
∑
i

〈ei, ψ〉 〈ψ,Aei〉 = 〈ψ,Aψ〉 .

So for every vector |ψ〉 ∈ H, there is a unique ρ associated to it so that the expectation values determined
by ρ are the same as for our traditional notion of a state. A state of the form ρ = |ψ〉〈ψ| is called a pure
state. If no such ψ exists, ρ is called a mixed state.

We can think of a density matrix ρ as giving a probability distribution over the results of each set of
commuting observables; the tr(ρ) = 1 condition can be thought of as probabilities adding up to 1. The
density matrix incorporates information both about quantum uncertainties and classical uncertainties, such
as lack of knowledge about a system. We can modify the traditional axioms of quantum mechanics to work
with density matrices, as follows.

If a system is in state ρ, and an observation of A is made and results in a value of λ, then immediately
after the measurement the system will be in the state 1

Z
PλρPλ, where Pλ is the operator of orthogonal

projection onto the λ-eigenspace, and Z = tr(PλρPλ) for normalization. If the Hamiltonian of a system is
Ĥ, then the time evolution of the state ρ is given by

dρ

dt
= − 1

i~
[ρ, Ĥ],

where [·, ·] is the commutator [A,B] = AB −BA.
With this expanded notion, we are ready to discuss composite systems. Suppose that H1 and H2 are

the Hilbert spaces, with inner products 〈·|·〉1 and 〈·|·〉2 respectively. We can define an inner product on the
vector space H1 ⊗H2 by 〈u1 ⊗ u2, v1 ⊗ v2〉 := 〈u1, v1〉1 · 〈u2, v2〉2. Then the Hilbert space of the composite
system is given by H1⊗̂H1, the completion of H1 ⊗H2 with respect to the above inner product. If the two
systems H1 and H2 have Hamiltonians Ĥ1 and Ĥ2 respectively, then the Hamiltonian for the noninteracting
composite system is Ĥ1 ⊗ I + I ⊗ Ĥ2. In general the Hamiltonian for a system will be

Ĥ = Ĥ1 ⊗ I + I ⊗ Ĥ2 + Ĥinteraction.

We can think of Ĥ1⊗I as the energy of the first subsystem, and I⊗Ĥ2 as the energy of the second subsystem.
These notions of composite system and subsystem make sense. If A and B are bounded operators on H1

and H2 respectively, then there exists a unique bounded operator A⊗B on H2⊗̂H2 with

(A⊗B)(φ⊗ ψ) = (Aφ)⊗ (Bψ).

For a density matrix ρ on the composite system H1⊗̂H2, there exists a unique density matrix ρ(1) on H1

with
tr
(
ρ(1)A

)
= tr(ρ(A⊗ id)),

and similarly for H2. As a special case of this, if ρ = ρ1 ⊗ ρ2, then ρ(1) = ρ1 and ρ(2) = ρ2. In this case, we
say that the states of the two systems are independent. Again for proofs and more background, we refer the
reader to [1].

The most important examples of composite systems for our purposes are the microcanonical and canonical
ensembles, which are equilibrium ensembles. Equilibrium ensembles should have time independent averages
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and from the discussion above on time evolution, a reasonable equilibrium condition is
dρ

dt
= − 1

i~
[ρ, Ĥ] = 0.

For a system with arbitrary Ĥ, we can choose ρ = ρ(Ĥ) to satisfy this condition.
In the microcanonical ensemble, the total energy E is fixed. We can choose a density matrix ρ(Ĥ) to

satisfy this for any Hamiltonian Ĥ, by defining

ρ(Ĥ) =
δ(Ĥ − E)

Ω(E)
,

where Ω(E) is the total number of microstates {ψα} (the pure states comprising the composite system) with
energy E. Letting {|n〉} be the energy eigenbasis, we have

〈ρ|n|ρ〉m =
∑
α

pα 〈n|ψα〉 〈ψα|n〉 =

{
1

Ω(E) , En = E and m = n

0, else.

This is analogous to the classical statistical mechanical condition of equal equilibrium probabilities. The
condition m = n says that the states with energy E are combined with independent random phases.

For the canonical ensemble, we consider a composite system H = H1⊗̂H2 which is a microcanonical
ensemble at fixed energy E such that the temperature of the second subsystem H2 is fixed: it is large enough
compared to H1 to not affected by changes in its temperature. We call the subsystem H2 the “reservoir.”
The energy of the composite system is fixed at E, but the energy of the subsystems are free to change with
fixed temperature. The system H1 is said to be in a canonical equilibrium state, or Gibbs state. The
density matrix ρ1 = ρ(1) of the system at inverse temperature β = 1/(kBT ), is given by

ρ1(β) =
e−βĤ1

Z(β)
,

where Z(β) = tr
(
e−βĤ

)
is the partition function.

To see where this comes from, suppose that system 1 has energy En, so the reservoir has energy E −En.
Say that there are vn such composite microstates with this reservoir energy, so there are

∑
n vn = v total

microstates of the composite system. Since the composite system is a microcanonical ensemble and thus
each microstate is equally probable, the probability pn of observing system 1 in state En is

pn =
vn
v
.

Assuming E � En, and defining the entropy as S(E) = log(v), then a Taylor expansion gives

log(pn) = log(vn)− log(v)

= S2(E − En)− Stot(E)

= S2(E)− βEn − Stot(E).

Since S2 and Stot don’t vary with n (they only depend on the total energy), then

log(pn) ∝ −βEn,

and defining Z(β) =
∑

n e
−βEn = tr

(
e−βĤ

)
to normalize, we have

pn =
1

Z(β)
e−βEn

For the rest of this paper, we will be concerned with Gibbs states nonzero temperature T > 0, with expec-
tation values given by

〈A〉 =
tr
(
Ae−βĤ

)
Z(β)

.

For further discussion and background on quantum statistical mechanics, see [4].
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The Heisenberg Model and the Mermin-Wagner Theorem

In this section we will examine the equilibrium states of the Heisenberg model. Our goal in this section
will be to prove the Mermin-Wagner theorem, which states that there is no spontaneous magnetization in
the isotropic Heisenberg model in one or two dimensions at nonzero temperature. The term isotropic means
that the model reacts the same to an applied magnetic field in any direction. The theorem was first proved
by Mermin and Wagner [6], which relied on the work of Hohenberg [2]. Here we follow closely the proof in
[7], which is based on that in the original paper by Mermin and Wagner.

Recall the spin operators ~S = (Sx, Sy, Sy), which satisfy the commutation relations
[Sx

i , S
y
j ] = i~Sz

i δij

[Sy
i , S

z
j ] = i~Sx

i δij

[Sz
i , S

x
j ] = i~Sy

i δij .

We define the spin flip operators S± = Sx ± iSy, which satisfy
[Sz

i , S
±
j ] = ±~S±

i δij

[S+
i , S

−
j ] = 2~Sz

i δij .

The Heisenberg model is then defined by the Hamiltonian

Ĥ = −
∑
i,j

Jij ~Si · ~Sj = −
∑
i,j

Ji,j(S
+
i S

−
j + Sz

i S
z
j ),

where the sum is over sites in a lattice with N lattice points, and the Jij are coupling constants with Jij = Jji
and Jii = 0 for all i, j.

To define the magnetization, we consider this model in a uniform external magnetic field in the z-direction
~B = B0~ez. The Hamiltonian in the external magnetic field is given by

Ĥ = −
∑
i,j

Jij ~Si · ~Sj − b
∑
i

Sz
i e

−i ~K·~Ri ,

where the ~Ri are position vectors of the lattice points. The ~K allows us to distinguish between different
spin structures, such as antiferromagnetic with ~K = 0, or ferromagnetic with ~K chosen so that e−i ~K·~Ri = 1

if ~Ri refers to one sublattice and e−i ~K·~Ri = −1 for the other sublattice. The b is a constant depending on
B0 (something like gJµBB0/~, see [7]), which we take to be equal to B0. We also assume that the coupling
coefficients are short range, meaning

1

N

∑
i,j

∣∣∣~Ri − ~Rj

∣∣∣2|Jij | <∞

We further assume that the model is in an equilibrium (Gibbs) state, with expectation values given by

〈A〉 =
tr
(
Ae−βĤ

)
Z(β)

.

From now on, we work in units with ~ = 1.
We define the magnetization by the value

m(T,B0, N) =
1

N

∑
i

e−
~K·~Ri 〈Sz

i 〉T,B0
.

Here 〈·〉T,B0
is the expectation value as given above taken at temperature T . The spontaneous magneti-

zation is defined by
ms(T ) = lim

B0→0
lim

N→∞
m(T,B0, N).

Note that the order in which the limit is taken matters. The quantity m(T,B0) = limN→∞m(T,B0, N) is
called the thermodynamic limit. If ms(T ) = 0, then there is no spontaneous magnetization.

The proof of the Mermin-Wanger theorem uses a result known as the Bogoliubov inequality to put an
arbitrarily small upper bound on spontaneous magnetization.
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Lemma 3. Define

Wn =
1

Z(β)
e−βEn ,

where the En are energy eigenvalues corresponding to energy eigenstates |n〉. Then (·, ·) given by

(A,B) =

Ei 6=Ej∑
i,j

〈i|A†|j〉 〈j|B|i〉 Wj −Wi

Ei − Ej

is a positive semidefinite inner product.

Proof. First, since
〈i|a1A1 + a2A2|j〉 = a1 〈i|A1|j〉+ a2 〈i|A2|j〉 ,

then (a1A1 + a2A2, B) = a1(A1, B1) + a2(A2, B2).
Next, since

〈i|A†|j〉 〈j|B|i〉 = ( 〈i|B†|j〉 〈j|A|i〉)∗,
and since (Wj −Wi)/(Ei − Ej) ∈ R, then (A,B) = (B,A)∗.

Finally, since (Wj −Wi)/(Ei − Ej) ≥ 0, and since

〈i|A†|j〉 〈j|A|i〉 = | 〈j|A|i〉|2,

then (A,A) ≥ 0. Thus, (A,B) is a positive semidefinite inner product. �

Lemma 4 (Boboliubov Inequality). Let A,C be arbitrary operators, and Ĥ the Hamiltonian from above.
Then

1

2
β
〈
{A,A†}

〉 〈
[[C, Ĥ], C†]

〉
≥ |〈[C,A]〉|2.

Proof. Let B = [C†,H]. Then

(A,B) =

Ei 6=Ej∑
i,j

〈i|A†|j〉 〈j|[C†, Ĥ]|i〉 Wj −Wi

Ei − Ej

=
∑
i,j

〈i|A†|j〉 〈j|C†|i〉 (Wj −Wi)

=
∑
i,j

Wj 〈j|C†|i〉 〈i|A†|j〉 −Wi 〈i|A†|j〉 〈j|C†|i〉

=
∑
j

Wj 〈j|C†A†|j〉 −
∑
i

Si 〈i|A†C†|i〉

=
〈
C†A† −A†C†〉 .

For the second equality, we have included the terms where Ei = Ej , and in the last equality, we have used
the definition of Wi from above.

So using B = [C†,H], we have
(A,B) =

〈
[C†, A†]

〉
.

Letting A = B, we have
0 ≤ (B,B) =

〈
[C†, [Ĥ, C]]

〉
.

Now, using the definition of Wi, we have

0 <
Wj −Wi

Ei − Ej

=
Wj +Wi

Ei − Ej
tanh

(
β

2
(Ei − Ej)

)
<
β

2
(Wi +Wj).
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So we have

(A,A) <
1

2
β

Ei 6=Ej∑
i,j

〈i|A†|j〉 〈j|A|i〉 (Wi +Wj)

≤ 1

2

∑
i,j

〈i|A†|j〉 〈j|A|i〉 (Wi +Wj)

=
1

2
β
∑
i

Wi( 〈i|A†A|i〉+ 〈i|AA†|i〉)

=
1

2
β
〈
{A,A†}

〉
.

We’ve shown

(A,A) ≤ 1

2
β
〈
{A,A†}

〉
(A,B) =

〈
[C†, A†]

〉
(B,B) =

〈
[C†, [Ĥ, C]]

〉
. (1)

By Plugging these into the Cauchy-Schwarz inequality (A,A)(B,B) ≥ |(A,B)|2, we have(
1

2
β
〈
{A,A†}

〉)(〈
[C†, [Ĥ, C]]

〉)
≥ |〈[C,A]〉|2, (2)

which finishes the proof. �

Theorem 5 (Mermin-Wagner Theorem). For the isotropic Heisenberg model in one and two dimensions,
Ms(T ) = 0 for T > 0.

Proof. We first define the spin operators in momentum space Sα(~k) =
∑

i S
α
i e

−ik·Ri , where α = x, y, z,+,−,
and the Sα

i are the position space spin operators from above. We will apply the Bogoliubov inequality with

A = S−(−~k + ~K)

C = S+(~k).

Now, note that

[S+(~k1), S
−(~k2)] =

(∑
i

S+
i e

−i~k1·~Ri

)(∑
i

S−
i e

−i~k2·~Ri

)
−

(∑
i

S−
i e

−i~k2·~Ri

)(∑
i

S+
i e

−i~k1·~Ri

)
=
∑
i

(S+
i S

−
i − S−

i S
+
i )e−i(~k1+~k2)·~Ri

=
∑
i

2Sze−i(~k1+~k2)·~Ri

= 2Sz(~k1 + ~k2).

Similarly, we have
[Sz(~k1), S

±(~k2)] = ±S±(~k1 + ~k2).

In order to apply the Bogoliubov inequality (2), we examine each of the terms individually.
(i) We have

〈[C,A]〉 =
〈
[S+(~k), S−(−~k + ~K)]

〉
= 2~

〈
Sz( ~K)

〉
= 2~

∑
i

e−i ~K·~Ri 〈Sz
i 〉 ,
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where the second equality comes from the above, and the third is the definition of Sz( ~K). Substi-
tuting the definition of magnetization, we have

〈[C,A]〉 = 2Nm(T,B0, N).

(ii) Similarly, we evaluate the following sum over ~k:∑
~k

〈
{A,A†}

〉
=
∑
~k

〈
{S−(−~k + ~K), S+(~k − ~K)}

〉
= 2N

∑
i

〈
(Sx

i )
2 + (Sy

i )
2
〉

≤ 2N
∑
i

〈
~S2
i

〉
≤ 2N2S(S + 1).

(iii) The last term,
〈
[[C, Ĥ], C†]

〉
is more tedious. We first substitute the form of the Hamiltonian H

and take the commutator with Sp, to get

[S+
p , Ĥ] = −

∑
i

Jip(2S
+
i S

z
p − Sz

i S
+
p − S+

p S
z
i ) +B0S

+
p e

−i ~K·~Rp .

We now take the commutator of this with S−
q , to get

[[S+
p , Ĥ], S−

q ] = 2
∑
i

Jiqδpq(S
+
i S

−
q + 2Sz

i S
z
q )− 2Jpq(S

+
p S

−
q + 2Sz

pS
z
q ) + 2B0δpqS

z
q e

−i ~K ~Rq .

We then substitute the definition of C, to get〈
[[C, Ĥ], C†]

〉
=
∑
p,q

e−i~k·(~Rp−~Rq)
〈
[[S+

p , Ĥ], S−
q ]
〉

= 2B0

∑
q

〈
Sz
q

〉
e−i ~K·~Rq + 2

∑
p,q

Jpq(1− e−i~k·(~Rp−~Rq))
〈
S+
p S

−
q + 2Sz

pS
z
q

〉
. (3)

We’ll now obtain an upper bound for this value. Recall that this value must be nonnegative by the
inner product in equation (1), and that this does not change if C = S+(~k) is replaced by C̄ = S+(−~k).
This tells us that the right hand side of (3) above is still positive if ~k is replaced by −~k. Thus, we
add the ~k and −~k replaced expressions to get an upper bound〈
[[C, Ĥ], C†]

〉
≤ 4B0

∑
q

〈
Sz
q

〉
e−i ~K·~Rq + 4

∑
p,q

Jpq(1− cos
(
~k · (~Rp − ~Rq)

)
)
〈
~Sp · ~Sq + Sz

pS
z
q

〉
.

Since this is nonnegative, we can apply the triangle inequality to get〈
[[C, Ĥ], C†]

〉
≤ 4B0N

∣∣〈Sz
q

〉∣∣+ 4
∑
p,q

|Jpq|
∣∣∣1− cos

(
~k · (~Rp − ~Rq)

)∣∣∣ · (∣∣∣〈~Sp · ~Sq

〉∣∣∣+ ∣∣〈Sz
pS

z
q

〉∣∣)
≤ 4B0N

∣∣〈Sz
q

〉∣∣+ 8~2S(S + 1) ·

(∑
p,q

|Jpq|
∣∣∣1− cos

(
~k · (~Rp − ~Rq)

)∣∣∣) .
Substituting the definition of magnetization and simplifying, we have〈

[[C, Ĥ], C†]
〉
≤ 4|B0m(T,B0, N)|+ 8S(S + 1)

∑
p,q

|Jpq|
1

2
k2
∣∣∣~Rp − ~Rq

∣∣∣2
Now by definition, since the interactions are short range, the value

Q =
1

N

∑
i,j

∣∣∣~Ri − ~Rj

∣∣∣2|Jij | <∞

exists. We can use this to simplify the above expression, and we have〈
[[C, Ĥ], C†]

〉
≤ 4|B0m(T,B0, N)|+ 4Nk2~2QS(S + 1).
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Now, we substitute the above inequalities into the Bogoliubov inequality (2) to get

βS(S + 1) ≥ m(T,B0, N)2

N2

∑
~k

1

|B0m(T,B0, N)|+ k2~2NQS(S + 1)
,

again, the sum is over vectors ~k in the first Brillouin zone (see [5]). This is the key inequality for the theorem,
and to proceed, we convert the sum in this inequality into an integral, as

βS(S + 1) ≥ m(T,B0, N)2
1

N2

∫
~k

1

(2π)d
1

|B0m(T,B0, N)|+ k2NQS(S + 1)

where the integration is over the vectors ~k in the first Brillouin zone, and we suppose our system sits inside
a d-dimensional volume Vd (this is the “dimension” that we are concerned with in the theorem). Suppose
it contains Nd = nd spins, and suppose that in the thermodynamic limit N → ∞, then Vd/Nd → vd, some
constant value. Since

1

|B0m(T,B0, N)|+ k2NQS(S + 1)
≥ 0,

then instead of integrating over the entire first Brillouin zone, we can integrate over a sphere contained
entirely inside the first Brillouin zone. Let k0 be the distance from the nearest Bragg plane to the origin, so
the integration will be over a sphere of radius k0. We have the inequality

S(S + 1) ≥ m(T,B0)
2vdΩd

β(2π)d

∫ k0

0

kd−1dk

|B0m(T,B0)|+ k2QS(S + 1)
,

where Ωd is the surface area of the d-dimensional unit sphere.
For d = 1 and d = 2, we can evaluate this integral, and obtain
(a) (d = 1). Evaluating the integral in this case gives

S(S + 1) ≥ m(T,B0)
2v1

2πβ

arctan

(
k0

√
Q~2S(S + 1)

|B0m(t, B0)|

)
√
QS(S + 1)|B0m(T,B0)|

For small B0, we have

|m(T,B0)| ≤ const.B
1/3
0

T 2/3
.

(b) (d = 2): Evaluating the integral for d = 2, we obtain the inequality

S(S + 1) ≥ m(B0, T )
2v2

2πβ(gJµB)2

log

(
QS(S + 1)k20 + |B0m(B0, T )|

|B0m(T,B0)|

)
2QS(S + 1)

.

For small B0, we have
|m(T,B0)| ≤ const. 1

T 1/2|log(B0)|1/2
.

In either of the above cases, for d = 1, 2 and T 6= 0, we have
lim

B0→0
m(T,B0) = 0,

which finises the proof the theorem. �

Some remarks on the theorem:
(1) The theorem only holds for the isotropic Heisenberg model.
(2) The proof rules out only spontaneous magnetization, and does not exclude the possibility of other

phase transitions.
(3) The theorem can also be proved for other models, such as the Hubbard model, X-Y model, or

Kondo-lattice model.
(4) For a more general discussion of the absence of continuous symmetry breaker in 2D lattice systems,

the reader is referred to [3].
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