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Abstract

We use a residential sorting model incorporatmgration disutility to recover the
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China. We employ two instrumental variables basedaal-fired electricity generation
and wind direction to address the endogeneity @dllair pollution. Results suggest
important differences between the residential sgminodel and a conventional hedonic
model, highlighting the role of moving costs aneé ttiscreteness of the choice set.
Our sorting results indicate that the economic eabi air quality improvement
associated with a one-unit decline in PM2.5 conegioin is up to $8.83 billion for all
Chinese households in 2005.

JEL Classification: Q51, Q53, R23
Keywords: Air Pollution, Willingness to Pay, Hedonics, Migiat Costs, Discrete
Choice Models, Residential Sorting

We would like to thank Wayne Gray, Don Fullertoric®ai Kuminoff, Ming Lu, Billy Pizer, Kerry
Smith, Robert Stavins, Junfu Zhang, Siqi Zheng sewhinar and conference participants at Harvard
University, Fudan University, Hongkong UniversitiyScience and Technology, Hong Kong Polytechnic
University, Peking University, the 3rd Biennial Gerence of China Development Studies, Camp
Resources 2017, and the Inaugural JEEM Conferen&nvironmental and Resource Economics for
their helpful comments and insights. We thank HenTand Yingdong Zhou for excellent research
assistance. We thank the editor and referees ftpfuhecomments, which greatly improved the
manuscript. All remaining errors and omissions@reown.



1. Introduction

Reliable estimation of household preferences feamrlair has long been an
important topic for economists and policy makera. large body of literature uses the
hedonic framework to recover the economic valuaibfquality improvements. A
meta-analysis of 37 hedonic price studies found the willingness to pay for air
quality varied widely in the U.S., some even haviag‘perverse” sign that is
inconsistent with prior expectatioSmith and Huang, 1995)

Three econometric identification problems couldypkathe implementation of the
conventional hedonic model, especially in the daewelg country context.  First, the
hedonic model assumes that households are freddiferaxross locations, but the costs
associated with migration are high in developingurddes. When there are
significant migration costs, the benefits that lehdds receive from moving to less
polluted cities must compensate them not only éwdr income and higher housing
prices, but also for these costs. Therefore,ithple variation in income and housing
costs across locations no longer reflects the enanealue of differences in air quality
(Bayer et al., 2009)

Second, the hedonic model assumes that househeldi®a to select an amenity
bundle from a continuous joint distribution of lbcattributes, but the spatial
distribution of amenities is discrete and may ciontaany “holes”. When the spatial
distribution of at least one amenity is discreleré is no longer a direct link between
the marginal price and the marginal willingnes&y (Kuminoff et al., 2013)this

problem may be particularly important when amesitare discrete and heavily



imbalanced across locations, which is often the @asleveloping countries.

Third, air pollution is likely to be correlated Wwitinobservable local variables that
affect both housing costs and household income. marst developing countries,
economic development, job opportunities, governmemtision of public services, and
polluting industries are all centralized in the seaneas, which results in a more serious
omitted variable problem in the estimation of hedoprices for environmental
amenities. Any of these three identification pesbs will lead to biased estimates of
the marginal willingness to pay for clean air.

Billions of residents of developing countries fameessively high levels of air
pollution, and this air pollution endangers theinygical and economic health.
However, the few existing studies in developing raaes find that households’
willingness to pay for improvements to environméntaality is extremely lowYusuf
and Resosudarmo, 2009; Kremer et al., 2011; ItoZdrathg, 2016) The paradox of
a heavy economic and health burden generated byespullution and households’ low
valuation of environmental quality improvementsleveloping countries is the central
puzzle at the intersection of environmental andetigpment economic&Greenstone
and Jack, 2015) China is the largest developing country and sedargest economy
in the world, and its air pollution problems poseraordinary local and global
challenges. However, data limitations have leddoy few studies measuring the
economic value of air quality improvements in China

China provides a good setting in which to study dshwlds’ sorting decisions

while incorporating the disutility from migration. Estimates derived from these



decisions can be used to evaluate willingness tp fpa local amenities. The
incomplete discrimination dfukou(the Chinese household registration system) argues
against the benchmark assumption of free mobilitythe conventional hedonic
framework. Migrants without a locAukoudo not have equal access to government-
provided amenities — e.g., public education foskathd medical care service. There
is also tremendous heterogeneity in the applicatfathehukousystem across citiés.
Although moving costs are high in China, the tetatk of migrants is estimated to be
about 247 million in 2015, as large as 77% of th®.population.

In sorting across labor and housing markets, Ckimesidents express growing
concerns over the quality of the environment asdhitpact on their health. Figure 1
relates air pollution dfiukoulocation and the fraction of the population whave their
hukoucity. It shows evidence in raw data that peogeehfled theirhukoucity to
avoid the harmful exposure to severe air pollutireferences for clean air shape the
way that households sort across cities. Chinatber provides a great opportunity
for the study of pollution induced sorting and thmportant role played by migration
costs.

We develop a two-step framework to recover houskprferences for air quality.
At its heart is a discrete-choice model of housghelsidential location decisions,
incorporating migration disutility. This empiricalodel followsBayer et al. (2009)

who estimate the economic value of air quality ioy@ment in U.S. metro areas; in

1 The quantity and quality of state-provided sersiassociated with localikoustatus, as well as the difficulties
involved in obtaining the locddukoufor migrants vary widely across cities in Chinagdare highly correlated with
the administrative hierarchies and the economieldgment of jurisdiction$Chan, 2009)
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contrast, we employ different approaches to modgtation disutility and different
instruments to deal with endogeneity. First, we asdiscrete-choice model with
moving disutility to return the indirect utilitiessociated with residing in various cities.
In order to model moving disutility in China, wetnanly consider the physical and
psychological costs of living far from ondisikoulocation, but also heterogeneities in
the barrier to obtain locdlukouand economic opportunities available for migrants
across Chinese cities. After getting city-specifiean utilities from the first-stage
estimation, we regress them on measures of locgbéution in order to quantify the
marginal willingness to pay for clean air. Becawse pollution is likely to be
correlated with unobserved aspects of city quadityendogeneity problem arises in the
second-stage estimation. Hence naive OLS estinshtedlingness to pay will be
biased.

We employ two instrumental variables to address @éhdogeneity of the air
pollution concentration of a given city: the smatl@angle between the local annual
prevailing wind direction and large-scale thermalvpr plants outside the city, along
with the total annual coal consumption of the lasgale thermal power plants located
upwind of the cit2 The wind will blow the particulate matter spewfeaim distant
coal-fired power plants into the city, and theskypants can dramatically worsen local
air quality. The two instrumental variables provide an exogersmusce of variation
for a number of reasons First, wind direction is stable over long periodigime, and

it is exogenous to local economic activitySecond, those large-scale thermal power

°The large-scale thermal power plants are defingldeathermal power plants whose installed-capacitie larger
than 1 million KW.



plants supply electricity to vast areas of Chimajuding many remote regions; many
do not supply electricity at all to their nearbiies, but rather to many remote provinces.
Further, the allocation of electricity supply frdange-scale power plants is determined
by the central government — it is difficult for Elogovernments to exert influence on
the allocation of electricity supply from these mowplants. Finally, the spillover
from distant large-scale power plants on local ecin activity is extremely small, but
the pollutants emitted from power plants locatedingd severely contaminate the local
air

Our study is conducted with the most compreherand detailed data available on
city level air pollution and household level intatrmigration in China. EXxisting
studies of air pollution in China typically use thg Pollution Index (API) and PM10
data from the Ministry of Environmental Protectioh China. However, API and
PM10 data can only be obtained in large and mediized cities in China, and PM2.5
data were not published until 2014. Additionathgre is a potential concern that the
official air quality data may be manipulated bydbgovernment¢Chen et al., 2012;
Ghanem and Zhang, 2014)We collect city level annual average PM2.5 uskigbal
Annual PM2.5 Grids derived from satellite data an\Donkelaar et al. (2016). These
data provide a reliable and accurate measuremeit qtiality for all cities in China.

Internal migration data are drawn from the 2005-®recent Population Census of
China, which is a restricted access census dateofietted by National Bureau of
Statistics of China. It is the only national cemislata that records income in China.

For each household, this dataset provides fout-dagies of city levehukoulocation



and residential location, along with a wide randgesaciodemographic and housing
characteristic variables.

Our results reveal salient differences betweerctmelusions of the conventional
hedonic framework and those of the residential irsgprframework. They also
demonstrate the importance of dealing with endoigerzes well as accounting for
migration disutility and the discreteness of theich set. To compare these two
methodologies, we begin with a conventional hedanalysis that recovers a negative
estimate of the value of cleaner air.  Instrumentor air pollution is found to reduce
the bias of hedonic estimates. Consistent withition, the MWTP for air quality has
an expected positive sign when the sorting proaeslsmigration disutility are taken
into account. Specifically, we find that the medi@hinese household would pay
about $21.70 for a one-unit reduction in annualraye fine particulate matter
concentration. Given 407 million households inr@hin 2005, the economic value
of air quality improvement associated with a oné-dacline in PM2.5 concentration
is approximately $8.83 billion. Our estimated imidness to pay for air quality is
substantially larger than that found in existingdss on the economic value of a clean
environment in developing countries. Furthermtine,results indicate that ignoring
the discreteness of the choice set and migratisatitty will likely misrepresent the

economic benefits of environmental quality improesrin developing countries.

2. Aresidential sorting model incorporating moving dsutility

Following Bayer et al. (2009we present our utility-maximizing location choice



model in the context of China. Householdchooses residential city, along with
consumption of a composite commodity and housing services , to maximize

its utility subject to a budget constraint:

)

where is household income in city, represents the unit price of housing
servicesincity ,and  denotes the local amenity of interest (here, @ality) in city
For simplicity, we normalize the price of thengmosite commodity to 1. The

utility function for household residing in city is assumed to be:

tu# $% $& (2)

where' captures all the unobserved characteristics @f cthat are valued similarly
by all households, and is a household-specific idiosyncratic term that is
independent of migration disutility and city atuitbs. )  representshe disutility to
household of moving from itshukoucity to cityj. In our study,) not only
captures the physical and psychological costsvafdifar from one’shukoulocation,
but also the barrier to obtaining lodalkouand economic opportunities available for
migrants in city .

Household utility maximization yields the optimumonsumption of housing

services:
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Denoting . . ., substituting "~ for in (2) and using the budget

constraint yields the following household indiredttity function

/ o" 123 $% 4 23-$ 123 $%S$& )

where 0 . . 5. . $ is a constant that does not vary with location
choicej and subsequently drops out of the random utiliobfem. We can derive the

MWTP for the amenity using the marginal rate of substitution betweerand

household income:

)678 —+— (5)

We can only observe household income in its city of residence. Thus, we must
predict the counterfactual income in other unchdseations. We then decompose
household income into a predicted mean and anyidavatic error term—i.e.9:

9:; < . Substituting this into (4) and taking logs y&Id

9f = . 95 ) > > . < | (6)

= ?2. 9 .9 (7)



where = represents city-specific mean utility that is coomto the households in city
and captures all the utility-relevant charactarssof the city, and captures the
unobservable component of.

The residential sorting framework introduced aboags easily handle the discrete
and imbalanced distribution of amenities in develgpcountries. This is different
from the conventional hedonic model where individuare assumed to face a
continuous joint distribution of all amenities.

In a sorting equilibrium, no household could impgats utility by migrating to a
new city, given income, housing price, local amesitmoving disutility and all the
parameters in the equation (6) and (&)minoff et al., 2013; Klaiber and Kuminoff,
2014) All of the structural parameters can be recaverging a two-step approach
described irBerry et al. (1995) In the first step, we directly estimate equatiénto
recover all the alternative-specific fixed effects, @ A B . Assuming that
is independently and identically distributed Typextreme value, the probability that

household chooses to reside in city can be written as:

JKLM $ 123, $#
P .
NOQR‘JKL Mo$ 123, 0% o

8C9:/ D9/ gFGH I (8)

We use the multinomial logit estimation proceduoeirifer the parameters in
equation (8). Mean utility= is recovered as a city-specific fixed effect.

In the second step, we use the estimated fixedtaftatained from the first stage,
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S, as the dependent variable and regress on aiityqueusing price and other city
factors in the form of equation (7). Two identifiton problems will result in biased
estimates of.  in this second step. First, itis likely that fhrece of housing services,

, is correlated with unobservable city attributes i. However, from equation (3),
we havethat . C 5 |;the parameter can be obtained from the first step
estimation and we set "5 equal to the median value of the share of incqueats
on housing, which is 0.162 in our sampleWe therefore address the endogeneity issue

by moving observed 9: to the left-hand side of equation (7):

= . 9 . ' 9

We can consider the new dependent variable, 9: , asthe housing costs adjusted
life quality of residing in city , and it is common to both native and migrantsdiasgi
in the same city.

Second, local amenities tend to be correlated withbservable aspects of city
quality. In the case of air quality, local econoractivity is likely to be positively
correlated with air pollution concentration alonghahousing price and income. This
endogeneity problem leads to biased estimategahtrginal utility of air quality. To
deal with the issue, previous studies have geneaelled on instrumental variables that

are exogenous to local economic activityChay and Greenstone (200b)ke

3 Following Bayer et al. (2007)for the purchased houses and self-built housesyse the coefficients of city-
specific housing price regression of equation (8§ the next section) to convert the housing gédhte a measure
of annual costs in 2005, and then calculate theesbhousing expenditure in household income. détails of
housing price regression will be illustrated in tiext section.
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nonattainment status defined by the Clean Air Ac1®70 as instruments for county
level air quality improvement. Bayer et al. (2009nstrument for air quality using the
contribution of distant sources to local air patat which is computed through a
county-to-county source-receptor matrix in the U.9n China, however, stringent
regulations on particulate matter concentrationewet implemented until 20¥2and

a source-receptor matrix is not available. Hewneedefine two instrumental variables
for local air pollution based on backgrounds inr@hi The first is the smallest angle
between the local annual prevailing wind directzomd the large-scale thermal power
plants located outside cityand within a certain distance. The second istoites
annual coal consumption of the large-scale themoaler plants located at upwind
region of city . We will further explain our instrumental strayag section 4.4. To
the best of our knowledge, the two instrumentalal@des in our study have not been

used previously in the sorting literature.

3. Data
3.1 Primary data sources

We estimate the residential sorting model and recowounterfactual household
income and city-specific housing price using the2One-Percent Population Census

of China. The 2005 One-Percent Population Cen@hima was conducted by the

4 On December 5, 2012, “12th Five-Year Plan on AililRion Prevention and Control in Key Regions” was
issued jointly by Ministry of Environmental Protixt of China, National Development and Reform Cossitn
of China, and Ministry of Finance of China issuéeTplan sets stringent targets for ambient conagons of
particulate matter (PM2.5 and PM10) for the firshd in China. For more background information, see
http://www.mep.gov.cn/gkml/hbb/bwj/201212/t201212083271.htm
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National Bureau of Statistics of China. It is thgest population census data that has
been made available to academic researchers, lutwth restricted access. The
census data has about 2.3 million individuals andltlon households, covering all 31
province-level jurisdiction8. The data not only records very detailed infororati
about housing conditions, but also contains a lst@f variables about demographic
and economic characteristics of household memiserd) as age, gender, education
level, employment status, occupatidiykou type (rural/urban), four-digit code of
hukoucity, and four-digit code of residential city. dlmost important variable in the
data is the individual monthly income. To the bafsbur knowledge, the 2005 One-
Percent Population Census of China is the onlyusdsta that has the information
about incomé.

We assume that the migration decision of a éloolsl is made by the household
head, hence we use the household hdadksucity and residential city to define the
migration status of the househdld.Similarly to Bayer et al. (2009we exclude the
households if the age of household head is grélader 35 years in order to focus on
the first location decision made by households @nensure the migration decisions

are mainly driven by the current city fact§rdVe drop observations with missing

5 The sample size of the 2005 One-Percent Popul@gmsus of China should be about 13 million, bufdval
Bureau of Statistics of China only released a dftle+fandom subsample of the census data.

6 We have additionally checked all the national gagon census questionnaires in China: Questioenzithe
Third National Population Census (1982), 1990 Nwtid®opulation Census Questionnaire, Census 20@0nail-
out questionnaire, the 2005 One-Percent Popul@msus of China Questionnaire, the 2010 NationplRdtion
Census Questionnaire, the 2015 One-Percent Papul@énsus of China Questionnaire.

7 To make the framework simple, we follow standaractice in this literature and do not to consider dual-
location choice of households. A prominent phenmuoneof dual-location choice in China is the leftivel
children, but this is driven mainly by thekousystem, rather than air quality. Figure A2 andl@&11 show that
the hukousystem exerts a significantly positive effect ba teft-behind children, but PM2.5 concentratios ha
significant effect Table A12 further demonstrates that PM2.5 conegiotn has no effect on the dual location choice
of migration households.

8 In particular, we exclude household heads oveyedfs old to ensure that location decisions areedrby
current local attributes not historical attributBecause pollution-related morbidities might becanm@e salient
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values, and use the sample whbskouare held by the households not by the working
units?

To get a more accurate estimation of counterfa¢toasehold income and housing
price, we delete observations that have the highelstwest 0.1% value of individual
monthly income, monthly rent, house purchasingeprimuse building price or floor
area. We transform the monthly income into annuzoine, predict annual
counterfactual individual income in each city, atien aggregate counterfactual
individual income at household level to recover mtedfactual household income.
Because China’s real estate market was not ediadlisintii 1991, we drop the
households if their houses were built before 1@dibfer city-specific housing price.

We collect the city characteristic variables fr@hina City Statistical Yearbook,
which covers 285 cities of China in 2085. Thus, we only use the samples whose
hukoucity and residential city are both covered by 288 cities. In total, there are

61,536 households in our sample. The summansstatiof census variables used in

with age and older households are more likely teehailnerable dependents (such as parent, childitem)velfare
gains from improving air quality might be higher fader households. To this extent, our estimatiéigpvovide a
lower bound for the MWTP for clean air in China.

9 One clarification ofhukouin China is between the househdidkouand the working unit collectiveukou
Migrants who are employed in state owned enterprigeblic institutions, and government departmarggypically
provided with a temporary working unit collectiiekou. The individuals whoshukouare temporarily held by
working units don’t have equal access to governmpemtided amenities as natives who hold householeby but
they are relatively easier to apply for, comparéti Wocal householtiukoy and make the recipient eligible for more
government provided welfare in comparison with otherants. Thus, it is difficult to clarify theigration status
of the households who hold working-unit collectivekou. In 2005, only 2.35% of households hladkouthat
were held temporarily by their working units.

10 we limit our analysis to observations with have 1moissing values for the wage variable and ignoee th
extensive margin decision on labor supply.

1The Chinese government has enacted many reforthg imousing sector since 1978, but has only cathiegh
out in some cities, e.g., Shen Zhen. Prior to 19®lsing was mainly allocated to employees atstatned
enterprises, public institutions and governmentadepents through a planned system; therefore, theie no
housing market, and one cannot observe transadioes. In 1991, the central government author&bdusing
reform project which covered 24 provinces, autonesneegions, and municipalities in China. This espnted a
comprehensive reform of the housing sector in Chirféince then, the housing market in China has madfu
allowing people to exchange their housing throdghgrice system. This has made it possible fdowbserve
transaction prices since that time.

12The 200%China City Statistical Yearbodists 286 cities, but all the variables in ourdstare missing for Lhasa.
Thus, we only use the 285 cities to construct hinoisis’ residential choice set.
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our study are presented in Table Al.

We collect the information about large scaled ttadrpower plants and their coal
consumption from China Electric Power Yearbook. niVdirection data comes from
the China Meteorological Data Service Center. Wéntcalculate by hand the angle
between the locations of large thermal power plamis the annual prevailing wind
direction of each city as well as the distance ketwthe plants and cities. We further
use these variables to construct the two instruaheariables in our paper.

The regional distribution of the 285 cites in oanle is illustrated in Figure 1.
There are 337 cites at the prefecture level andeab02005. The 285 cities in our
sample cover 85% of the cities in this group anut@io approximately 91.04% of the
Chinese population in 2005.

To estimate the MWTP for clean air, we require aatair pollution concentration,
household income, housing price, city attributed srstrumental variables based on
the coal consumption and the location of largeesdakrmal power plants. We
describe the measurement of city level air polluiio detail below. Table 1 reports

the summary statistics and a full description efkky variables used in the analysis.

3.2 Air quality measures

Previous studies on China’s air pollution problegaserally use the Air Pollution
Index (API) and PM10 data from the Ministry of Eronmental Protection of China.
However, APl and PM10 data can only be obtainddroe and medium-sized cities in

China, and PM2.5 data were not published until 200M/e use PM2.5 satellite data
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for our analysis rather than official air qualitytd, since it has the following advantages.
First, the location choice set of households inetudot only large and medium-sized
cities, but also many small-sized cities; officéut quality data are not available for
these cities. Our satellite PM2.5 data are aviglédy all the cities in China, thus the
data facilitates the construction of household€atmn choice set. Second, fine
particles (diameter<2.5um) are more hazardous thkmger particles
(2.5pum<diameter<10um) in terms of mortality, cav@discular and respiratory
endpoints, and PM2.5 is considered to be the bdsatadtor of the level of health risks
from air pollution®® Finally, a potential concern of the official guality data is that
it may be manipulated by the local governm@tten et al., 2012; Ghanem and Zhang,
2014) however our satellite data are immune to any tiyidg data manipulatiof

City level annual PM2.5 concentrations are measusdg the Global Annual
PM2.5 Grids derived from satellite data by Van Delakr et al. (2016). Van
Donkelaar et al. (2016) estimate ground-level PM&/5combining Aerosol Optical
Depth (AOD) retrievals from the NASA MODIS, MISRn@& SeaWiFS, which are
subsequently calibrated to global ground-based redsens of PM2.5 using

Geographically Weighted Regression (GWR) The raster grids of this ground

13 For more background information see WHO repdntig://www.who.int/mediacentre/news/releases/20i-4/a
quality/en/andhttp://www.euro.who.int/__data/assets/pdf_file/0002199/E79097.pdf

14 We have compared our satellite PM2.5 data withmbaitor-based PM2.5 data collected by the U.S.
Embassy and Consulates in China, and their coioela approximately 0.8.

15 Van Donkelaar et al. (2016) first estimate a uaiggpatially and temporally varying AOD-to-PM2.5
relationship for every day during the time perioohfi 1998 to 2015. This relationship is based onotlitput of a
chemical transport model combining equations teatesent the physics and chemistry of the atmosphéh
meteorological conditions and emissions aroundatbigd. They apply that relationship to AOD retrievérom a
variety of satellite instruments to get an inigatimate of PM2.5. They then use ground-based PMgdsurements
to understand biases in their initial PM2.5 valaed apply this understanding to further adjustrtindial estimates.
They limit direct application of this ground-basagjustment to 2008 and onward due to the yeanstiarh global
PM2.5 measurements are available, but they furtberthe relative changes compared to their irffid2.5 values
to make a reasonable representation of earliesybat benefit from the ground-observed period.
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calibrated PM2.5 data have a high grid cell resmubf 0.01 degre& Our data
provide a comprehensive and reliable measuremeair @fuality for a wide range of
cities in China, covering all the prefecture, subvincial and provincial cities.

Figure 3 illustrates the satellite air pollutiontaladepicting the spatial distribution
of annual PM2.5 concentrations for China in 200%he figure shows that air quality
is unevenly distributed in China — the most sewarepollution occurs in eastern
provinces, where manufacturing industries aggloteeeand high economic growth
takes place. PM2.5 concentrations are also higkinjiang province, because vast
areas of this province are desert. Figure 4 iftes the time trend of mean annual
PM2.5 concentrations in Chinese cities since 26 mean concentration is above the

WHO air quality guideline in all these yeafs.

4. Econometric Specification
4.1 Estimating counterfactual household income

We first recover the individual income each housghnember would earn in
every location, by estimating a separate regressiandividual income on personal
characteristics for each labor market of every, cityrecting for Roy sorting bias using
the procedure describedahl (2002) Thehukousystem results in discrepancies in
income between migrants and natives in Chinesesciti It is difficult for migrants to

obtain a locahukouin the large cities of China, but easy for therolitain one in small

16 NASA's Earth Observing System Data and Informa8gatem also published Global Annual Average PM2.5
Grids with grid cell resolution of 0.5 degrees. isTtesolution is, however, too large to calculatg level PM2.5
concentration.

17Seehttp://www.who.int/mediacentre/factsheets/fs313fenimore background information.

17




and medium-sized cities. Thus, we allow for twpasate labor markets in each of 35
large cities (i.e., a labor market for natives andther for migrants), but only one labor
market in each of the other 250 cities of our samipl calculate counterfactual
individual incomet®

We defineT  as the probability of individual residing in city . Following
Dahl (2002) we infer T in the context of China. We first allocate altlividuals
into three data cells according to their educagittainment: less than high school, high
school graduate, and some college or above. Waihith cell, we further assign
individuals into twohukoutype cells: urbarhukouand ruralhukou Within each
education-byaukou type cell, we finally divide them into 28Bukou locations.
Overall, we have 1,710 data cells, ahd is computed as the share of the population
in individual Ys cell that settle in city  Then we run the individual income

regression in each labor market of cityusing the following equation:

90 v Wy XRY ZvT Z,\yvT' <y (10)

where] denotes labor market. On the basis of the he¢e@ty of the barrier to
obtain localhukoy we specify two labor markets in 35 large citi€<hina, but only
one labor market in other citiesY is a vector of individual attributes, includingeag

age squared, and dummy variables liokou types (ruralhukou or urbanhukoy,

8These thirty five large cities include all the pirwial cities, sub-provincial cities, and provincizapitals
(excluding Lhasa) in China. They are Beijing, Cheingh, Changsha, Chengdu, Chongging, Dalian, Fuzhou,
Guangzhou, Guiyang, Hangzhou, Harbin, Haikou, Hedehhot, Jinan, Kunming, Lanzhou, Nanchang, Napjin
Nanning, Ningbo, Qingdao, Shanghai, Shenyang, SteemShijiazhuang, Tianjin, Taiyuan, Wuhan, Xiamsifan,
Xining, Yinchuan, Uriimgi, and Zhengzhou.
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educational attainment (below high school, higlostland some college or above) and
gender (male, female).

We predict counterfactual individual income of eaclusehold member in every
location using coefficient estimated by equatio®)(® After that, we add the
predicted individual incomes to the level of theubehold in order to calculate the

counterfactual household income in every city.

4.2 Measuring housing price

We define the value of the home occupied by hougehan city , 8 , as the
value of the house (for owner-occupied units) anuah rent (for rental units). We
assumeG”8 is a function of a city-specific constant  and a vector of housing
characteristics () that includes age of housing structure, the nurobeooms, floor
area, whether the housing structure is a storiddibg, whether tap water is provided,
whether kitchen is provided, and whether there ieséfroom. We then estimate the

following equation:

98 O [ abcdefgh | abcdefgh \ abcdefgh | abcdefgh OJ"

kel | kel A kel | ke 0" Z M < (11)

where i apcqergh 1S @ dummy variable that equals 1 if householgurchases its home

and O if itis rentedi g is @ dummy variable that equals 1 if householBuilds

19 Note that the Dahl correction term&, and T' , are not included when predicting individual ineoin
each city, because they only serve as controlRégrsorting bias.
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its home and 0 otherwise. The 2005 One-Percenil®opn Census of China reports
the current rent in the census year, but the past pf owner occupied housing when
the house was self-built or purchased. ThuSpcgergh | abcdeigh 0] and

‘I kel \ ke 0] measure the premium on purchased housing and built
housing of different age in city, respectively. Z describes the role of housing
characteristics on prices in city The fixed effect measures the unit price of
housing services adjusted by housing charactesisticd ownership in city .
Therefore, we can infer the housing price in ediyhas the constant in the city-specific
regression of equation (11), using the 2005 OnedP¢rPopulation Census of China

described in section 3.1.

4.3 Modeling moving disultility in the first-step estimation

High migration costs mean that the conventionabhedmodel will be unable to
recover unbiased estimates of the value of locardties (Cragg and Kahn, 1997;
Timmins, 2007) The residential sorting framework introducedSaction 2 can
capture the moving disutility in the sorting progdsy incorporating a fixed cost
associated with every alternative location (Bayemle 2009). The inclusion of
moving disutility yields a more accurate measuretrid MWTP, particularly in
developing countries. The mobility rate is highhe U.S. — 18% of the United States
population has moved to a new place of resideneeyeyear since the Second World
War (Klaiber and Kuminoff, 2014) But on average, only 5.48% of the Chinese

population has left theinukoulocation for a new city every year between 2008 an
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2015.2°  The hukou System restricts population mobility in Chif€han and
Buckingham, 2008; Chan, 200@)nd a comparison of internal migration rates eetw
the two countries indicates that there are muchtgranoving costs in China.

In order to capture the heterogeneity in the bata@btaining a locahukou(and
the corresponding economic opportunities availédienigrants across Chinese cities),
we use six dummy variables and their interactiond/e first divide the cities into four
groups: Beijing and Shanghai, sub-provincial citiakbng with Tianjin and
Chongging?! provincial capital€? and ordinary cities. The difficulty for migrants
to obtain locahukouis highest for Beijing and Shanghai, followed lo§p-grovincial
cities, and then by provincial capitals and ordynaities. In terms of economic
opportunities for migrants, the situation is enyirdifferent. Beijing and Shanghai
provide migrants the maximum amount of economicoojynities, followed by sub-
provincial cities, provincial capitals and ordinanities in descending order. Thus we

model the moving disutility in China using the @nlling equation:

) n(op N0, N0, Ng4O Oy N O O, N O Og (12)

20 On the basis of the 2005 One-Percent Populatiors@eof China, the 2010 National Population Census
China and the 2015 One-Percent Population Censuhofa, we report the pattern and evolution of rimaé
migration in China from 2005 to 2015. We define $ihare of people between 18 and 65 years old that keft
their hukouplace for a new place of residence during last y@aneasure the population mobility in China. In
2005, only 4.49% of people left théiukouplace during the last year. The figure increasex75% in 2010, but
decreases to 4.77% in 2015. Moreover, males hdwgher mobility rate than females in 2005, 201d aA15.
On average, 5.92% of males and 5.04% of femalethtwva new place in each year between 2005 ar@l 201

21 Tianjin and Chongging are provincial cities in @i but the barrier to obtaining a lodalkouand the
economic opportunities for migrants in the twoestare similar to sub-provincial cities. Henceassign Tianjin,
Chongging and sub-provincial cities to the sameigro

22 We exclude 10 cities which are both sub-provincities and provincial capitals in the group of yinzial
capitals, and assign the 10 cities to the grouputi-provincial cities. In the mainland of Chinaeri are 27
provincial capitals and 15 sub-provincial citiesAmong them, 10 cities are both sub-provincial siaed provincial
capitals. Thus, there are 17 cities in the grdymrovincial capitals in our study.
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o @ iflocation is outside of households hukoucity?® (= O otherwise).

0, @ if location s outside of households hukouprovince (= 0
otherwise).

0, @ iflocation is outside of households hukoumacro-regior¥ (=0
otherwise)

04 @ iflocation is Beijing/Shanghai (= O otherwise).

o, @ iflocation is a sub-provincial city/ Tianjin/ Chongqging (=0
otherwise).

0 @ iflocation is a provincial capital (= 0 otherwise).

The first three dummies of equation (12) measusetiity with respect to the
physical and psychological costs of leaving ort@sou city.?®> The interactions
between “outside ohukoucity” dummy and three city group dummies capture t
difficulty of obtaining localhukouand economic opportunities available for migrants,
which are relative to migration disutility in ordiry cities?® Moving disutility is
normalized to zero if the household stays irhiikoucity.

Then, we calculate the following likelihood fungtito infer the parameters in the

first step estimation:

< ont |
tC=. n[usl VvV V €WPJKLM$ 123, $NiopXyzy SNy XyzZRr Zy
’ NoorIKL Mo$ 123, 0$NiorXyzy 08Ny XyZr Zy 0

(13)

23 For a given household, we use the household hbaksulocation to define a householdisikoulocation.

24 There are seven macro-regions in China: East Chogh China, Central China, South China, Southwes
China, Northwest China and Northeast China.

25 In China, most peoplelsukoucity is the same as their birth city. At 2014,y0Rl08% of people’tukoucity
is different from their birth city.

26 We assume that migration disutility is heterogeiseacross the four groups of cities. Ordinary sitiee
considered as the benchmark group in the empisipatification of equation (12), therefore we daadd the
interaction between “outside of hukou city” dummmdd ordinary city” dummy,
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where is an indicator function that equals one if howteh chooses to live in
city and O otherwise. Recall that estimated from equation (13) denotes city-
specific indirect utility independent of househaidome and moving disutility= is
common to both native and migrants residing in cityand we use the housing price

adjusted city-specific utility as the dependenialale in the second step estimation.

4.4Instrumenting for air pollution in the second-stepestimation

We use the following equation to perform our seestep estimation:

= ,@f,. 9 . 98 f Y (14)

where 8) represents fine particulate matter (PM2.5) conegion; T denotes
other local characteristics, including GDP per tappopulation, education service,
medical care service, distance to large seapodsnatustrial pollutant emissions; the
parameter. is inferred from our first step estimation.

As introduced in Section 2, we use two instrumewsaiables together to address
the endogeneity of local air pollution in city. The idea behind our instrumental
strategy is illustrated in the Figure 5.

The first instrumental variable, which we label |4 the smallest angle between
the local annual prevailing wind direction and thege-scale thermal power plants
outside city . We exclude the thermal power plants that loaat@ore than 500 km

fromcity to avoid the weak instrumental variable problems illustrated in Figure
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5a, the thick arrow represents the annual domiward direction of city , and large-
scale thermal power plant Ais located outside cijtiput less than 500km from the city,
thus the angléw is the first IV for air pollution concentration gity . Note that if
there is more than one large-scale thermal powantlocated outside city and
within 500km), we use the smallest angle to delife

The second instrumental variable, which we labe?, |6 the total annual coal
consumption of all large-scale thermal power pldatated upwind of city . As
depicted in Figure 5b, we take a section of a tarcbuffer drawn at a distance of
500km from the city. The angle between the laftfriside of the section and the
annual dominant wind direction of city is "5%. We exclude the overlapped area of
the sector and city, and the shaded area is defined as the upwindrragithe city.
For instance, there are two large-scale thermalep@lants located in the upwind
region of city , power plant A and power plant B. 1V2 is thenidedl as the sum of
annual coal consumption of A and annual coal comsiom of B.

There are 105 large-scale power plants in Chin085, the total electricity
generation of the large-scale power plants is 84#lobn kWh, and the total coal
consumption reaches approximately 2,670 milliorstonFigure 6 shows the location
of the large-scale power plants in 2005. The compa of Figure 3 and Figure 6
indicates that the large-scale coal-fired powentslare highly correlated with PM2.5
concentration in terms of spatial distribution. té&lthat there is no large-scale thermal
power plant in Xinjiang Province, however air qtiais poor in Xinjiang. The reason

is that vast areas of this province are covereddsert and sand dust will cause a high

24



concentration of particulate matter.

Good instrumental variables must satisfy two asgiomp. The first assumption
is that they should be strongly correlated with thaiable being instrumented.
China’s installed generating capacity reaches Blillion kW in 2005, and the
production of electricity is composed of four typagdro, fossil, nuclear, and other.
Fossil fuels maintain the largest share at about, T#hich remains very steady between
1995 and 2009 (see Figure Al in the appendix).

To illustrate the effects of our instrumental vatés on air pollution, we regress
local PM2.5 concentration on the two instrument§able 2 presents the estimation
results. The coefficients on the two instrumenaliables are highly statistically
significant, and have expected signs. The resulggest that the location (the angle
between the large-scale thermal power plant andamprevailing upwind direction)
and the coal consumption of distant large-scaleritaepower plants significantly affect
local air pollution.

The second assumption is that the instrumeratahbles are orthogonal to local
economic activity. We argue that this is valid floe following reasons. First, wind
direction is determined by nature and remains stalsér long periods of time, thus it
is exogenous to local economic attributes. Sectimal,large-scale thermal power

plants supply electricity to vast areas of CAinsome of them do not supply electricity

27 The 2010Compilation of Statistical Materials of the ElectiPower Industryeports that 13.44% of power
generation in China was exported to other provime&910; this number would be even larger if watéad
considered exports across cities. The provincashtive abundant coal or water resources, suchasi Inner
Mongolia and Hubei, have a particularly high exgmicentage. Most of the large power plants wiigi h

installed capacity transmit electricity beyond pnoes and even macro-regions in China.
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to their nearby cities at all, but rather to magmyote provinces. There are 1,486 fossil
plants in 20048 but only 7.1% of them are large-scale power planthird, in China,
the allocation of electricity supply from large-Bc@ower plants is determined by the
central government.  Although many reforms havengiace over the past 30 years,
there are still strict regulations in the powertseand ownership of the sector is largely
with the state. The central government owns the, gnd controls the setup and
operation of power plants if their generating cdtyais large. The state regulator
may continue to be involved in investment decidimniarge projects in order to ensure
that financing follows the guidelines of the Statvelopment Planning Commission
and Ministry of Financé (Berrah et al., 2001 hus, local governments find it difficult
to exert influence on the setup of large-scale poplants and the allocation of
electricity supply from them. Finally, the impaat distant power plants on local
economic activity is extremely small, but the partate matter spewed from coal-fired
power plants located at upwind region contributessantially to local air pollution.
One concern with our instrumental variable straisghat the Chinese government
might select the locations for thermal plants inofsa way that pollution would not be
transported to the populated cities or politicaftyportant cities. In Table A4, we
present the number and the total coal consumptidheolarge-scale thermal plants
located at the upwind region of six largest mettib@s in 2005. Table A4 shows
that there are large-scale thermal power plantatéac upwind of all the six

metropolitan areas. Take Beijing and Tianjin feample, there are five and eleven

28 The data source of this number is #®4 Economic Census Data
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large-scale thermal power plants located upwin8eifing and Tianjin, respectively.
Beijing and Tianjin are large cities, it is not gusing to see larger number of thermal
power plants located upwind as shown in columnLhrge cities also indicate that
more household would be endangered by air pollution once theee large-scale
thermal power plants located upwind, even only e .also calculate the ratio of the
upwind large-scale thermal plants to the numbdaigfe-scale thermal plants located
outside a given city and within 500 R As presented in column 2, the “ratio” is
16.667% and 39.286% for Beijing and Tianjin, respety. The mean and median of
the “ratio” for all Chinese cities are 33.333% &8%015%, respectively, which lie in
the values in Tianjin. Moreover, the coal consumpin the upwind region are higher
for Beijing and Tianjin compared to the mediantadttfor all Chinese cities, indicating
that more households suffer from severe air paltuin the two large cities.

We then perform a test to see whether the regi@vakitism of the government
affects the location choice of power plants. Mspecifically, the concern is that a
city that has received other benefits from the govent may have also had its upwind
power plant placed at a wider angle to the winthsd the impact would not be as bad,
while a city that has not received as many otheefits from the state might have its
plant placed at a smaller angle to the wind. dt tlvere the case, our IV estimates of
the impact of PM2.5 concentration would be ovenested.

There are large scaled thermal power plants loagiednd in 252 of 285 cities in

our sample. We define an upwind power plant dumimg,dummy=1 if there is at

29 We thank the anonymous referee for the commenitatadculating the ratio of large-scale thermal pow
plants located upwind.
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least one large scaled thermal power plant locateghwind region of a given city, =0
otherwise. Then we regress the dummy variableityrattributes. The results are
presented in Table 3. Except for the distancdteet largest seaports, all other city
characteristics are insignificantly different frararo, and the R-squared is very low.
Populated cities are more likely to receive berdfitm the government in China, but
the coefficient onln(Population) is statistically insignificant in the first column
Given that approximately 90% the cities have largal-fired power plants located
upwind, the coefficient otn(Distance.Seaportpnly implies that there are no large
thermal power plants in a few remote inland citigsch are far from the large seaports
in China.

Next, we examine the impacts of city attribute®aninstrumental variables. As
is shown in Table 3, the results are quite sintilathe regression using the upwind
power plant dummy. Almost all other city charastiécs are insignificant except for
the distance to three largest seaports. The caaffi onIn(Distance.Seaport)s
significantly positive in the angle regression ke tsecond column, and significantly
negative in the coal consumption regression irthifrd column.  This implies that the
angle is smaller and coal consumption is largecdastal cities. In China, coastal
cities generally receive larger benefits from thetesand are acknowledged to have
better amenities. However, they are also likelyhtve more pollution from the
exogenous source (i.e., smaller angle and use coalg If some of these amenities
are unobserved, it should lead usitalerstateour estimated willingness to pay to avoid

PM2.5.
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We also test whether observable city attributespradict the angle conditional
upon having an upwind plant. Using the 252 citresvhich there are large scaled
thermal power plants located upwind, we regressstinallest angle between the
prevailing wind direction and the large-scale tharmpower plants on city
characteristics. Table 4 shows that all the difiytautes are statistically insignificant,
and the R-squared are both less than 0.03. Thé#geemonstrate that the angle is
not driven by city attributes conditional upon hayian upwind plant.

A final concern is that the location choice of ngwlilt thermal power plants
might be more likely to be driven by current cityridutes. Thus, we only use the
large scaled thermal power plants which were ithree recent years (2003, 2004,
2005) to construct two alternative instrumentalialsles in order to examine the
impacts of current city attributes on the locatmnnewly built power plants. The
results are shown in Table A5. Almost all the aityaracteristics are statistically
insignificantly different from zero. The R-squarealues are extremely low — only
0.075 in the first column and 0.033 in the secooldiran. The results rule out the
concern that the location choice of newly builigkrscaled thermal power plants is
driven by current city attributes.

We acknowledge that our instrumental strategy tsaqmanacea against all kinds of
endogeneity concerns. While we have demonstrated our instruments are
uncorrelated with a number of observable city ladties that might be a concern, we
still need to assume that they are uncorrelate v@imaining unobservables. The

interpretation our IV results in the following siect relies upon this assumption.
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5. Estimation Results

5.1 Housing price and income regressions

Table A2 summarizes the results from the city-dpebiousing price regressions.
In the average city, the premium on purchased hgusigreater than that on self-built
housing, and both premiums go down as the agewsihg structure increases. The
price of storied buildings is higher than singlergthouses. Newer, larger houses are
more expensive, as are houses with more rooms;atgy, kitchen and restroom. The
intercept in each city-specific regression represéime unit price of housing services
adjusted by housing attributes and ownership i e&y.

Table A3 reports the summary statistics of estichatefficients from the city-
specific income regressions. On average, indiviche@me goes up with educational
attainment. Income also increases with age, katlatlining rate.  In Chinese cities,
women earn less than men, and urhakouholders earn more than ruralkouholders.
5.2 Estimates from the conventional model

We first estimate a conventional hedonic model d@seregression specifications
typically used in previous studi€8. The hedonic estimates provide a useful
benchmark for comparison with the residential sgrimodel incorporating moving
disutility. We estimate a hedonic model with anithaut instrumental variables for

local air quality, in order to demonstrate the r@igollution endogeneity.

30 Ekeland et.al. (2004) establish that the hedomidehis generically nonlinear and the linearizastmrategies
may lead to biased estimates. Such strategiescenenon in the literature, however, and provide sheplest
interpretation of preferences without introducingoistage hedonic techniques. We therefore maintaim
assumption in our hedonic analysis, although oimamy focus is on our sorting model results, which able to
incorporate migration costs.
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In the hedonic framework without moving disutilitjhe housing price-air quality
gradient minus income-air quality gradient yields MWTP for clean air. Therefore,
we estimate the marginal impacts of air pollution@entration on housing service price
(the intercept from the city-specific housing pricegression) and city average

household income:

9:S . L9, Z T Ui e (15)

9 . L9, Z t Uy T (16)

Table 5 reports the coefficients on air pollutiancentrations from the income
hedonic regression and the housing price hedogiession, respectively. Columns
(2)-(3) present the results from the OLS regressiand columns (4)-(5) present
instrumental variable estimates.  After controlliigr city characteristics, the
coefficients orlnPM2.5 estimated by OLS regression are significandgative in the
income hedonic model, and significantly positivehie housing price hedonic model.
The “perverse” sign of these OLS hedonic estimatest odds with intuition. The
effects of instrumenting for air quality indicatet the OLS estimates are biased. The
IV results suggest that the marginal impacts opaltution on household income and
housing price are economically insignificant. Whea compare the full model of
column (3) and column (5), the coefficients imPM2.5 decline in magnitude and
significance in both income and housing price hédoggressions. Our instruments

weaken the bias of the hedonic estimates, but #igirs remain inconsistent with
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expectations. The positive correlation betweershmuprice and air pollution, as well
as the negative correlation between income andoaliution, are driven by high
migration costs that distort sorting behavior inr@h Our IV estimates only reduce
the bias induced by unobservable local charadsigtat are systematically correlated
with local air pollution, but don’t account for timabalanced and discrete distribution
of amenities and high moving costs in developingntoes like China.
5.3 Estimates from the residential sorting model

Table 6 presents estimation results from ths-ftep discrete choice model. The
coefficient on counterfactual income is 1.62, whghtatistically significantly different
from zero, implying that households are more likilyreside in the locations where
they can earn higher income. There exists a resbéekdisutility associated with
leaving one’shukoucity.3* The disutility of moving increases as househdddse
their hukouprovinces, and thehukoumacro-regions, but at a decreasing rate. The
interaction between out biukoucity dummy and three city group dummies imply that
the moving disutility is lowest in Beijing and Stymai in China, followed by sub-
provincial level cities, provincial capitals anddorary cities in ascending order.
Although it is most difficult to obtain locdlukouin Beijing and Shanghai, the two

large cities provide migrants with the maximum amtoof economic opportunits?

31 In China, most peopleisukoucity is the same as their birth city. The Chirsbar-force Dynamics Survey
in 2014 has the information of bobukoulocation and birth location, and these data cdvgR26 families and
23,594 individuals in 29 provinces of China. Usthgse data, we find that only 7.08% of peoplai&oucity is
different from their birth city. It is natural uess that this number is smaller in 2005. Addlty, it usually
takes a long time for migrants to obtain lobalkou Some local governments’ official documents reguiat
migrants must work in the city for more than 3 yebefore applying for locdlukou If a migrant moved out from
his hometown and obtaitsikouin a second city, he must have worked in thisfatya long period. Overall, there
exists a significant moving disutility for housetislleaving theihukoucity.

32 In our study, economic opportunities not only refejob opportunities, but also include other ogpoities,
such as assimilate into local society, learn angtave personal ability, and invest in profitablejpcts etc.
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Because the benefits from economic opportunitige/e@igh the costs associated with
obtaining a locahukoy the consequence of combing the two effects is i@aving
disutility is relatively low in large cities in Cha. The 2005 One-Percent Population
Census of China shows that about 31.8% of migehmese to locate in the 10 largest
cities of China. Therefore, the results in Tableré consistent with the spatial
distribution of migrants in China — the majorityrafgrants choose to reside in Beijing,
Shanghai and the other metropolitan areas of China.

The city-specific fixed effects in Table 6 represtdre average indirect utilities
from residing in each city, independent of movingutility and household earnings.
It is not feasible to list average utilities fol @ie cities; therefore, we present the mean
of these city fixed effects. The city-specificlities are measured relative to Beijing,
which we set to zero.

We use housing-price adjusted city fixed effectshesdependent variable in the
second-step estimation. Table 7 presents the destage OLS results from
estimating equation (14). The first row in eachuom shows the coefficient on
InPM2.5.  The OLS estimates of marginal utilitiesaafpollution are all statistically
significant with the expected negative sign. Nagapreference for air pollution
suggests that air pollution results in utility lessand households prefer to settle in
locations with cleaner air.

Chinese households have expressed concern ovesmirgsair pollution in their

residential cities. Some families have even fleghlyi polluted cities, giving up
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earnings in exchange for air quality improvemefts.Compared to column (1) of

Table 7, the coefficient omPM2.5 rises in magnitude after we control for city
characteristics in column (2). Fine particle carication tends to be correlated with
local industrial pollutant emissions. To accouwnrtthe potential role played by local

industrial emissions, we add three industrial einiss variables as covariates in
column (3). The inclusion of these industrial esiaas has only a trivial effect on the
marginal impact of PM2.5 concentration.

It is likely that air pollution is correlated witlnobservable local variables that
affect both housing costs and household income.ncélewe use two instrumental
variables together to deal with the endogeneitplera. Table 8 reports the second-
step IV estimates. In comparison with the corresigay OLS results, the coefficients
onInPM2.5 from IV estimation increase approximately 4dmagnitude — the OLS
estimates range from -0.78 to -OwHhile the IV results range from -1.10t0 -0.98. eTh
results suggest that the endogeneity problem leadewnwardly biased estimates of
households’ preference for air quality improvementSimilar to OLS estimates, the
inclusion of industrial pollutant emissions doetildi to affect the coefficient on
INPM2.5.

The coefficients on other city characteristicsatifin significance, but most have

the expected sign. Cities with more educationisesvand higher GDP per capita are

33 To illustrate this point, we divide Chinese citito two groups based on whether their PM2.5 cotmation
is above the median value or not. Then we use @& Dne-Percent Population Census of China to crertpe
wage and migration tendency between the two grafigstes. Table A6 shows that both the migratiote r@nd
average wage are higher in the highly pollutedesitompared to those cleaner cities. Chen et @l7(2also
demonstrate that the air pollution can affect tifows and outflows of migration in China.
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significantly more appealing to residents. Thefficient on populatiof is negative
but insignificant, implying that households do ptace significant value on city size
after controlling for GDP per capita and local aities. The coefficient on the
minimum distance to three large seaports is negatind significantly different from
zero. Regional development is out of balance im&hand economic development,
good amenities and regional preference of govermrpeficies are centralized in
several coastal provinces of China. Hence, houdslpoefer to reside in coastal cities.

Tables A7-A10 and A14-A15 in the appendix preseardfiicient estimates for
InPM2.5 for eighteen different specifications. Theedfications vary five
dimensions: (i) different thresholds in the constien of IV, (ii) exclusion of power
plants within 50km of a given city in the constioatof 1V, (iii) using power plants
built before 1982, 1988, and 1998, respectivelyh@construction of IV, (iv) dropping
the observations in Xinjiang and Shanxi provinael &/) bootstrapping the estimation
process.

On the basis of these results, we conclude thantia specification of our study
does a good job and that our findings are insemesiib the choice of econometric

specification in the second step estimation.

5.4 Marginal willingness to pay

In the residential sorting framework, we can recdhe marginal willingness to

34 Population might be correlated with unobservaltieattributes; we include it here simply to accbfor the
impact of unobservables and prevent bias in otherpeters where we have more interest (here, ittipa). To
deal with the potential for endogeneity of curpgmpulation, we also employ a specification usireydity population
in 1982 as an instrument. The coefficient on PM2rBains essentially the same in magnitude andfisignce,
and the coefficient on population is insignificaWe also employ a second-step estimation withontrobing for
population, and the results are nearly identicahéomain results.
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pay for clean air through the estimated parameitexjuations (13) and (14). For
household residing in city , the MWTP in the residential sorting model is cédted

as:

Y678 ..#5. C 58),Z | (17)

To compare the conventional hedonic model and ésaential sorting model
incorporating moving disutility, we estimate a camgble MWTP through the
coefficients from the wage hedonic model of equat{@5) and the housing-price
hedonic model of equation (16). The MWTP in thedréc framework is computed

as.

)678 .. < ,7?. #— — (18)
Table 9 reports the MWTP for air quality of a reggetative household using the
median household income ($1,481.24) and the mediim® particulate matter
concentration for affected households (41.39m3) in the samplé> Hence, the
results represent the median household’s willingriespay for a 1 g/m3 decline in
PM2.5 concentration, expressed in 2005 U.S. dollawde focus on the full model,

and make a comparison of the MWTP estimated byht#t@onic model versus the

35 To capture the median household preference fanchir, we use the median PM2.5 concentrationffected
households to calculate the MWTP. We merge thearhiousehold data with city level PM2.5 data ushng four-
digit code of residential city, and calculate thedian level PM2.5 concentration and the standawihtien of
PM2.5 concentration for affected households insdraple.
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residential sorting model.

The results provide strong evidence of the impaeasf dealing with endogeneity,
as well as accounting for sorting process and maradisutility in developing
countries. The first and second row of Table $@ntthe OLS and IV estimates from
the conventional hedonic framework, respectivelyhe MWTP estimated by hedonic
OLS regression has a negative sign, which is inesterg with prior expectations.
When we use instrumental variables to addressrtiegeneity problem, the MWTP is
still negative, but declines in magnitude. AlltbE hedonic results suggest that the
economic value of clean air is negative. Given dldeerse effects of severe air
pollution on health and productivity in developicguntries like China, these estimates
are unreasonable. The third and fourth rows ptebenOLS and IV estimates from
the residential sorting model with migration diftyti Both OLS and IV estimates
from the residential sorting model have an expecpagitive sign. After
instrumenting for air quality, the MWTP estimatey the residential sorting model
rises dramatically from $15.61 to $21.70 in thd fmbdel, indicating the importance
of addressing endogeneity problem.

There is a striking difference between estimatesifthe hedonic model and the
residential sorting model in our study. Compatimgresults shown in the second and
fourth rows of Table 9, the sign of the estimateWP changes from negative to
positive after accounting for the discrete and ilabeed distribution of amenities and
migration disutility. The MWTP estimated by thedoaic model is positive but

increases in magnitude when accounting for movisgtiity in the residential sorting
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framework. Thus, the bias problem in our studsni@e severe than that Bayer et
al. (2009) In comparison with the U.S., moving costs amghar in China, and the
spatial distribution of amenities is more discontins and imbalanced, which can
explain the extreme results found with the hedomiclel.

We now use our results to estimate the economie\vai air quality improvement
in China — in other words, the willingness to p®YTP) for a decline in fine particle
concentration.  Following-reeman (1974hnd Chay and Greenstone (200%ye
assume that household preferences are linear amddemeous with respect to air
quality level, thus the marginal willingness to g@WTP) for clean air is constant.
Our estimates indicate that a median householddyoay $21.70 for a one-unit decline
in annual average PM2.5 concentrati®n. The standard deviation of PM2.5
concentration for affected households is 14.58 mn& in 2005, thus the median
household is willing to pay $316.39 for a one-stadedeviation decrease in PM2.5
concentration, which accounts for 21.36% of mediansehold income. Given 407
million households in China in 2005, the econongadit of air quality improvement
is up to $8.83 billion associated with a one-urgduction in annual PM2.5

concentration and $128.77 billion associated witna-standard-deviation decline in

%6There are several reasons why our estimates calthtbrpreted as a conservative lower bound for the
economic value of air quality improvements in Chinéirst, information about city-level PM2.5 contetion was
not publicly available in 2005, so that it was likmeasured by decision-makers with error. The €béngovernment
did, however, publish the Air Pollution Index (ARIhd information about PM10 in the large and medsimed
cities. PM2.5 is higher in these large and mediizeescities and highly correlated with APl and PM$0 the
information problem may have been somewhat mit@jagecond, households may have substituted arditind
masks for clean air, offsetting some of the needdmpensating differentials in housing prices wades; however,
these devices have gained in popularity in yeaes 2005 (see Figure A3). Third, we focus on asstilof the
population making their first household locatiortideons, but the MWTP for clean air may be highar dlder
households who are more likely to suffer healthseguences from pollution. We thank Nick Kuminoff tais
comment.
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annual PM2.5 concentratidh. The welfare benefit of air quality improvement is
substantial, which is in accordance with the faett tsevere air pollution endangers
human health and economic development in developmtries like China. Our
estimates provide a monetary measure of the berafair quality improvement, and

shed light on the importance of air pollution cohtn developing countries.

5.5 Sensitivity Analysis

To examine the robustness of the main resutseport the MWTP for clean air
estimated under a range of alternative empiric&cigigations. In our baseline
estimates, we specify 500km as the maximum distam@®nstruct the instrumental
variables. Table 10 presents the estimated MWTiRgua variety of thresholds
(450km, 475km, 500km, 525km, 550km) in the congiouc of the instrumental
variable. The MWTP are calculated using the cpoading coefficients omPM2.5
in Table A7. The estimated MWTP using differemesholds in IV construction are
nearly identical, which indicates that our resals remarkably robust to the maximum
distance in the definition of IV.

Next, we exclude large-scale thermal power plamis are less than 50km from

37 In the framework of LATE analysis, there are foypes of agents: defiers, never takers, always saked
compliers. Thus, the external validity of our esttes depends on the heterogeneity in preferencedean air
across different groups and the share of each grotie whole population. In our empirical settitigg defiers are
the ones that receive utility from dirty air, thiiss reasonable to assume the non-existence @frdefThe never-
takers are the ones that are always insensitigatwonmental pollution, and the always-takersthesones that are
environmentally hypersensitive. Our instrumentalalsles are more likely to affect the residentigldtion decision
of the compliers, who are moderately sensitiveneoenvironment pollution. Using data from China farfanel
Studies (CFPS) in 2012, we find that 74.86% of rdepondents think the environmental problem is matety
serious in China. While this might not be perfexctifientifying compliers and could not provide clusive evidence,
it is the best we are aware of in suggesting tradtr@hinese population are compliers in our emglisetting. We
thank the anonymous referee for this comment.
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city . This approach imposes a stronger restrictiothenlV strategy, and reduces
the potential for correlation between our instrutaéwariable and local economic
activity. Table 11 shows the estimated MWTP ugiower plants more than 50km
but inside various distance thresholds in IV cargion. The results are computed
using the corresponding coefficientsloRM2.5 in Table A8. A comparison between
Tables 10 and 11 shows that the estimated MWTPlyhahdhinges with and without

these power plants, which confirms the orthogoyadit our baseline instrumental

variables to local economic activity.

The Chinese government’s concern over environmguaialtion might affect the
location choice of large scaled thermal power glantWe thus exclude the large-scale
thermal power plants which were built after 198288 and 1998, respectively, to
construct our instrumental variable. The EnvirontakProtection Bureau was first
established in China in 1982, which was only on¢hefinternal departments of the
Ministry of Urban and Rural Development and Enviramtal Protection. In 1988,
the environmental protection responsibilities weggered from the Ministry of Urban
and Rural Development and Environmental Protediothhe newly founded National
Environmental Protection Agency (a sub-ministeleakel agency), which was the first
independent environmental protection departmerthima. In 1998, the National
Environmental Protection Agency was upgraded tdaeSEmvironmental Protection
Administration (Ministerial level), which signalethat the Chinese government

attached more importance to environmental prota¢fio Therefore, this approach

38 See http://english.sepa.gov.cn/About_ MEE/Histfoy/more background information,
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imposes a stronger restriction on the IV strateayd reduces the potential for
correlation between our instrumental variables tin@dgovernment’s concern for the
air quality. Table 12 presents the estimated MWSiRg the power plants built before
1982, 1988 and 1998, respectively in the IV comstom. The MWTP are calculated
using the corresponding coefficients loPM2.5 in Table A9. The estimated MWTP
remain quite similar to our baseline estimatesctvhule out the potential impacts of
the government’s concern for the environmentaligual

Recall that there is no large-scale coal-fired poplant in Xinjiang province,
but the concentration of fine particulate mattehigh due to large areas of desert in
this province. As a result, the correlations bemeur instrumental variables and
local air pollution are weak in this province. daddress this concern, we drop the two
cities located there in our second step estima#iod,the results are shown in the first
row of Table 13° Exclusion of Xinjiang Province does little to @t our estimated
MWTP.

Another concern with the validity of our instrumainvariables strategy is that
the central government might locate large-scalmibépower plants in regions where
coal production is high. Shanxi is the largestl gmaduction province in China, and
accounts for 29.9% of total coal production in Ghin 2005'° Therefore, we drop

the eleven cities of Shanxi Province in our sanptee second step estimatith. The

39 The two cities are Urumgi and Karamay.

40 We first obtain total energy production and tharshof coal production in total energy productioreach
province fromChina Compendium of Statistics, 1949-200&n calculate provincial level coal producticing
the two variables.

41 The eleven cities are Changzhi, Datong, Jinch&inghong, Linfen, Lvliang, Shuozhou, Taiyuan, Xiogh
Yangqguan, and Yuncheng.
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estimated MWTPs are presented in the second roWwatie 13, and they are
gualitatively similar to our baseline estimatedNTP. We also drop the cities in
both Xinjiang and Shanxi province in our secongsestimation; the estimated
MWTP’s are shown in the bottom row of Table 13. clsion of the cities in the two
provinces has little impact on our results.

Our last concern is that the city-specific fixedeet which served as the
dependent variable in the second step regressidd carry the estimation error in the
first-step estimation, which affect the standambrsrof parameters in the second step
estimation. We thus bootstrap the whole estimapoocess by performing 50
resample replications. Table A13-15 show the doefit estimates with
bootstrapped standard errors. Compared to Tabled7Table 8 in our paper, all the
bootstrapped standard errors in the second stepatisin is smaller than the standard
errors we show in our main estimation. In our secatep IV estimation, the
coefficients onnPM2.5 are significantly negative at 5% level whes use baseline
standard errors, but become significantly negatate1% level when we use
bootstrapped standard errors as shown in Table AT&e results here are consistent
with econometric theory. We could consider théngetion error of city fixed effect
as the measurement error on city-mean utilitn. & linear regression model, the
measurement errors in the dependent variable iafilaé standard errors of regression
parameters but do not lead to inconsistency ofetsimator(Cameron and Trivedi,
2005)". Thus, standard errors in our baseline ie@cstep estimation are

overestimated. Our main results show that the ficoefits on INnPM2.5 are
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significantly negative even though the standardrsrare overestimated, therefore local

air pollution does exert a significant impact oty-¢hean utility.

6 Conclusion

This study provides new evidence on househotdlepences for clean air in
developing countries and is the first applicatibthe equilibrium sorting model to the
valuation of non-marketed amenities in China. \Weelbp a discrete-choice model
of household residential location decisions thabiporates migration disutility and
use it to recover the parameters of indirect iggitassociated with residing in various
cities across China. We use two instrumental ségafor air pollution concentration
in a given city — the smallest angle between thmuahprevailing wind direction and
the large-scale thermal power plants outside ttye along with the total annual coal
consumption of the large-scale thermal power plémtated upwind from the city.
We use the estimates from this model to calculae MTWP for air quality
improvement in China.

Our results indicate a striking difference betwtdenresidential sorting model and
the conventional hedonic model. The MWTP recovesgith the discrete-choice
sorting model incorporating moving disutility ime$ that the median household is
willing to pay $21.70 for a one-unit decline in aah PM2.5 concentration. In
contrast, the comparable MWTP from the conventitiealonic model is unexpectedly
negative, implying that the hedonic model seveuslgierestimates the monetary value
of clean air. Using instrumental variables to a&ddrthe endogeneity bias yields

noticeable differences in both methodologies.
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Our study suggests that the welfare effects ofrenmental quality improvements
are substantial in China. This is an importantltder a developing country and helps
to address the central puzzle at the interactiorerofironmental economics and
development economi¢&reenstone and Jack, 2015)Although credible estimates of
the costs of air pollution regulation are not aaalié, our results indicate that the benefit
of air quality improvement is substantially highlean has been previously recognized.
This sheds light on the net benefits of pollutiegulation policies for governments in
developing countries.

The limitations of our analysis point to severalvrdirection for future empirical
research. First, we do not consider the questibrdual-location sorting. A
prominent example of the dual-location choice inin@his the case of left-behind
children. The dual-location choice of migrant hetuslds in China is not much related
to the air pollution, but mainly driven by the cemt migration policy (thbukousystem
in China). Given the large amount of internal ratgm in China, analyzing the dual
location choice of households and their subsequesifare loss in the sorting
framework deserves more research.

Second, we do not incorporate the forward-lookiabadvior of households in our
analysis. Households might make residential location chomegsions based on their
expectations of future utility gains. The incregsavailability of micro data sets in
the China and other developing countries make ssiiabe to construct a longitudinal
data set to analyze dynamic residential sortinigoafseholds and estimate willingness

to pay for non-market amenities incorporating tlewhrd-looking behavior of
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households in the future.
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Table 1: Summary statistics

Variable name Description Mean Std. dev

Annual household income (dollar) 1683.199 1961.761
9: log (Housing price) (dollar) 4.320 0.949
PM2.5 PM2.5 concentration@/ms3) 40.877 14.762
School The number of elementary and

secondary schools per 10,000 people 3.693 2.097
Hospital The number of hospitals per 10,000 people 0.629 68.7
GDP. capita GDP per capita (dollar) 2073.990 2592.082
Population Population (10,000) 416.095 291.762
Distance. The minimum distance to three large

) ) i 651.481 415.564

Seaport sea ports in the mainland of China (km)
Water. emission Industrial waste water emission (10,000 tons) 728b. 11513.180
SO2.emission Industrial SO2 emission (10,000 tons) 6.945 6.997
Dust. emission  Industrial dust emission (10,000 tons) 3.094 3.041
Instrumentl The smallest angle between the local annual piegail 0.387 0.644

wind direction and large-scale thermal powerplants

located outside a given city and within 500Km (
Instrument2 The total annual coal consumption of the 13.398 13.692

large-scale thermal power plants located at

the upwind region of a given city (1,000,000 tons)

Notes
(1) , 9: andGDP. Capitaare translated from RMB into 2005 U.S. dollars.

(2) The three large seaports in the mainland oh&hre Tianjin seaport, Shanghai seaport, and &kanz
seaport. These seaports are located at the thrjee @sanomic circles of Chin®eijing-Tianjin-Hebei

Metropolitan Region, The Yangtze River Delta, tharPRiver Delta.

Data Source(1) The raw data of household income,and housing price: , is drawn from the 2005

One-Percent Population Census of China. (2) The.BMata is collected from Global Annual PM2.5
Grids conducted by Van Donkelaar et al (2016). TBe data ofSchool, Hospital, GDP. capita,
Population, Water. Emission, SO2.emission, Duss®anis draw fromChina City Statistical Yearbook.
(4) The coal consumption data of large-scale thepoaer plants is drawn from China Electric Power
Yearbook. We calculate the angle between the loesatof large-scale thermal power plants with the
annual prevailing wind direction of each city adlves the distance from their location to each biyy
hand. Wind direction data is collected from Chinat&brological Data Service Center.
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Table 2: Air pollution concentration and the instiental variables

Dependent variable: iPM2.5 1) 2) 3)
Instrumentl -0.158*** -0.144%** -0.136***
(0.037) (0.034) (0.033)
Instrument2 0.009*** 0.007*** 0.007***
(0.002) (0.002) (0.002)
In (Schoo) -0.131%** -0.115**
(0.045) (0.047)
In (Hospital) -0.168*** -0.174***
(0.038) (0.038)
In (GDP. Capitg 0.009 -0.039
(0.036) (0.040)
In (Population 0.091*** 0.035
(0.031) (0.037)
In (Distance. Seaport -0.022 -0.029
(0.025) (0.025)
In (Water. Emission 0.015
(0.030)
In (SO2.emissign 0.042
(0.027)
In (Dust. emission 0.014
(0.028)
Constant 3.580%** 3.189*** 3.495%**
(0.038) (0.482) (0.522)
F-statistic 40.870 26.048 19.327
R-squared 0.225 0.397 0.414
Observations 285 285 285

Notes Instrumentldenoteghe smallest angle between the local annual piagaivind direction of a
given city and the large-scale thermal power pldotated outside the city and within 500km.
Instrument2enoteghe total annual coal consumption of large-scadential power plants located at the
upwind region of a given citystandard errors in parentheseg, < 0.10, **p < 0.05, *** p < 0.01.
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Table 3: The impacts of city attributes on upwimaver plant dummy and instrumental variables

1) ) ®3)
Upwind power plant dummy Instrumentl Instrument2
In (Schoo) -0.001 -0.011 -3.245*
(0.046) (0.090) (1.923)
In (Hospita)) 0.026 -0.093 0.587
(0.037) (0.073) (1.558)
In (GDP. Capitg -0.048 0.135* -2.564
(0.039) (0.077) (1.641)
In (Population 0.046 -0.105 1.309
(0.037) (0.073) (1.553)
In (Distance. Seaport -0.101" 0.226%** -4.761***
(0.024) (0.047) (1.001)
In (Water. Emission 0.020 0.002 -0.598
(0.030) (0.058) (1.240)
In (SO2.emission -0.031 0.022 -1.136
(0.026) (0.052) (1.107)
In (Dust. emission 0.018 -0.086 2.300**
(0.027) (0.053) (1.141)
Constant 1.838" -1.580 67.325***
(0.508) (0.997) (21.318)
" 0.094 0.134 0.124
Observations 285 285 285

Notes Instrumentldenotegshe smallest angle between the local annual piagaivind direction of a
given city and the large-scale thermal power pldotsated outside the city and within 500km.
InstrumentXenoteghe total annual coal consumption of large-scagerttal power plants located at the
upwind region of a given citydpwind power plant dummsA if there is at least one large scaled thermal
power plants located at the upwind region of a gigity, =0 otherwise. Standard errors in parenthese
*p<0.10, *p< 0.05, ** p < 0.01.
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Table 4.The impacts otity attributes on the smallest angle betweerptiegailing
wind direction and the power plants conditionabmifnaving an upwind plant.

Dependent variable (1) 2

The smallest angle between the prevailing

wind direction and the power plants

In (Schoo) -0.028 -0.025
(0.042) (0.043)
In (Hospita) -0.023 -0.016
(0.035) (0.036)
In (GDP. Capitg -0.021 -0.002
(0.034) (0.039)
In (Population -0.029 -0.009
(0.030) (0.036)
In (Distance. Seaport 0.022 0.028
(0.023) (0.023)
In (Water. Emission -0.002
(0.028)
In (SO2.emission -0.003
(0.026)
In (Dust. emission -0.022
(0.026)
Constant 0.404 0.159
(0.446) (0.489)
R-squared 0.015 0.024
Observations 252 252

Notes Only the 252 cities in which there are large edahermal power plants located upwind are used
in the regression. The dependent variable is tredlest angle between the local annual prevailingdwi
direction of a given city and the large-scale therpower located outside the city and within 500km.
Standard errors in parentheseg, < 0.10, **p < 0.05, *** p < 0.01.
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Table 5 Results from conventional hedonic regressions

Dependent Variable OoLS v
) 2 ©) 4 ®)
Average household income 0.002 -0.166***  -0.153*** -0.095 -0.054
(0.055) (0.033) (0.034) (0.078) (0.081)
Housing price 0.174 0.479**  (0.498*** 0.360 0.311
(0.140) (0.156) (0.159) (0.363) (0.380)
City characteristics No Yes Yes Yes Yes
Industrial pollutant emissions No No Yes No Yes

Notes This table reports results from conventional édoegressions. The cells contain the coefficients
onIn(PM2.5) pertaining to average household incometanging price with respect to increase in air
pollution. Columns (1)-(3) present OLS results; umohs (4) and (5) present IV results. City
characteristics includ8chool, Hospital, GDP. capita, Population, Distan&eaport Water. Emission,
S0O2.emission, and Dust. emissiStandard errors in parenthesep,< 0.10, **p < 0.05, *** p < 0.01.

Table 6: Results from the first step discrete ahoimdel of residential location decision

Variable

Coefficient
In (Counter-factual Income ) 1.621%**
(0.065)
Out of hukoucity dummy (Dl,ij) - 6.846 ***
(0.035)
Out of hukouprovince dummy ()21“,) -2.102***
(0.042)
Out of hukoumacro-region dummy[ﬁaij) -1.991 ***
] (0.037)
Out of hukoucity dummy (Dl,ij) Beijing/Shanghai dummy|j4vij) 4,558 ***
i (0.183)
Out of hukoucity dummy (Dl,ij) Sub-provincial city dummy[()syij) 2.364***
i (0.068)
Out of hukoucity dummy (Dl,ij) provincial capital dummy[()e’ij) 1.587 ***
(0.086)
Mean city-specific fix effects -0.640

Notes Standard errors in parentheseg ¢ 0.10, **p < 0.05, *** p < 0.01. The last row presents the
mean of estimated: .

56



Table 7: OLS results from the second step estimatio

Dependent variable= 9: (&8 2 3)

In (PM2.5 -0.570*** -0.776***  -0.707***
(0.204) (0.189) (0.193)

In (Schoo) 0.591*** 0.595%**
(0.160) (0.164)

In (Hospital) 0.011 0.046
(0.133) (0.135)

In (GDP. Capitg 0.735%** 0.809***
(0.123) (0.139)

In (Population -0.232** -0.137
(0.111) (0.131)

In (Distance. Seaport -0.570***  -0.544***
(0.084) (0.086)

In (Water. Emission 0.024
(0.105)

In (SO2.emissign -0.042
(0.094)

In (Dust. emission -0.111
(0.097)
Constant 2.566%** 2.133 1.033
(0.747) (2.797) (1.969)

R-squared 0.027 0.394 0.402

Observations 285 285 285

Notes Standard errors in parenthesep,< 0.10, **p < 0.05, *** p< 0.01.

57



Table 8: IV results from the second step estimation

Dependent variable= 9: Q) (2)
In (PM2.5) -1.095** -0.983**
(0.441) (0.461)
In (Schoo) 0.545%** 0.558***
(0.169) (0.172)
In (Hospita)) -0.035 0.002
(0.144) (0.148)
In (GDP. Capitg 0.728*** 0.789***
(0.122) (0.141)
In (Population -0.192 -0.121
(0.121) (0.132)
In (Distance. Seaport -0.596*** -0.569***
(0.090) (0.093)
In (Water. Emission 0.027
(0.103)
In (SO2. emissign -0.034
(0.093)
In (Dust. emission -0.100
(0.097)
Constant 3.293 2.179
(2.300) (2.612)
First-stage F-statistic 30.68 28.146
R-squared 0.388 0.397
Observations 285 285

Notes Standard errors in parenthesep,< 0.10, **p < 0.05, *** p< 0.01.

Table 9 Estimated marginal willingness to pay for air qtyali

MWTP ($) No covariates No control for industrial | Full specification
Q) pollutant emissions (2) | (3)
Hedonic model oLS -®37 -8.718 -8.363
v -5.487 -3.736
Sorting model incorporating oLS 12.584 17.132 08.6
migration disutility v 24.175 21.702

Notes Specification (1) includes no covariates. Speatfon (2) doesn’t control for I'Water. Emissiopn
In (SO2.emissignand In Pust. emission Specification (3) is a full specification. Thedonic estimates
are calculated using the coefficients from Tabl&lte residential sorting estimates are calculagéoigu
the coefficients from Table 6-Table 8. All estinm#ee in constant 2005 dollars.
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Table 10 Estimated marginal willingness to pay for air qtyali
using different thresholds to construct instruraknariables

MWTP ($) No control for industrial Full specification
pollutant emissions (1) 2)
Distance<450 km 23.490 21.194
Distance<475 km 24.815 22.431
Distance<500 km 24.175 21.702
Distance<525 km 24.064 21.327
Distance<550 km 27.817 25.279

Notes This table presents the MWTP estimated by IV eegion in the residential sorting model. The
instrumental variables are constructed using ttgelacale thermal power plants located outside@ngi
city and within various thresholds. Specificatioh) (doesn’t control for In \{ater. Emissiop In
(SO2.emission and In Pust. emission Specification (2) is a full specification. Thetienates are
calculated using the coefficients from Table A6l @dtimates are in constant 2005 dollars.

Table 11 Estimated marginal willingness to pay for air quali
exclude the power plants within 50km of a givey ci

MWTP ($) No control for industrial Full specification
pollutant emissions (1) 2)

50km <distance<450 km 25.212 22.983

50km <distance<475 km 26.493 24.175

50km <distance<500 km 25.808 23.424

50km <distance<525 km 25.720 23.049

50km <distance<550 km 29.407 26.956

Notes This table presents the MWTP estimated by IV eegion in the residential sorting model. The
instrumental variables are constructed using trgelacale thermal power plants located 50km from a
given city and within various thresholds. Specifiga (1) doesn’t control for InWater. Emissioy In
(SO2.emission and In Pust. emission Specification (2) is a full specification. Thetienates are
calculated using the coefficients from Table A7l édtimates are in constant 2005 dollars.
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Table 12 Estimated marginal willingness to pay for air qtyali
exclude the power plants built after 1982, 1868 1998, respectively

MWTP ($) No control for industrial | Full specification
pollutant emissions (1) 2)

Drop power plants built after 1998 24.989 22.423

Drop power plants built after 1988 18.832 24.775

Drop power plants built after 1982 11.351 23.386

Notes:This table presents the MWTP estimated by IV regjoesin the residential sorting model. The
instrumental variables are constructed using ttgelacale thermal power plants built before 1983881
and 1998, respectively, and located outside a goignand within 500km. Specification (1) doesn’t
control for In ater. Emission In (SO2.emissign and In Dust. emissioh Specification (2) is a full
specification. The estimates are calculated udiegcoefficients from Table A8. All estimates are in
constant 2005 dollars.

Table 13 Estimated marginal willingness to pay for air qtyali
drop Xinjiang and Shanxi Povince

MWTP ($) No control for industrial | Full specification
pollutant emissions (1) 2)

Drop Xinjiang Province 23.976 21.437

Drop Shanxi Province 25.524 23.001

Drop Xinjiang and Shanxi Province 25.460 22.916

Notes:This table presents the MWTP estimated by IV regioesin the residential sorting model. The
instrumental variables are constructed using tfgelacale thermal power plants located outsideangi
city and within 500km. Specification (1) doesn’ntml for In (Water. Emissiop In (SO2.emissionand

In (Dust. emission Specification (2) is a full specification. Thatienates are calculated using the
coefficients from Table A9. All estimates are imstant 2005 dollars.
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Appendix:
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Figure Al: Share of installed capacity by type mir@: 1995~2009
Data SourceChina Statistical Yearbook (1996-2010)
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Figure A2: HukouSystem and Left-behind Children
Note The X-axis denotes the cityukouindex. The bigger théukouindex, the more
difficult for the migrants to obtain the local hukdrhe Y-axis denotes the share of migrants
having left-behind children.
Data SourceChina Migrants Dynamic Survey (CMDS) 2011

61



Figure A3: The number of air purifier sales85 major Chinese cities from 2006 to 2014
Data SourceAir purifier sales transaction data collectedamarketing firm in China from
January 2006 through December 2014 for 85 cities
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Table Al: Data Summary

Variables Mean Std. dev
Annual individual income ($) 1213 1380
High school 0.168 0.373
Some college or above 0.154 0.361
Age 33.43 8.342
Female 0.556 0.497
Urbanhukou 0.354 0.478

i che 0.232 0.422

i abcdefgh 0.293 0.455

i koE 0.475 0.499
Age of housing structure 6.597 3.836
The number of rooms 2.671 1.569
Floor area (m2) 81.62 52.33
Storied building 0.588 0.492
Tap water 0.677 0.467
Kitchen 0.869 0.337
Restroom 0.844 0.363

Notes

(1) Annual individual income is translated from RMBaAr2005 U.S. dollars;
High school=1 if the highest degree of the housghwémber is high school, =0 otherwise;
Some college or above=1 if the highest degreeehtiusehold member is some college or
above, =0 otherwise;
Female=1 if the highest degree of the household beeis female, =0 otherwise;
Urbanhukouw1 if the household member holds urltarkoy =0 otherwise.
(2)i ch.—=1if household rents its home, =0 otherwise;
i apcgefn = 1 if household purchases its home, =0 otherwise;
i wee=11if household builds its home, =0 otherwise.
Storied building=1 if the building is a storibdilding, =0 otherwise
Tap water=1 if the house has tap water, =0 utiser
Kitchen =1 if the house has private kitchen, @eotvise.
Restroom=1 if the house has private restroom,th@rwise.
Data SourceAll the variables in the table are drawn from 2@95 One-Percent
Population Census of China
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Table A2: Summary of estimated coefficients fronusiag price regressions

Variables Mean Std. dev
i abcdefgh 3.497 0.827

I abcdefgh —Age of housing structure -0.049 0.110

i koE 2.847 0.886

i we — Age of housing structure -0.007 0.104
Age of housing structure -0.035 0.106
The number of rooms 0.051 0.053
Floor area 0.006 0.004
Storied building 0.541 0.258
Tap water 0.233 0.172
Kitchen 0.087 0.264
Restroom 0.133 0.263
Constant 4.320 0.949

Table A3: Summary of estimated coefficients frormoime regressions

Variables Mean Std. dev
High school 0.261 0.131
Some college or above 0.578 0.202
Age 0.041 0.017
Age2 -0.001 0.000
Female -0.383 0.154
Urbanhukou 0.527 0.259
Constant 6.127 0.443
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Table A4: The large-scale thermal power plantstetaipwind of
six largest Chinese metropolitans in 2005

City The number of the The ratio of large-scale Total annual coal The smallest angle
large-scale thermal plants located consumption of the large-between the local annual
thermal plants upwind in the number scale thermal plantsprevailing wind direction
located at the of large-scale thermallocated at the upwindand the large-scale
upwind region plants region (million tons) thermal plants

Beijing 5 16.667% 11.973 "5
Tianjin 11 39.286% 29.434 0
Guangzhou 1 14.286% 1.711 0
Shenzhen 2 25% 8.698 "5
Shanghai 2 9.091% 6.547 " 5%
Chonggqing 1 20% 3.874 "~ 5%
Median of all Chinese cities 3 33.333% 8.912 0
Mean of all Chinese cities 5.512 35.015% 13.398 810.3

Notes The statistics are calculated using the largéesiteermal power plants located outside a given
city but within 500km.
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Table A5: The impacts of city attributes on altéiveinstrumental variables:
Use the power plants built during the period frad2 to 2005 to construct IV

) (2)
Instrumentl Instrument2
In (Schoo) 0.118 -0.066
(0.160) (0.144)
In (Hospital) 0.107 -0.020
(0.130) (0.117)
In (GDP. Capita 0.175 -0.203*
(0.137) (0.123)
In (Population -0.155 0.031
(0.129) (0.116)
In (Distance. Seaport 0.155* -0.103
(0.083) (0.075)
In (Water. Emission 0.063 -0.023
(0.103) (0.093)
In (SO2.emission -0.033 0.041
(0.092) (0.083)
In (Dust. emission -0.149 0.087
(0.095) (0.085)
Constant 1.167 2.102
(1.776) (1.595)
R-squared 0.075 0.033
Observations 285 285

Notes Instrumentldenotegshe smallest angle between the local annual piagaivind direction of a
given city and the large-scale thermal power plani in recent three years and located outsidectty
and within 500kmInstrumentZlenoteghe total annual coal consumption of large-scadertial power
plants built in recent three years and locateth@tpwind region of a given citfhe two variables are
not employed in our main empirical analysis, they anly used to examine the impacts of current city
attributes on the location choice of newly builiygs plants. Standard errors in parenthesgss™0.10,

** p<0.05, **p<0.01.
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Table A6 Differences in wage and out-migration &mzy by Air Pollution

Less polluted cites Highly polluted cites Diffecexs in means
PM2.5 30.283 54.257 -23.975%**
(0.00925) (0.0136) (0.0164)
Wage 854.359 1056.423 -202.064***
(1.344) (1.623) (2.107)
Out-migration dummy 0.0393 0.0636 -0.0243***
(0.000269) (0.000338) (0.000432)

Notes Standard errors in parenthestq < 0.10, ** p < 0.05, *** p < 0.0L Out-migration
dummy equals to one if a person has left hisfiudwoucity, equals to zero otherwise.
Data Source2005 One-Percent Population Census of China

Table A7 1V results from the second step estimation:
using different thresholds to construct IV

@ @
Distance<450 km -1.064** -0.960*
(0.484) (0.498)
Distance<475 km -1.124** -1.016**
(0.468) (0.488)
Distance<500 km -1.095** -0.983**
(0.441) (0.461)
Distance<525 km -1.090** -0.966**
(0.435) (0.455)
Distance<550 km -1.260*** -1.145**
(0.426) (0.447)
City characteristics Yes Yes
Industrial pollutant emissions No Yes

Notes This table presents the coefficients on In(PM2&jmated by IV regression in the second step
estimation of the residential sorting model. Th&trimmental variables are constructed using thestarg
scale thermal power plants located outside a giitgrand within various thresholds. City characttcis
include School, Hospital, GDP. capita, Population, Distan&e=aport Industrial pollutant emissions
include Water. Emission, SO2.emission, and Dust. emisSitandard errors in parentheseg, < 0.10,

** p<0.05, **p<0.01.
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Table A8 1V results from the second step estimation:
drop the power plants within 50km of the city

1) &)
50km <distance<450 km -1.142** -1.041**
(0.489) (0.503)
50km <distance<475 km -1.200** -1.095**
(0.473) (0.494)
50km <distance<500 km -1.169*** -1.061**
(0.445) (0.466)
50km <distance<525 km -1.165*** -1.044**
(0.439) (0.460)
50km <distance<550 km -1.332%** -1.221%**
(0.432) (0.453)
City characteristics Yes Yes
Industrial pollutant emissions No Yes

Notes This table presents the coefficients on In(PM2&jmated by IV regression in the second step
estimation of the residential sorting model. Th&trimmental variables are constructed using thestarg
scale thermal power plants located 50km from a rgie#y and within various thresholds. City
characteristics includgchool, Hospital, GDP. capita, Population, Distan8eaportindustrial pollutant
emissions includ@Vater. Emission, SO2.emission, and Dust. emisSitamdard errors in parentheses, *
p<0.10, *p<0.05, **p<0.01.

Table A9: IV results from the second step estinmatio
exclude power plants built after 1982, 1988,8,98spectively

1) &)
Drop power plants built after 1998 -1.169** -1.049*
(0.507) (0.528)
Drop power plants built after 1988 -0.881 -1.159**
(0.655) (0.585)
Drop power plants built after 1982 -0.531 -1.094*
(0.770) (0.586)
City characteristics Yes Yes
Industrial pollutant emissions NO Yes

Notes This table presents the coefficients on In(PM2&jmated by IV regression in the second step
estimation of the residential sorting model. Th&trimmental variables are constructed using theelarg
scale thermal power plants built before 1982, 19888, respectively, and located outside a givgn ci
and within 500km. City characteristics inclu8ehool, Hospital, GDP. capita, Population, Distance
Seaport Industrial pollutant emissions includ&¥ater. Emission, SO2.emission, and Dust. emission
Standard errors in parenthesegp, < 0.10, **p < 0.05, *** p < 0.01.
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Table A10 1V results from the second step estimation:
drop Xinjiang and Shanxi Povince

1) )

Drop Xinjiang Province -1.086** -0.971**
(0.450) (0.469)
Drop Shanxi Province -1.194%** -1.076**
(0.444) (0.460)
Drop Xinjiang and Shanxi Province -1.191%** -1.072*
(0.453) (0.468)
City characteristics Yes Yes
Industrial pollutant emissions NO Yes

Notes This table presents the coefficients on In(PM2&jmated by IV regression in the second step
estimation of the residential sorting model. Th&timmental variables are constructed using theelarg
scale thermal power plants located outside a gévignand within 500km. City characteristics include
School, Hospital, GDP. capita, Population, Distan&eaport Industrial pollutant emissions include
Water. Emission, SO2.emission, and Dust. emis§itandard errors in parentheseg ¢ 0.10, **p <
0.05, *** p< 0.01.

Table Al1:Hukoulndex, PM 2.5 and Left-behind Children

Whether have Left- behind Children (yes=1, no=0) kélulndex PM2.5 Hukou Index+PM2.5
Hukoulndex 0.940*** 0.916***
(0.230) (0.219)
In (PM2.5) 0.0558 0.0451
(0.0517) (0.0470)
Constant 2.121%** 1.869*** 1.954*+*
(0.199) (0.274) (0.258)
R-squared 0.102 0.091 0.103
Observations 38433 38433 38433

Notes: The household characteristics inclus@usehold incoméehousehold expenditur¢he age and
education attainment of household he&thndard errors in parentheses cluster at argl,|1& p < 0.10,
* p<0.05, ** p<0.01.

Data SourceChina Labor Migrant Survey (CMDS) in 2011
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Table A12:Hukoulndex, PM 2.5 and dual location choice of migramtiseholds

Whether have household member living in

different city (yes=1, no=0) HukouIndex PM2.5 HukouIndex+PM2.5

Hukoulndex 0.857 0.881
(0.563) (0.559)

In (PM2.5) 0.002 -0.032

(0.159) (0.159)

Constant 0.240 0.293 0.354
(0.264) (0.611) (0.595)

R-squared 0.046 0.031 0.047

Observations 489 489 489

Notes: The household characteristics incluggusehold incomehousehold expenditur¢he age and
education attainment of household he&thndard errors in parentheses cluster at aigl,1& p < 0.10,

** < 0.05, **p< 0.0

Data SourceChina Labor Dynamic Survey (CLDS) in 2012

Table A13: Results from the first step discreteichanodel of residential location decision:
using bootstrapped standard errors

Variable

Coefficient

In (Counter-factual Income )
Out of hukoucity dummy (Dlij)

Out of hukouprovince dummy bz,u)

Out of hukoumacro-region dummy[g‘ij)

Out of hukoucity dummy (Dlij ) ’ Beijing/Shanghai dummy[i“j)
Out of hukoucity dummy (Dn,- ) ’ Sub-provincial city dummymsvij)

Out of hukoucity dummy (Dn,- ) ’ provincial capital dummymﬁv“_)

Mean city-specific fix effects

1.621%
(0.040)

- 6.846 ***

(0.040)
-2.102%*
(0.037)
-1.9971 *
(0.036)
4.558 *+*
(0.119)
2.364%+
(0.061)
1.587 *+*
(0.063)
-0.640

Notes Bootstrapped standard errors in parenthesps; 9.10, **p < 0.05, *** p < 0.01. The last row

presents the mean of estimated
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Table A14: OLS results from the second step esiimatising bootstrap standard errors

Dependent variable= 9: (&8 2 3)
In (PM2.5 -0.570*** -0.776***  -0.707***
(0.021) (0.013) (0.012)
In (Schoo) 0.591*** 0.595%**
(0.029) (0.034)
In (Hospital) 0.011 0.046***
(0.014) (0.015)
In (GDP. Capitg 0.735%** 0.809***
(0.015) (0.015)
In (Population -0.232%** -0.137%**
(0.018) (0.021)
In (Distance. Seaport -0.570***  -0.544***
(0.015) (0.016)
In (Water. Emission 0.024
(0.017)
In (SO2.emissign -0.042**
(0.021)
In (Dust. emission -0.117 %%
(0.019)
Constant 2.566%** 2.133*** 1.033***
(0.127) (0.263) (0.343)
R-squared 0.027 0.394 0.402
Observations 285 285 285

NotesBootstrapped standard errors in parenthesps; 8.10, **p < 0.05, ** p < 0.01
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Table A15: IV results from the second step estiomatusing bootstrap standard errors

Dependent variable= . 9: Q) (2)
In (PM2.5) -1.095*** -0.983***
(0.075) (0.072)
In (Schoo) 0.545%** 0.558***
(0.026) (0.031)
In (Hospital) -0.035* 0.002
(0.021) (0.021)
In (GDP. Capitg 0.728*** 0.789***
(0.015) (0.015)
In (Population -0.192%** -0.121%**
(0.023) (0.022)
In (Distance. Seaport -0.596*** -0.569***
(0.014) (0.016)
In (Water. Emission 0.027
(0.017)
In (SO2. emissign -0.034
(0.022)
In (Dust. emission -0.100%***
(0.018)
Constant 3.293*** 2.179%**
(0.237) (0.296)
R-squared 0.388 0.397
Observations 285 285

NotesBootstrapped standard errors in parenthesps; 6.10, **p < 0.05, *** p < 0.01.
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