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Abstract Cell populations can benefit from changing phenotype when the environ-
ment changes. One mechanism for generating these changes is stochastic phenotype
switching, whereby cells switch stochastically from one phenotype to another accord-
ing to genetically determined rates, irrespective of the current environment, with the
matching of phenotype to environment then determined by selective pressure. This
mechanism has been observed in numerous contexts, but identifying the precise con-
nection between switching rates and environmental changes remains an open prob-
lem. Here, we introduce a simple model to study the evolution of phenotype switching
in a finite population subject to random environmental shocks. We compare the suc-
cesses of competing genotypes with different switching rates, and analyze how the
optimal switching rates depend on the frequency of environmental changes. If envi-
ronmental changes are as rare as mutations, then the optimal switching rates mimic
the rates of environmental changes. If the environment changes more frequently, then
the optimal genotype either maximally favors fitness in the more common environ-
ment or has the maximal switching rate to each phenotype. Our results also explain
why the optimum is relatively insensitive to fitness in each environment.
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1 Introduction

A major challenge in evolutionary biology is to understand how population-level
response to environmental fluctuations evolves (Levins 1968; Tuljapurkar 1990).
This is relatively straightforward for a population of organisms that can sense en-
vironmental changes and induce an appropriate response in their own phenotype
or that of their offspring, but such sensing has costs (DeWitt et al. 1998) and
is not always feasible. An alternative mechanism is for the population to main-
tain phenotypic variation (“bet-hedging”), so that there are always some individuals
who are adapted to other environments (Cohen 1966; Gillespie 1974; Slatkin 1974;
Philippi and Seger 1989). Another mechanism to induce change is adaptive mutation,
where genetic variation occurs as a reaction to a new environment (Rosenberg 2001).

Recent studies direct interest to situations where adaptation by mutation would be
too slow. A particularly interesting mechanism to accelerate adaptation is stochastic
phenotype switching (Thattai and van Oudenaarden 2004; Avery 2006; Acar et al.
2008): Each cell may switch randomly from one phenotype to another according to
genetically encoded switching rates. E.g., genetically identical E. coli cells subject to
fluctuating antibiotic treatment switch stochastically between an antibiotic-sensitive
type with normal growth and a resistant type with reduced growth (Balaban et al.
2004; Kussell et al. 2005). The cells protect themselves by suspending growth. Fur-
ther examples where a similar strategy has been observed include various bacteria
(Maamar et al. 2007; Süel et al. 2007), the yeast prion (True and Lindquist 2000) and
viruses (Stumpf et al. 2002).

Here, we introduce a simple finite-population model to study evolutionary selec-
tion of competing genotypes with different phenotypic switching rates. The phases
where a genotype or phenotype is nearly or completely extinct are crucial for the
evolution of the system (Kussell et al. 2005), as here the influence of mutation
and switching is most pronounced. Due to these bottlenecks, finite-population ef-
fects can be decisive even though the mean size of the population is large. In our
finite population model, reproduction, genetic mutations, phenotype switches, and
environmental changes are all stochastic. This distinguishes our framework from
most work on evolution in changing environments where infinite populations are
considered with deterministic cycles (Kimura 1967; Leigh 1970; Ishii et al. 1989;
Ben-Porath et al. 1993; Lachmann and Jablonka 1996; Kussell and Leibler 2005;
Bürger et al. 2006; Acar et al. 2008) or stochastic cycles (Jablonka et al. 1995;
Thattai and van Oudenaarden 2004). In particular, to determine optimal switching
rates, standard arguments for infinite populations based on geometric mean fitness
(Stumpf et al. 2002) are not suitable for our model (King and Masel 2007). The
natural conjecture is that optimal switching rates should closely mimic the rates of
environmental changes, but this is not necessarily true. Our results help to identify
and understand when this conjecture is correct.

Our analysis rests on stochastic techniques from evolutionary game theory (Fos-
ter and Young 1990; Fudenberg and Harris 1992; Kandori et al. 1993; Young 1993;
Fudenberg and Imhof 2006), which in turn are inspired by the general study of ran-
dom perturbations of dynamical systems (Freidlin and Wentzell 1998). These tech-
niques provide more precise predictions in settings where the unperturbed system
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has multiple local attractors, so that its long-run behavior depends on the initial con-
ditions. Specifically, the perturbations lead to an ergodic system that fluctuates be-
tween various attractors, and it is often possible to compare the fraction of the time
the system spends at each attractor (Samuelson 1997; Fudenberg and Levine 1998;
Imhof et al. 2005; Sandholm 2009). In this paper, we extend the perturbation ap-
proach to study phenotype switching. The approach enables us to consider a fairly
general specification of the underlying evolutionary process, instead of committing
to, e.g., the Moran process, or to particular forms of the fitness function. Moreover,
our approach allows for competition between phenotypes and between genotypes in
the same population; the importance of this aspect was pointed out by Thattai and
van Oudenaarden (2004) and Donaldson-Matasci et al. (2008).

To highlight the effect of environmental changes and switching probabilities, we
consider symmetric situations, where the relative advantage of phenotype A in envi-
ronment E is the same as that of phenotype B in environment F . We also suppose
that only the phenotype has a direct effect on fitness and that there are lower and
upper bounds on the rate of phenotype switching. The lower bound reflects costs of
detecting and correcting errors (Thomas et al. 1998; Ibba and Söll 1999). The upper
bound means that phenotype switching cannot be arbitrarily fast compared to the fre-
quency of environmental changes. Throughout, we assume that mutations are rarer
than phenotypic switches.

We first consider the case where changes of the environment occur more frequently
than mutations. As reported in Corollary 1, we find that if the environment stays on
average a long time in one state, say E, and a short time in F , the optimal switching
rate to the phenotype superior in E is as high and the optimal switching rate for
the other direction is as low as possible. If the environment spends about the same
amount of time in each state or remains sufficiently long in each state, the optimal
switching rates are maximal for both directions.

For an intuitive explanation, suppose the resident phenotype is well adapted to the
environment and that then the environment changes. A high switching rate in the right
direction generates a quick adaptation to the new environment, which reduces the risk
of being invaded and taken over during the critical phase when the resident phenotype
is inferior. The advantage becomes less relevant if the environment only stays in the
new state for a short time after a successful adaptation. On the other hand, a high
switching rate may cause many detrimental switches, and the disadvantage becomes
more relevant the longer the environment remains in the new state. In the case at
hand, the critical phases following environmental changes play a decisive role, and
it turns out that the positive effect of a high switching rate tends to be stronger than
the negative effect. These observations explain why if the environment remains on
average a long time in one state, the optimal switching rate to the phenotype superior
in that state is maximal, irrespective of how long the environment stays in the other
state. They also explain why the optimal switching rates are both maximal when the
environment spends about the same amount of time in each state. However, if the
environment remains only for a short time in one state, say F , and for a long time
in E, the optimal switching rate to the phenotype superior in F is low, because the
positive effect of a high switching rate has little time to be felt, but the negative effect
is felt for a long time.
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We find that the optimal switching rates are relatively insensitive to the details
of the dynamics and exact values of the fitness parameters for each environment. In
our model, the effect of fitness on persistence of phenotypes in a fixed environment
without mutations is captured by fixation probabilities. The fixation probability of a
given phenotype is the probability that a single individual having this phenotype takes
over a population where otherwise only the other phenotype is present. Our analysis
shows that the optimal switching rates are constant over wide ranges of the sizes of
the fixation probabilities. This result helps to understand why this phenomenon was
observed in the simulation results of Kussell et al. (2005) for a related model.

We then consider the case where environmental changes are about as rare as mu-
tations. Here, the optimal switching rate to the phenotype that is superior in the more
common environment is again as high as possible. In contrast to the previous case, the
phases immediately after environmental changes, when the resident phenotype has
not yet adapted, are now negligible compared to the entire periods between changes
of the environment. Thus, the optimal switching rate for the other direction is, in gen-
eral, not as large as possible, but the ratio of the optimal switching rates mimics the
ratio of the rates of environmental changes, as reported in Corollary 2. Again, the
optimal rates are relatively insensitive to fitness parameters.

In summary, then, we find that in our model there are three kinds of optimal geno-
types. The genotype that maximally favors fitness in the more common environment,
the genotype that maximizes switching in each direction, and the genotype whose
switching rates mirror the rates of environmental changes. The third type is optimal
if environmental changes are as rare as mutations, one of the first two types is optimal
if the environment changes more frequently.

The paper is organized as follows. The model is described in Sect. 2. In Sect. 3, we
first determine for any two competing genotypes which one is favored in the sense of
being resident more than half the time. Building on these pairwise comparisons we
derive optimal switching rates when rates may vary in an arbitrary interval. In Sect. 4,
we present some numerical examples and we discuss related literature and possible
extensions. Proofs are given in the Appendix.

2 The Model

We consider an asexual population of fixed size N . The population evolves in an en-
vironment that can be in two possible states, E and F . There are four types of individ-
uals, A1,B1,A2,B2; A and B are phenotypes and the index indicates the genotype.
The phenotype of an individual affects its fitness. The fitness of a given individual
depends on its own phenotype, on the current frequencies of both phenotypes, and
on the environment, but not on genotypes, as only the phenotypes have an immedi-
ate influence on reproductive success. The influence of genotypes on reproductive
success is only indirect, through realized phenotypes. We are interested in the con-
nection between small switching probabilities and the long-run evolutionary success
of corresponding genotypes when the environment is randomly changing.

We first describe the behavior of our model in the absence of genetic mutations,
phenotypic switches and environmental changes. Rather than specifying a particular
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evolutionary process, we assume that for each environment there is a discrete-time
Markov chain that describes the evolution of the population without mutation or phe-
notype switching when the environment is fixed. The common state space of the two
chains is the set of possible population compositions. We denote the transition matri-
ces of the chains by ΠE and ΠF . We assume that under ΠE and under ΠF , absent
types remain absent, and that starting from any composition of the population, each
type initially present has a positive chance of taking over the population. Moreover,
because the transition probabilities depend on an underlying fitness function that is
independent of genotype, evolution is governed by random drift if a homogeneous
population is invaded by a single individual with the same phenotype but the other
genotype; in this case, the invader takes over with probability 1/N . When the in-
vader has a different phenotype, however, evolution need not be governed by random
drift because the relative fitness of the phenotypes plays a role. Let φE

AB denote the
probability that eventually the whole population has phenotype B given that the envi-
ronment is E and initially every individual except one has phenotype A and one has
phenotype B . As suggested by the notation, we assume that this probability depends
only on the phenotypes and not on the genotypes. We define φE

BA, φF
AB and φF

BA anal-
ogously. At this point we have imposed few restrictions on the evolutionary process;
the key assumptions are that the fitness of each type depends only on its phenotype
and the environment, but not on the genotype, and that every offspring inherits both
the genotype and the phenotype of its parent. Phenotype here refers to a viable form
of the overall organism. Errors in DNA replication can lower fitness and even lead to
a nonviable organism, and processes that correct these errors can also have a fitness
cost. This corresponds to a link between genotype and fitness that we have abstracted
away in this model. Below we represent these links with upper and lower bounds on
the rate of phenotype switching.

We now use these two chains to construct a process with environmental changes
as well as phenotypic switches and genetic mutations. The state of the system is the
current composition of the population and the current environment. We assume that
at every time step, a transition takes place according to the relevant matrix ΠE or
ΠF , and then a random shock may occur. This shock has the following three possible
forms:

(i) Environmental change: If the environment is in state E, it changes to F with
probability εηEF . If the environment is in state F , it changes to E with proba-
bility εηFE .

(ii) Phenotypic switching: An individual is chosen at random, each being equally
likely. If it is of type Ai , it switches to Bi with probability εβi ; if it is of type Bi ,
it switches to Ai with probability εαi .

(iii) Genotypic mutation: With probability 2εμ a randomly chosen individual is re-
placed by an individual with the other genotype, each phenotype occurring with
probability εμ.

We assume that ηEF ,ηFE,αi, βi, and μ are positive and that the shocks are inde-
pendent across time and type of shock.

The process so obtained is a Markov chain with two time scales, where ε > 0 is
a small parameter that quantifies the separation of the time scales. On the fast time
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scale the evolution of the population is given by the transition matrices ΠE and ΠF .
As long as the environment is in state E, the population evolves according to ΠE

and after a geometrically distributed amount of time with expectation of order 1/ε,
a shock occurs: Either the environment changes, or an individual switches its phe-
notype, or a mutation takes place. The relative frequencies of these rare events are
determined by the parameters ηEF ,ηFE,αi, βi,μ; where the parameters αi and βi

control the probabilities of switches by genotype i to phenotypes A and B , respec-
tively. For now, the relation between these parameters is arbitrary, but in our results
we will assume that μ is much smaller than αi and βi so that genotype mutations are
rare compared to phenotype switches.

Note that while the environment can influence fitness, and thus the population, the
population does not influence the environment. The lengths of time between consec-
utive environmental changes are independent and have a geometric distribution. The
mean duration is 1/(εηEF ) in environment E and 1/(εηFE) in F .

Invariant Distribution Genetic mutations and environmental changes ensure that
the evolutionary process is irreducible and so has a unique invariant distribution for
each ε > 0. This distribution describes the long-run behavior of the process; it speci-
fies for each state the proportion of time that the process spends there. A direct anal-
ysis of the invariant distribution seems impractical in most cases of interest. Even
if ΠE and ΠF are sparse matrices, the complexity of a numerical computation of
the invariant distribution seems prohibitive unless N is small, because the size of the
state space is of order N3 (King and Masel 2007). However, we are mostly interested
in the behavior of the system when ε becomes small, so that we can take advantage
of the separation of time scales; this is the essence of the perturbation approach of
Freidlin and Wentzell (1998).

Let π denote the limit of the invariant distribution as ε → 0. When ε is
small, the process spends nearly all the time at states where all individuals are
of the same type. We denote these states by (ALLA1,E), . . . , (ALLB2,F ); e.g.
(ALLA1,E) is the state where the whole population is of type A1 and the en-
vironment is in state E. By extending the arguments of Fudenberg and Imhof
(2006), we show that π concentrates on these eight states and that the probabilities
π(ALLA1,E), . . . , π(ALLB2,F ) can be determined by computing the unique in-
variant probability vector of a reduced process that moves only between these states.
Moreover, the transition probabilities for this reduced process correspond to the idea
that transitions between the eight states arise only when a shock occurs; these tran-
sition probabilities are computed conditional on some shock occurring, so they are
scaled up by 1/ε. The reduced process shifts from one environment to the other with
probabilities ηEF and ηFE . For the phenotype or genotype to change, there must be a
mutation that attains fixation before the next shock; for example the probability that
the reduced process assigns to a transition from (ALLA1,E) to (ALLB1,E) is the
conditional probability β1 of a mutation from A1 to B1 multiplied by the probabil-
ity φE

AB that the B-phenotype achieves fixation before the next random event. (Note
that the absorption probability φE

AB is for a Markov chain whose state space is only of
size N +1 as opposed to order N3. When the chains ΠE and ΠF are birth–death pro-
cesses, as with Moran, the absorption probabilities are given by a simple recurrence
formula.)
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The same heuristic underlies the definition of the other elements of the transition
matrix M of the 8-state process. Our results show that if λ = (λ1, . . . , λ8) is the
unique vector such that λM = λ and λ1 + · · · + λ8 = 1, then

π(ALLA1,E) = λ1, π(ALLB1,E) = λ2, . . . , π(ALLB2,F ) = λ8.

The formal description of M and proof of this and our other results are given in the
Appendix.

An immediate consequence of the representation of π as an eigenvector of M

is that the long-run success of each type depends on the given transition matrices
ΠE and ΠF only through the fixation probabilities φ but is otherwise unaffected by
the details of the dynamics in each environment. This result explains in particular a
corresponding invariance property observed in simulations of a closely related model
with deterministic environmental changes (Kussell et al. 2005). The representation
is also a key ingredient for our analysis of optimal switching rates, where it turns
out that the optimal rates are constant over wide ranges of the sizes of the fixation
probabilities.

3 Results

To compare the evolutionary success of the genotypes let ALLGi denote the set of
states where all individuals have genotype i. We say that genotype 1 is favored under
rare genotype mutations if π(ALLG1) > π(ALLG2) for all μ > 0 sufficiently small.
Note that π(ALLG1) + π(ALLG2) = 1 and

π(ALLGi) = π(ALLAi,E) + π(ALLBi,E) + π(ALLAi,F ) + π(ALLBi,F ),

showing that the favored genotype can be determined from the invariant probability
vector λ of M .

Note also that the system spends most of its time in states where only one geno-
type is present; the favored one is prevalent more than half of the time. Finally, note
that this is a qualitative condition, and does not pin down the share of the favored
genotype; we present some numerical examples in the discussion.

Throughout this section, we consider symmetric environments, where

φE
AB = φF

BA, φE
BA = φF

AB. (1)

We assume symmetry in the fitness functions and environments to highlight the role
of the probabilities η of environmental change, but our technical apparatus easily
applies to asymmetric situations.

We also assume that in environment E phenotype A has an advantage over B in
the sense that

ΦE
BA := lim

N→∞φE
BA > 0, lim

N→∞φE
AB = 0, (2)

where N is the population size. This condition is quite weak and is satisfied by many
processes, as shown by the approximation results of Fudenberg and Imhof (2008). For
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example, these conditions are satisfied by the frequency-independent Moran process
if in environment E, phenotype A has fitness a and B has fitness b with a > b, and in
environment F , A has fitness b and B has fitness a; here ΦE

BA = 1 − (b/a). The con-
ditions are also satisfied by the frequency-dependent Moran process (Fudenberg et al.
2006) obtained from a 2 × 2 hawk-dove game. Moreover, all our results hold under
the weaker condition that φE

AB = o((φE
BA)3) as N → ∞, even if φE

BA is not bounded
away from zero. For any given game and imitation process, this condition is easily
checked using the asymptotic results of Fudenberg and Imhof (2008). By “imitation
process” we mean a process under which absent types remain absent when there are
no mutations or switches. Some further technical conditions must be satisfied for the
asymptotic results to hold.

3.1 Environmental Changes of the Order of Phenotypic Switches

Our first result is for the case where the frequency of environmental changes is of
the same order as the frequency of phenotypic switches, and both are much more
common than genotype mutations. That is, we keep the other parameters fixed and
examine the behavior of the limit distribution π when μ is small. We simplify the
analysis by considering large populations. We expect, however, that our conclusions
will typically hold for small or medium populations as well, because the fixation
probabilities, on which our asymptotic arguments are based, usually converge expo-
nentially quickly (Fudenberg and Imhof 2008). Numerical simulations support this
conjecture; we discuss some of them in the discussion.

Theorem 1 Consider competing genotypes i = 1,2 with switching parameters
αi,βi . Suppose the fixation probabilities φ satisfy (1) and (2). Suppose the proba-
bilities of environmental changes are εηEF and εηFE , so that environmental changes
are of the order of phenotypic switches.

If (
1

α2
+ 1

β2
− 1

α1
− 1

β1

)
ΦE

BA > (ηEF − ηFE)

(
1

α2β1
− 1

α1β2

)
, (3)

then genotype 1 is favored under rare genetic mutations, provided the population is
sufficiently large. That is, there exist N0 < ∞ and μ0(N) > 0 such that π(ALLG1) >

π(ALLG2) if N ≥ N0 and μ < μ0(N).
If the reverse of inequality (3) holds, then genotype 2 is favored under rare genetic

mutations, provided the population is sufficiently large.

Theorem 1 allows us to determine the optimal switching behavior in a given set of
competing genotypes. It is costly to have too high a rate of switching; it is also costly
to have too low a rate of switching because detecting and correcting errors is costly.
We therefore consider switching parameters α and β in a given interval [s, S] with
0 < s < S. We say that (α1, β1) ∈ [s, S]2 is optimal if the corresponding genotype is
favored over every competitor, that is, if inequality (3) holds for all (α2, β2) ∈ [s, S]2

with (α2, β2) �= (α1, β1).
If the environment is usually in state E, where phenotype A is better than B , one

may expect that a successful genotype should have a high switching rate from B to
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A and a low one from A to B . It turns out that the first part of the guess is correct and
that the second part holds under some restrictions. A simple computation based on
Theorem 1 leads to the following classification of optimal switching parameters for
the case where genetic mutations are rare compared to environmental changes and
phenotypic switches.

Corollary 1 Suppose (1) and (2) hold. Suppose the probabilities of environmental
changes are εηEF and εηFE , so that environmental changes are of the order of phe-
notypic switches. Then the optimal pair of switching parameters in [s, S] is given as
follows:

(a) If ηEF − ηFE < −SΦE
BA, then (S, s) is optimal.

(b) If |ηEF − ηFE | < SΦE
BA, then (S,S) is optimal.

(c) If ηEF − ηFE > SΦE
BA, then (s, S) is optimal.

Case (a), and by symmetry, case (c) agree with the conclusion from the heuristic
argument. Recall that ηEF and ηFE determine the probabilities that the state of the
environment changes from E to F or from F to E, respectively, and that ΦE

BA can
be regarded as a measure of the advantage of the better adapted phenotype. Thus, if
ηEF − ηFE < −SΦE

BA, the environment remains on average longer in state E than
in F , and the optimal switching parameter for switches from phenotype B to A is
indeed maximal and the other one is minimal.

Note, however, that the classification depends on the difference ηEF − ηFE , not
on the ratio ηEF /ηFE , that is, the ratio of the mean lengths of stays in the two envi-
ronments. If both ηEF and ηFE are small compared to SΦE

BA, the inequality in (b)
is satisfied irrespective of the ratio ηEF /ηFE . To understand why in this case both
optimal switching parameters are maximal even if the environment stays on average
much longer in one state than in the other, note that the long-run success of a geno-
type depends critically on its ability to resist invasion by the competing genotype.
To see how the risk of such an invasion can be minimized suppose genotype 1 has
reached fixation. As we consider the case where μ, the parameter determining the
mutation rate, tends to 0 and as ηEF and ηFE are small, we can assume that before a
mutant having genotype 2 occurs, there will be many environmental changes and be-
tween any two of them there can be many phenotypic switches. If the environment is
in state E, phenotype A is superior and, therefore, A1 will soon become the resident
type. Then there can be occasional switches to B1, but type B1 is very likely to dis-
appear quickly as long as the environment remains in state E. When the environment
changes to F , the resident phenotype is still A, which is now inferior. By phenotypic
switching, an individual of type B1 will occur and this type takes over. Again, the
new resident type B1 is nearly proof against invasion by A1 as long as the environ-
ment stays in state F . Thus, the population evolves typically in cycles as follows: the
resident phenotype is the one that is best in the current environment. When the envi-
ronment changes, there is a phase when the resident phenotype is inferior; then the
superior phenotype takes over and persists until the environment changes again. Only
during the phases immediately after the environment changes does the genotype have
a high risk of being replaced; the expected lengths of these phases are about 1/(εα1)
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and 1/(εβ1), that is, they are inversely proportional to the switching parameters α1
and β1. This shows explicitly the way in which the ability to adapt quickly to a new
environment contributes to success. The optimal genotype in case (b) minimizes the
risk of being invaded and replaced by minimizing the lengths of the risky periods.
This means of protection seems reasonable independent of the lengths of the ensuing
less risky phases and so independent of the relative amount of time spent in each en-
vironment. On the other hand, large switching parameters have a detrimental effect
after the initial risky periods, but the effect is small because an occasionally occurring
inferior phenotype is likely to die out quickly. Moreover, a second factor that could
have an influence on the long-run success of genotype 1, the ability to invade and
take over a population with resident genotype 2, is hardly affected by α1 and β1.

A look at the risky and less risky phases is also helpful in understanding cases (a)
and (c). In case (a), ηFE > SΦE

BA > 0 while ηEF can be arbitrarily small. The mean
of the time the environment remains in state F is at most 1/(εSΦE

BA). Even for a
genotype whose switching parameter β is maximal, the length of the risky phase
after an environmental change to F would still be comparable to the length of the
whole stay in F ; the low-risk phase in F would be relatively short or would not be
reached at all. For the optimal genotype, β is minimal, which suggests that the small
loss from not minimizing the length of the risky phase in F is more than compensated
for by the gain in environment E.

3.2 Environmental Changes of the Order of Genotype Mutations

We now turn to the case where the frequency of environmental changes is of the same
order as the frequency of genetic mutations, with both less likely than phenotypic
switches. We assume that the other probabilities are as described before, while the
probabilities of the environmental changes are now εμη∗

EF and εμη∗
FE , where η∗

EF

and η∗
FE are fixed positive numbers, and as before μ will become arbitrarily small.

That is, we assume that ηEF and ηFE are coupled to μ according to

ηEF = μη∗
EF , ηFE = μη∗

FE, (4)

so that the ratio ηEF /ηFE = η∗
EF /η∗

FE is fixed. In this case, we say that genotype 1 is
favored under rare environmental changes and rare genetic mutations if π(ALLG1) >

π(ALLG2) for all μ sufficiently small.

Theorem 2 Consider competing genotypes i = 1,2 with switching parameters
αi,βi . Suppose the fixation probabilities φ satisfy (1) and (2). Suppose (4) holds,
so that environmental changes are of the order of genotype mutations.

(a) If (
α1

β1
− α2

β2

)(
η∗

FE

η∗
EF

− α1

β1

α2

β2

)
> 0, (5)

then genotype 1 is favored under rare environmental changes and rare genetic muta-
tions, provided the population is sufficiently large. That is, there exist N0 < ∞ and
μ0(N) > 0 such that π(ALLG1) > π(ALLG2) if N ≥ N0 and μ < μ0(N).
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If the reverse of inequality (5) holds, then genotype 2 is favored under rare envi-
ronmental changes and rare genetic mutations, provided the population is sufficiently
large.

(b) If α2 = tα1 and β2 = tβ1 with 0 < t < 1, then genotype 1 is favored under
rare environmental changes and rare genetic mutations, provided the population is
sufficiently large.

To derive from Theorem 2 the optimal switching behavior for rare environmental
changes consider for a fixed pair of switching parameters α1, β1, the interval

I =
[

min

(
α1

β1
,
η∗

FE

η∗
EF

β1

α1

)
,max

(
α1

β1
,
η∗

FE

η∗
EF

β1

α1

)]
.

Then, in the sense of Theorem 2, genotype 1 is favored over every competing geno-
type 2 with switching parameter ratio α2/β2 �∈ I , whereas genotype 2 is favored if
α2/β2 is an interior point of I . If α1/β1 = √

η∗
FE/η∗

EF , then interval I degener-
ates and has no interior point, so that genotype 1 is favored over every competi-
tor with α2/β2 �= α1/β1. Thus, if environmental changes are rare, then the ratio
α1/β1 = √

η∗
FE/η∗

EF is optimal. By Theorem 2(b), of two genotypes with this ra-
tio, the one with larger switching rates is favored. We have thus obtained the follow-
ing characterization of the genotype that is optimally adapted to rare environmental
changes.

Corollary 2 Suppose (1), (2), and (4) hold, so that environmental changes are of the
order of genotype mutations. Then the optimal pair of switching parameters in (0, S]
is

(
S,S

√
η∗

EF

η∗
FE

)
if η∗

FE > η∗
EF ,

(
S

√
η∗

FE

η∗
EF

,S

)
if η∗

FE ≤ η∗
EF .

It is interesting to compare this result with the corresponding classification of op-
timal genotypes for less rare environmental changes. Again, for the optimal geno-
type the switching parameter controlling switches to the phenotype more efficient
in the environment visited longer is always maximal. The other switching param-
eter now depends on the ratio η∗

EF /η∗
FE and approaches the maximal value when

η∗
EF /η∗

FE → 1. The ratio of the optimal switching parameters simply reflects the
ratio of the times spent in the environments. To understand the difference from the
classification derived earlier consider the situation where a genotype has reached fixa-
tion and has to resist invasion by a competitor. When the frequency of environmental
changes is of the order of the frequency of phenotypic switches, the initial phases
when the resident phenotype has not yet adapted to a new environment constitute a
significant part of the overall times between changes in the environment. Controlling
the risk of being invaded and replaced during these phases is crucial to the success of
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Table 1 Shares of genotypes.
The dynamics are given by a
Moran process in symmetric
environments, where in
environment E, phenotype A

has fitness a and B has fitness b.
In case I, environmental changes
are on the order of phenotypic
switches (ηEF = 1.0,
ηFE = 0.1). In case II,
environmental changes are on
the order of genetic mutations
(ηEF = μ, ηFE = 0.1μ). The
results show that the fitness ratio
has a relatively small impact on
the shares of the genotypes and
that our large population results
remain valid for populations of
moderate size

N a/b μ Case I
π(ALLG1)

Case II
π(ALLG1)

100 2 10−3 0.6161 0.4083

10−4 0.6155 0.4832

10−5 0.6155 0.4982

100 100 10−3 0.6165 0.4004

10−4 0.6158 0.4830

10−5 0.6158 0.4982

1000 2 10−3 0.6327 0.2552

10−4 0.6320 0.3844

10−5 0.6319 0.4826

1000 100 10−3 0.6252 0.2434

10−4 0.6245 0.3834

10−5 0.6244 0.4826

a genotype, the risk during the remaining time plays only a small role. In the present
setting where the environment changes much more slowly, the lengths of the initial
risky phases are negligible compared to the overall times between changes in the en-
vironment. Now it is the proportion of time spent in each environment that determines
the best switching parameters.

4 Discussion

4.1 Numerical Examples

The general results are qualitative and apply to the limit of small μ. Table 1 presents
numerical calculations of the limit distribution π for the frequency-independent
Moran process with (α1, β1) = (0.01,1.0) and (α2, β2) = (0.1,0.1). In case I,
ηEF = 1.0 and ηFE = 0.1. Here, by Theorem 1, genotype 1 is favored under rare
genotypic mutations when the population is sufficiently large. In case II, η∗

EF = 1.0
and η∗

FE = 0.1 with η = η∗μ in each environment. Here, by Theorem 2, genotype
2 is favored under rare environmental changes. In case I, the share of the favored
genotype is between 0.6 and 0.65, even when the fitness advantage a/b of matching
the environment is large. In case II, the share of the favored genotype ranges from
slightly above 0.5 to 0.76. The share is again relatively insensitive to the fitness ad-
vantage a/b, but in case II, the genetic mutation rate and the population size play a
larger role than in case I. The observed insensitivity to the value of a/b can be ex-
plained by the facts that the shares are determined by the fixation probabilities φ and
that here φE

AB converges to 0 exponentially quickly (Fudenberg and Imhof 2008), so
that φE

AB is negligible compared to 1/N and φE
BA unless a/b is close to 1.

To visualize the optimality result obtained from Theorem 1, consider genotypes
with switching parameters in [s, S] = [e−8,1]. Under the Moran process with a/b =
2 and ηEF = 1, ηFE = 0.01, the optimal parameters are α1 = e−8, β1 = 1. Figure 1
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Fig. 1 Share of the optimal genotype. The dynamics are given by a Moran process in symmetric environ-
ments, where in environment E, phenotype A has fitness a = 2 and B has fitness b = 1. The frequencies
of environmental changes are determined by ηEF = 1 and ηFE = 0.01, so that the environment is most
of the time in state F , where phenotype B is superior. The optimal genotype among all genotypes with
switching parameters in [s, S] = [e−8,1] is given by α1 = e−8 and β1 = 1, which corresponds to switch-
ing slowly from B to A and relatively quickly from A to B . The graph of the share π(ALLG1) shows
the extent to which the optimal genotype outperforms all the competitors with switching parameters in
[s, S]. The asterisk indicates the position of the optimal genotype. The population size is N = 1000 and
the genotypic mutation rate is determined by μ = 0.01

displays the share of the optimal genotype against every possible competitor. The
share is nearly 1 for ill-adapted genotypes.

Our analysis considers the limit π of the invariant distributions as ε goes to 0.
Table 2 compares π to the invariant distribution νε in an example for particular values
of ε. In this example, the approximation by π seems to be fairly accurate for ε ≤
10−4. A theoretical investigation of the quality of this type of approximation in a
related model has recently been carried out by Wu et al. (2011).

4.2 Related Literature

Most work (Kimura 1967; Leigh 1970; Ishii et al. 1989; Ben-Porath et al. 1993;
Lachmann and Jablonka 1996; Kussell and Leibler 2005; Bürger et al. 2006; Acar et
al. 2008) on evolution in changing environments considers infinite populations and
deterministic cycles; Jablonka et al. (1995) and Thattai and van Oudenaarden (2004)
consider an infinite population and both deterministic and stochastic cycles. King
and Masel (2007) consider finite populations governed by a Moran process when
phenotype B has zero fitness in environment E and environment F is absorbing;
they obtain exact results under the additional assumption that in E, any new-born
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Table 2 Invariant distribution νε and limit distribution π . The dynamics are given by a Moran process
in symmetric environments, where in environment E, phenotype A has fitness a = 1.5 and B has fitness
b = 1. The population size is N = 20. The invariant distribution νε describes the long-run behavior of
a Markov chain that has, in this example, about 3,500 states. For the homogeneous states ξ , the limit
distribution π(ξ) = limε→0 νε(ξ) can be calculated as an eigenvector of an 8 × 8 matrix, see the lemma in
the Appendix. Parameter values are ηEF = 1.0, ηFE = 0.5, α1 = 1.0, β1 = 0.5, α2 = 0.4, β2 = 0.8, and
μ = 0.1

State ξ νε(ξ) π(ξ)

ε = 10−3 ε = 10−4 ε = 10−5

(ALLA1,E) 0.0829 0.0904 0.0911 0.0912

(ALLB1,E) 0.0651 0.0669 0.0670 0.0671

(ALLA2,E) 0.0455 0.0505 0.0511 0.0511

(ALLB2,E) 0.1217 0.1237 0.1239 0.1239

(ALLA1,F ) 0.1194 0.1288 0.1298 0.1299

(ALLB1,F ) 0.1762 0.1821 0.1827 0.1827

(ALLA2,F ) 0.0582 0.0637 0.0643 0.0643

(ALLB2,F ) 0.2835 0.2891 0.2896 0.2897

∑
0.9526 0.9952 0.9995 1.0000

B’s are immediately replaced. By building on the results of Fudenberg and Imhof
(2006, 2008), we obtain analytic results without these simplifications. Kussell et al.
(2005) report finite-population simulations of a model that is roughly similar to ours.
Perhaps the chief difference is that instead of a fixed population size, the population
is rescaled according to a Poisson distribution whenever it exceeds a fixed threshold.
If the total population size exceeds the limit when there is exactly one mutant wild-
type cell, this cell dies in the next step with probability greater than 0.36; with the
fixed population rescaling of this paper, the cell would die only with probability of
order 1/N , so that invaders are more likely to be successful. A second difference is
that in Kussell et al. (2005) the time scale of the process depends on the fitness of the
prevailing phenotypes, while in ours it does not.

Livnat et al. (2005) present an evolutionary analysis for the trade-off between off-
spring number and quality. The environment is fixed. They compare spenders who
lay large clutches and investors who lay smaller clutches but invest more per off-
spring. Thus, investors sacrifice current success to invest in future generations and so
correspond, in our model, to a genotype with high switching rates. Livnat et al. show
for an infinite population that the optimal strategy depends on the mutation rate and
that investors are more abundant for low mutation rates. This is in rough agreement
with our findings. Consider the symmetric case where ηEF = ηFE . Then in the set-
tings of Corollaries 1 and 2, individuals that invest in future generations by choosing
large switching rates are more abundant, provided the mutation rate is small and the
population is large.

4.3 Possible Extensions

Our assumption that every mutant has either phenotype with the same probability
can be relaxed. For example, instead of assumption (iii) on mutation probabilities we
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may assume that with probability ε(μ+μ′) a randomly chosen individual is replaced
by an individual with the other genotype, where the phenotype remains unchanged
with probability εμ and is changed with probability εμ′, where μ > 0 and μ′ > 0.
Theorem 1 holds under this assumption as well, provided the condition μ < μ0(N)

is replaced by max(μ,μ′) < μ0(N), see Remark A.1(c) in the Appendix.
In ongoing research, we show that the conclusions of this paper apply more

generally. In particular it appears that Theorem 2(a) holds if ηEF = μkη∗
EF and

ηFE = μkη∗
FE for some k > 1; this allows for genotypic mutations to be more fre-

quent than environmental changes but less frequent than phenotypic switches. We can
also relate phenotypic switching to Parrondo’s paradox (Harmer and Abbott 2002):
switching between two losing gambles (phenotypes) can lead to a winning genotype.

In Corollaries 1 and 2, we assumed constraints for the switching parameters to
ensure existence of an optimum. One might think that an upper bound would not be
required because too high a switching parameter would lead to too many switches
in the wrong direction and so would rule out optimality. To see why this intuition is
misleading consider the symmetric case where ηEF = ηFE = 1 and consider geno-
type 1 with α1 = β1 = 1 and genotype 2 with α2 = β2 very large. Suppose A2 has
reached fixation and is well-adapted to the current environment. Often, an individ-
ual will switch to the inferior type B2, but in each instance B2 is unlikely to take
over. If B2 does become the resident type, a switch to A2 will occur soon, and A2
is then likely to take over again. Thus, even if α2 = β2 is very large, this does not
mean that the fraction of time where genotype 2 is vulnerable to invasion is close
to 1. It only means that there will be many transitions from ALLA2 to ALLB2 and
back. Moreover, since our results apply to the limit distribution obtained as ε tends
to 0, switching will be a rare event compared to reproduction, even for very high
switching parameters. It is an open problem to obtain optimal switching rates in our
finite-population stochastic setting without assuming constraints.
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participants at GRIPS, Harvard University, and the Max Planck Institute for Evolutionary Biology in Plön
for helpful comments and the NSF grant 0646816 for financial support.

Appendix

Here, we present proofs of the claims in the main text.
The common state space of the family of Markov chains we study is given by

S = {
(x1, x2, x3, x4, u) ∈ {0,1, . . . ,N}4 × {E,F } : x1 + · · · + x4 = N

}
,

where x1, . . . , x4 denote the number of individuals of type A1,B1,A2,B2, respec-
tively, and u is the state of the environment. For example, in terms of this notation,
the state (ALLA1,E) is denoted by (N,0,0,0,E). We denote the transition proba-
bilities by pε(ξ, ξ ′), ε ≥ 0, ξ, ξ ′ ∈ S . If ε = 0, the environment does not change and
mutations and switches do not occur. For (x,u), (x′, u′) ∈ S ,

p0
(
(x,u), (x′, u′)

) =
{

Πu(x, x′) if u = u′,
0 if u �= u′,
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where Πu(x, x′) are the entries of the given transition matrices Πu, u = E,F .
For ε > 0, the set of recurrent states is irreducible and the chain has therefore a

unique invariant distribution νε , say. The following lemma shows that π , the weak
limit of νε as ε → 0, can be determined by computing the invariant probability vector
of the block matrix

M =
[

ME ηEF I4
ηFEI4 MF

]
,

where I4 is the 4 × 4 unit matrix,

Mu =

⎛
⎜⎜⎝

mu
11 β1φ

u
AB μ/N μφu

AB

α1φ
u
BA mu

22 μφu
BA μ/N

μ/N μφu
AB mu

33 β2φ
u
AB

μφu
BA μ/N α2φ

u
BA mu

44

⎞
⎟⎟⎠ , u = E,F,

and the diagonal entries of ME and MF are such that the row sums of the block matrix
M are 1. Note that M is irreducible, so that there is unique vector λ = (λ1, . . . , λ8)

such that λM = λ and λ1 + · · ·+λ8 = 1. We call λ the invariant probability vector of
M , even though M is not necessarily a stochastic matrix since the diagonal elements
can be negative. However, rescaling ε if necessary we can assume without loss of
generality that M is a stochastic matrix. In this case, λ represents the invariant distri-
bution of the reduced process with state space H = {(ALLA1,E), . . . , (ALLB2,F )},
the set of states where the population is homogeneous.

Lemma For every ξ ∈ S , the limit π(ξ) = limε→0 νε(ξ) exists. For every ξ ∈ S \ H,
π(ξ) = 0, and if λ is the invariant probability vector of M , then

π(ALLA1,E) = λ1, π(ALLB1,E) = λ2,

π(ALLA2,E) = λ3, π(ALLB2,E) = λ4,

π(ALLA1,F ) = λ5, π(ALLB1,F ) = λ6,

π(ALLA2,F ) = λ7, π(ALLB2,F ) = λ8.

Proof Let S̃ denote the set of states that are recurrent under pε if ε > 0. The set S̃
is the same for all ε > 0 and H ⊂ S̃ . Moreover, if ξ ∈ S \ S̃ , then νε(ξ) = 0, so that
π(ξ) = limε→0 νε(ξ) = 0.

To determine π(ξ) for the remaining states, we apply Theorem 2 of Fudenberg
and Imhof (2006). We consider in the rest of the proof only the restricted state space
S̃ . Note that for each ε > 0, the chain restricted to S̃ is irreducible and its invariant
distribution is given by {νε(s) : s ∈ S̃}. We now verify Assumptions 6 to 9 of Fuden-
berg and Imhof (2006). Under p0, the states in H are absorbing and all other states in
S̃ are transient. Thus, Assumptions 6 and 7 are met. Assumption 8 requires that the
limit limε→0 pε(ξ, ξ ′)/ε exists for all ξ ∈ H and all ξ ′ ∈ S̃ with ξ ′ �= ξ . We verify
this only for ξ = (ALLA1,E), the argument for the other elements of H is similar.
If the current state is ξ = (ALLA1,E), then the set of states that can be reached in a
single step with a probability of order ε is given by

S1 = {
(N − 1,1,0,0,E), (N − 1,0,1,0,E), (N − 1,0,0,1,E), (N,0,0,0,F )

}
.
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Specifically, for a step to (N − 1,1,0,0,E), one individual must switch from A1 to
B1, which has probability εβ1, and there must not occur a genetic mutation nor an
environmental change. Hence,

lim
ε→0

pε((ALLA1,E), (N − 1,1,0,0,E))

ε
= β1

and similarly,

lim
ε→0

pε((ALLA1,E), (N − 1,0,1,0,E))

ε
= μ,

lim
ε→0

pε((ALLA1,E), (N − 1,0,0,1,E))

ε
= μ,

lim
ε→0

pε((ALLA1,E), (N,0,0,0,F ))

ε
= ηEF .

For ξ = (ALLA1,E) and all ξ ′ ∈ S̃ \ [S1 ∪ {ξ}], pε(ξ, ξ ′) = o(ε). Assumption 8 is
thus seen to hold.

To see that matrix M corresponds to the transition matrix Λ defined in Sect. 4 of
Fudenberg and Imhof (2006) note that for each state in S1 there is, under p0, exactly
one state in H \ {(ALLA1,E)} that can be reached from it, namely

(ALLB1,E), (ALLA2,E), (ALLB2,E), (ALLA1,F ),

respectively, and the corresponding absorption probabilities are φE
AB,1/N,φE

AB and
1. This shows that the first row of M agrees with the definition of Λ and the other rows
can dealt with in much the same way. Our assumptions that ηEF , ηFE , μ and all the
fixation probabilities φ are positive ensure that M is irreducible, so that Assumption 9
is satisfied as well. The remaining part of the assertion now follows from Theorem 2
in Fudenberg and Imhof (2006). �

From now on, we consider symmetric environments satisfying (1) and we suppose
that

φE
AB = o

((
φE

BA

)2)
(N → ∞). (6)

This condition is slightly weaker than the corresponding condition in the main text
where we require that φE

AB = o((φE
BA)3). The stronger condition will only be needed

in Theorem A.2(b).
Genotypes are characterized by the parameters αi and βi . In all the pairwise com-

parisons of the long-run successes of competing genotypes, we keep these parameters
fixed and study π(ALLGi) when μ becomes small. This means that in our results ge-
netic mutations are rare compared to phenotypic switches. The following theorem
treats the case where the frequency of environmental changes is of the same order as
the frequency of phenotypic switches. Here, the parameters ηEF and ηFE are fixed
positive numbers.
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Theorem A.1 If

lim inf
N→∞

(
1

α2
+ 1

β2
− 1

α1
− 1

β1

)
φE

BA > (ηEF − ηFE)

(
1

α2β1
− 1

α1β2

)
, (7)

then there exists N0 < ∞ and for every N ≥ N0 there exists μ0(N) > 0 such that for
N ≥ N0 and 0 < μ ≤ μ0(N),

π(ALLG1) > π(ALLG2).

If

lim sup
N→∞

(
1

α2
+ 1

β2
− 1

α1
− 1

β1

)
φE

BA < (ηEF − ηFE)

(
1

α2β1
− 1

α1β2

)
,

then there exists N0 < ∞ and for every N ≥ N0 there exists μ0(N) > 0 such that for
N ≥ N0 and 0 < μ ≤ μ0(N),

π(ALLG1) < π(ALLG2).

Proof In view of (1), matrix M from the lemma is here given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mE
11 β1φ

E
AB

μ
N

μφE
AB ηEF 0 0 0

α1φ
E
BA mE

22 μφE
BA

μ
N

0 ηEF 0 0
μ
N

μφE
AB mE

33 β2φ
E
AB 0 0 ηEF 0

μφE
BA

μ
N

α2φ
E
BA mE

44 0 0 0 ηEF

ηFE 0 0 0 mF
11 β1φ

E
BA

μ
N

μφE
BA

0 ηFE 0 0 α1φ
E
AB mF

22 μφE
AB

μ
N

0 0 ηFE 0 μ
N

μφE
BA mF

33 β2φ
E
BA

0 0 0 ηFE μφE
AB

μ
N

α2φ
E
AB mF

44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the diagonal entries are such that the row sums of M are 1. Let δi denote
the cofactor of the entry in row i and column 8 of M − I8. Then, as M is irre-
ducible, (

∑
i δi)

−1(δ1, . . . , δ8) is the unique invariant probability vector of M and
δ1 < 0, . . . , δ8 < 0; see, e.g., Fiedler (1986), pp. 78–80. Hence, by the lemma,

π(ALLG1) = δ1 + δ2 + δ5 + δ6

δ1 + · · · + δ8
, π(ALLG2) = δ3 + δ4 + δ7 + δ8

δ1 + · · · + δ8
.

Consequently,

π(ALLG1) > π(ALLG2) ⇐⇒ � := −δ1 − δ2 + δ3 + δ4 − δ5 − δ6 + δ7 + δ8 > 0.

One may verify that � can be written as

� = μ
(
φE

BA − φE
AB

)[(
ηEF + ηFE

)
ηEF ηFE

(
φE

BA

)2{
(ηEF − ηFE)(β1α2 − α1β2)

+ (α1β1β2 + α1α2β1 − α2β1β2 − α1α2β2)φ
E
BA

} + φE
ABψ1 + μψ2

]
,
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where ψ1 and ψ2 are polynomials in the φ’s, α’s, β’s, η’s, and in μ and 1/N . Hence,

sup
0<μ≤1,
N=2,3,...

|ψ1| + |ψ2| < ∞.

To determine the sign of � note first that by (6), there is N1 < ∞ so that φE
BA −

φE
AB > 0 for all N ≥ N1. Suppose that inequality (7) holds. Then the limit inferior,

as N → ∞, of the term in braces is positive. In view of (6), it follows that there
exists N2 < ∞ and for every N ≥ N2 there exists μ0(N) > 0 such that the term in
brackets is positive if N ≥ N2 and 0 < μ ≤ μ0(N). Thus, if N ≥ N0 := max(N1,N2)

and 0 < μ ≤ μ0(N), then � > 0, and so π(ALLG1) > π(ALLG2). The proof of the
remaining assertion is similar. �

Remark A.1 (a) If the limit ΦE
BA = limN→∞ φE

BA exists, condition (7) becomes
(

1

α2
+ 1

β2
− 1

α1
− 1

β1

)
ΦE

BA > (ηEF − ηFE)

(
1

α2β1
− 1

α1β2

)
, (8)

which is the condition given in Theorem 1 of the main text.
(b) Under the additional assumption that lim infN→∞ φE

BA > 0, the assertion of
Theorem A.1 holds with some μ0 that does not depend on N . To see this note that
under the additional condition, the product of (φE

BA)2 and the term in braces discussed
in the proof of Theorem A.1 is bounded away from 0 if N is sufficiently large.

(c) To prove the claim in the discussion that Theorem 1 holds with a relaxed ver-
sion of assumption (iii) on mutation probabilities assume, instead, that at every time
step, with probability ε(μ+μ′) a randomly chosen individual is replaced by an indi-
vidual with the other genotype, where the phenotype remains unchanged with prob-
ability εμ and is changed with probability εμ′. Then, in matrix M , in the entries at
positions (1,4), (2,3), (3,2), (4,1), (5,8), (6,7), (7,6), and (8,5) the factor μ has
to be replaced by μ′. It can now be shown that �, obtained analogously from the
modified M , can be written as

� = μ′(φE
BA − φE

AB

)[
(ηEF + ηFE)ηEF ηFE

(
φE

BA

)2{
(ηEF − ηFE)(β1α2 − α1β2)

+ (α1β1β2 + α1α2β1 − α2β1β2 − α1α2β2)φ
E
BA

} + φE
ABψ1 + μψ2 + μ′ψ3

]
,

where ψ1,ψ2,ψ3 are polynomials in the φ’s, α’s, β’s, η’s, μ, μ′, and 1/N . It follows
as before that if (7) holds, then there exists N0 and for each N ≥ N0 there exists
μ0(N) > 0 such that π(ALLG1) > π(ALLG2), provided N ≥ N0 and max(μ,μ′) <

μ0(N).

We next derive optimal switching parameters for the case where environmental
changes are of the order of phenotypic switches. We consider switching parame-
ters in a given interval [s, S] with 0 < s < S and we assume for simplicity that
ΦE

BA = limN→∞ φE
BA exists. In view of Theorem A.1, we say that (α1, β1) ∈ [s, S]2

is optimal if inequality (8) holds for all (α2, β2) ∈ [s, S]2 with (α2, β2) �= (α1, β1).
That is, an optimal genotype is favored over every competitor if mutations are rare
and the population is large.
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Corollary A.1 Let ΦE
BA = limN→∞ φE

BA.

(a) If ηEF − ηFE < −SΦE
BA, then (S, s) is optimal.

(b) If |ηEF − ηFE | < SΦE
BA, then (S,S) is optimal.

(c) If ηEF − ηFE > SΦE
BA, then (s, S) is optimal.

Proof (a) Suppose ηEF − ηFE < −SΦE
BA. Then for all α2, β2 ∈ [s, S],

ΦE
BA − ηEF − ηFE

β2
> 0, ΦE

BA + ηEF − ηFE

α2
< 0.

Therefore, if (α1, β1) = (S, s) and (α2, β2) ∈ [s, S]2 \ {(α1, β1)}, then

ΦE
BA

α2
+ ΦE

BA

β2
=

(
ΦE

BA − ηEF − ηFE

β2

)
1

α2
+

(
ΦE

BA + ηEF − ηFE

α2

)
1

β2

>

(
ΦE

BA − ηEF − ηFE

β2

)
1

α1
+

(
ΦE

BA + ηEF − ηFE

α2

)
1

β1
,

showing that inequality (8) holds.
(b) Suppose that |ηEF − ηFE | < SΦE

BA. Then for all α2, β2 ∈ [s, S],
∣∣∣∣(ηEF − ηFE)

(
1

α2S
− 1

Sβ2

)∣∣∣∣ ≤
∣∣∣∣ 1

α2
− 1

β2

∣∣∣∣ΦE
BA

=
(

1

min(α2, β2)
− 1

max(α2, β2)

)
ΦE

BA

≤
(

1

α2
+ 1

β2
− 2

S

)
ΦE

BA,

where the first inequality is strict unless α2 = β2 and the second inequality is strict
unless max(α2, β2) = S. It now follows that inequality (8) holds if (α1, β1) = (S,S)

and (α2, β2) ∈ [s, S]2 \ {(α1, β1)}.
The proof of (c) is similar to that of (a). �

We next turn to the pairwise comparison of genotypes in the case where the fre-
quency of environmental changes is of the same order as the frequency of genetic
mutations. We formalize this relation by assuming that ηEF and ηFE are coupled to
μ by

ηEF = μη∗
EF , ηFE = μη∗

FE, (9)

where η∗
EF and η∗

FE are fixed positive numbers. In the following theorem, αi and βi

are again fixed and π(ALLGi) is studied when μ and so, by (9), ηEF and ηFE are
small. That is, genetic mutations and environmental changes are rare compared to
phenotypic switches.
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Theorem A.2 Assume (9).
(a) If (

α1

β1
− α2

β2

)(
η∗

FE

η∗
EF

− α1

β1

α2

β2

)
> 0, (10)

then there exists N0 < ∞ and for every N ≥ N0 there exists μ0(N) > 0 such that for
N ≥ N0 and 0 < μ ≤ μ0(N),

π(ALLG1) > π(ALLG2). (11)

The implication remains true if “>” is replaced by “<” in (10) and (11).
(b) Suppose that

φE
AB = o

((
φE

BA

)3)
(N → ∞). (12)

If α2 = tα1 and β2 = tβ1 with 0 < t < 1, then there exists N0 < ∞ and for every
N ≥ N0 there exists μ0(N) > 0 such that inequality (11) holds for all N ≥ N0 and
0 < μ ≤ μ0(N).

Proof In view of (1) and (9), matrix M is now given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mE
11 β1φ

E
AB

μ
N

μφE
AB μη∗

EF 0 0 0

α1φ
E
BA mE

22 μφE
BA

μ
N

0 μη∗
EF 0 0

μ
N

μφE
AB mE

33 β2φ
E
AB 0 0 μη∗

EF 0

μφE
BA

μ
N

α2φ
E
BA mE

44 0 0 0 μη∗
EF

μη∗
FE 0 0 0 mF

11 β1φ
E
BA

μ
N

μφE
BA

0 μη∗
FE 0 0 α1φ

E
AB mF

22 μφE
AB

μ
N

0 0 μη∗
FE 0 μ

N
μφE

BA mF
33 β2φ

E
BA

0 0 0 μη∗
FE μφE

AB
μ
N

α2φ
E
AB mF

44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the diagonal entries are such that the row sums of M are 1. Let δi denote the
cofactor of the entry in row i and column 8 of M − I8 and let � = −δ1 − δ2 + δ3 +
δ4 − δ5 − δ6 + δ7 + δ8. As in the proof of Theorem 1, it follows from the lemma that
π(ALLG1) > π(ALLG2) if and only if � > 0.

To prove (a) suppose that inequality (10) holds. One may verify that

� = μ3(φE
BA − φE

AB

)[
φE

ABφE
BA(α1β2 − α2β1)

×
{(

φE
BA

)2
(

η∗
EF + η∗

FE + 2

N

)
(β1β2η

∗
FE − α1α2η

∗
EF ) + φE

ABψ1

}
+ μψ2

]
,

where

sup
0<μ≤1,
N=2,3,...

|ψ1| + |ψ2| < ∞.
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By (10), the differences α1β2 − α2β1 and β1β2η
∗
FE − α1α2η

∗
EF are either both

positive or both negative. In view of (6), there exists N0 < ∞ such that for all
N ≥ N0, φE

BA − φE
AB > 0 and the term in braces has the same sign as α1β2 − α2β1.

Thus, if N ≥ N0 there is μ0(N) > 0 so that for all 0 < μ ≤ μ0(N), � > 0 and so
π(ALLG1) > π(ALLG2). The proof for the case where the inequalities in (10) and
(11) are reversed is similar.

To prove (b) suppose that 0 < t < 1, α2 = tα1 and β2 = tβ1. Then

� = μ4(φE
BA − φE

AB

)
(1 − t)

×
[
t
(
φE

BA

)3
(

η∗
EF + η∗

FE + 2

N

)
η∗

EF η∗
FEα1β1(α1 + β1) + O

(
φE

AB

) + O(μ)

]

and the assertion follows from (12). �

Remark A.2 Under the additional assumption that lim infN→∞ φE
BA > 0, the assertion

of Theorem A.2(b) holds with some μ0 that does not depend on N . This is obvious
from the representation of � given in the proof of Theorem A.2(b).
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