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Abstract 

Suboptimal behavior can persist in simple stochastic decision problems. This has 

motivated the development of solution concepts such as cursed equilibrium (Eyster & 

Rabin 2005) and behavioral equilibrium (Esponda 2008). We experimentally study a 

simple adverse selection (or “lemons”) problem and find that learning models that 

heavily discount past information (i.e. display recency bias) explain patterns of behavior 

better than Nash, cursed or behavioral equilibrium.  Providing counterfactual information 

or a record of past outcomes does little to aid convergence to optimal strategies, but 

providing sample averages (“recaps”) gets individuals most of the way to optimality. 

Thus recency effects are not solely due to limited memory but stem from some other 

form of cognitive constraints. 
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Introduction 

People make mistakes. When does repeat experience lead individuals to optimal 

behavior and when can mistakes be persistent? This question lies at the heart of 

interpreting the potential market impacts of many findings from behavioral economics. 

Two classes of models allow the persistence of mistakes. In general, Bayesian-based 

models predict that only mistakes about “off-path” or otherwise unobserved events can 

persist in the long run. In contrast, many behavioral models assume that even “on-path” 

mistakes can be equilibrium phenomena (i.e. permanent or at least reasonably persistent 

even in the presence of feedback).  

We steer a middle course and argue that “on path” mistakes do occur and can 

sometimes persist. Importantly, the well-documented tendency to discount older 

information, called recency bias  (see e.g. Erev & Haruvy 2013), plays a key role in 

determining whether mistakes are permanent or temporary. In particular, recency bias can 

imply persistent suboptimal behavior in stationary stochastic environments.1 To show this 

we conduct a series of experiments in which participants face a simple stochastic decision 

problem. A simple learning model with high recency better organizes behavior across 

experiments than three well known equilibrium concepts. Additionally, insights gained 

from this model suggest an intervention that markedly improves payoffs and is 

generalizable across several decision problems.   

Our stochastic decision problem is the simplified version of Akerlof’s (1970) 

classic lemons model introduced in Esponda (2008), the additive lemons problem (ALP). 

In the ALP a seller is endowed with an object with a value known to the seller and 

unknown to the buyer, and the object is worth a fixed amount more to the buyer than the 

seller. The buyer makes a single take-it-or-leave-it offer to the seller2 who accepts or 

rejects it. Buyers receive full feedback if their offer is accepted but receive no feedback if 

their offer is rejected. 

The ALP with subjects acting as buyers and computers playing sellers makes a 

useful laboratory model for studying the persistence of mistakes. The calculation of the 

buyer’s optimal strategy requires individuals to use conditional expectations, something 

                                                        
1 Recency can be a useful heuristic in a non-stationary world where older observations will not necessarily 
be relevant. 
2 Played in our experiments by a computer who always uses the dominant strategy. 
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that is generally unintuitive for many individuals, and leads to large deviations from 

optimal behavior in the first round (Tor & Bazerman 2003). Allowing individuals to play 

the ALP repeatedly allows us to examine the persistence of these mistakes and the effects 

of manipulations on convergence to optimality.   

Our baseline ALP lets us generate predictions using Nash equilibrium (NE), 

cursed equilibrium (CE), behavioral equilibrium (BE), and a simple learning model, 

temporal difference reinforcement learning (TDRL; Sutton & Barto 1998).3  In our first 

experiment subjects were randomly assigned to one of four conditions:  two payoff 

structures for the lemons problem (high or low “value added”) were crossed with two 

information conditions. In the informed condition, participants were told the prior 

distribution of seller valuations; in the uninformed condition they were not given any 

information about this distribution of values other than its support.4 

These four conditions were chosen so that Nash, cursed and behavioral 

equilibrium have clear and distinct predictions: in the “low value added” payoff 

conditions CE predicts offers above NE offers while in the “high value added” conditions 

it predicts offers below NE. In contrast, BE predicts possible underbidding in conditions 

where participants are uninformed of the seller’s valuation but coincides with NE 

predictions in conditions where the subjects were told the distribution of seller values. 

We use simulation methods to generate predictions for the TDRL model, and find that 

with relatively high recency the TDRL model predicts offers above NE in “low-added 

value” conditions but close-to optimal aggregate behavior in “high added value” 

conditions. 

  There is no underbidding in any of these conditions, and informing subjects of 

the distribution of seller values has little effect.  Moreover, there is more overbidding 

than (fully) cursed equilibrium predicts when it predicts overbidding, and almost optimal 

behavior where cursed equilibrium predicts underbidding.  Thus neither Nash 

equilibrium, behavioral equilibrium, nor cursed equilibrium fit well with the data. In 

contrast, a very simple learning model with relatively high recency organizes the 

                                                        
3 To use simulation methods, we need to fix a functional form for the learning model. We choose the TDRL 
model for its simplicity, but the qualitative predictions come from the assumption of recency, not the 
chosen functional form. 
4 This latter structure corresponds to the assumptions in Esponda (2008), who argues that it seems a better 
description of many field settings. 
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aggregate behavioral patterns relatively parsimoniously. In addition, we find direct 

evidence for recency:  Individuals react strongly to last period outcomes even after 

experience with the decision problem.  

We then consider a succession of treatments with different feedback structures. In 

a second experiment, we add explicit counterfactual information: buyers are informed of 

the object’s value regardless of whether their bid is accepted or rejected. This allows us to 

test whether behavior in the main treatment comes from incorrect expectations about the 

value of the rejected items. Providing this additional information has very little effect and 

our qualitative findings are unchanged.  Because this treatment makes the information 

subjects receive exogenous to their actions, it also permits a cleaner test of recency 

effects, which we again confirm. 

Recency effects are very powerful in the ALP because a single experience with a 

strategy contains very little information about whether that strategy is successful. Thus, 

when participants heavily discount the past’s information, they are not able to learn the 

optimal behavior. In our next experiment we ask whether this discounting of past 

information is a result of limited memory or of more complicated cognitive constraints.  

To answer this we consider two treatments. In the more information condition 

participants play the ALP against 10 sellers simultaneously. Each round buyers make a 

single offer decision that applied to all 10 sellers.  At the end of a round, participants 

receive feedback about each of the ten transactions:  what the seller’s value was, whether 

the offer was accepted and the buyer’s profits on that transaction. The simple information 

condition has identical rules. However, instead of receiving fully detailed feedback on 

each transaction, participants are told their average profit out of the 10 transactions and 

average values of the objects they actually purchased.  

Providing more information has little effect, but providing the information in the 

pithy, more readily understood form of averages (“recaps”) significantly improves the 

subjects’ payoffs. This suggests that recency effects may not simply be an issue of 

“memory space” but also the (lack of) computational resources to construct useful 

summary statistics from multiple pieces of data. Exploring these computational 

constraints is an important avenue for future research.  
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Finally, to test the robustness of our findings, we study a slightly modified version 

of the Monty Hall problem. This problem also involves non-trivial probabilistic reasoning 

and, again, participants do not solve it correctly on the first try. Allowing for feedback we 

see that the effectiveness of recaps remains as before. Repeated play of the Monty Hall 

problem does not lead to optimal behavior but simple recaps lead to better decisions and 

higher payoffs. 

 

2.   Theory 

2.1   Nash Equilibrium in the Additive Lemons Problem 

To investigate the effects of different information and feedback conditions on 

learning, payoffs, and convergence or non-convergence of behavior to optimality, we 

focus on the additive lemons problem (ALP) as formulated in Esponda (2008). In this 

game: there are two players, a buyer and a seller. The seller begins with an object of 

value v drawn from a uniform distribution between 0 and 10; this value is known to the 

seller but is unknown to the buyer. The buyer makes a single take-it-or-leave-it offer b to 

the seller. If the seller accepts this offer, the buyer receives the object and pays b to the 

seller. The object is worth v+k to the buyer, thus there is a gain from the occurrence of 

trade. 

This game has a unique Nash equilibrium in weakly undominated strategies: It is 

weakly dominant for the seller to accept all offers below v and reject all offers above v. 

Because the seller has a dominant strategy, we transform the ALP into a single-person 

decision for the rest of our study. The buyer’s optimization problem is thus 

 

max Pr( )[ ( | ) ] [ / 2]
b

v b E v k v b b b k b≤ + ≤ − = − . 

 

Solving the maximization shows that the optimal bid is b* = k, so buyers offer k every 

round and sellers accept when v<k and reject if v>k.  

We chose the ALP for several reasons. First, lemons problems are familiar to 

economists. Second, the ALP is easy to describe to subjects but also tends to elicit 

suboptimal first responses due failures of probabilistic reasoning. The key to this failure 

is that the expectation in the buyer’s maximization problem is a conditional expectation. 
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To make an optimal decision the buyer needs to take into account that if a bid of b is 

accepted the item’s value must lie below v. There is a large amount of experimental 

evidence that individuals frequently fail to this correction in many decisions of interest, 

including common value auctions (Kagel & Levin 1986), the Monty Hall problem 

(Krauss & Wang 2003) and strategic voting games (Guarnaschelli et al. 2000).  

Additionally, the ALP can be played repeatedly in a short amount of time. We will focus 

on two payoff conditions: a “low added value” condition where k=3 and a “high added 

value” condition where k=6. 

The ALP is very similar to the Acquire a Company Game (ACG) introduced by 

Samuelson & Bazerman (1985). The ACG has the same extensive form, but the value to 

the buyer has the multiplicative form kv instead of the additive form v+k that we 

consider here.   In the ACG, for k>2 the optimal bid is 10 and for k<2 the optimal bid is 

0.  There has been a large amount of research on this game which shows that when k<2, 

individuals fail to play the optimal strategy (Samuelson & Bazerman 1985) even with 

learning opportunities (Ball et al. 1991). However, the fact that the optimal bid is on the 

boundary is a significant confound here, given the aversion of individuals for corner 

solutions (Rubinstein et al. 1993).  Our specification of the ALP avoids this confound as 

for any value of k the optimal solution is interior.5  

 

2.2 Predicted Play, I: Equilibrium Concepts 

Nash equilibrium requires that each player’s strategy is a best response to the true 

distribution of opponents’ play, and so implies that the buyers in the ALP should make 

the optimal bid. Some alternative equilibrium concepts (Battigalli & Guatoli 1997, Dekel 

et al. 1999, 2004, Fudenberg & Kamada 2013, Fudenberg and Levine 1993a,  Kalai & 

Lehrer 1993, Lehrer 2012) maintain the assumption that players correctly interpret and 

process the information they receive and best respond to this information, while allowing 

players to have incorrect beliefs provided those beliefs are consistent with their 

observations, so that players can only have wrong beliefs “off the equilibrium path.”  We 

                                                        
5 One of our treatments demonstrates this confound by restricting the range of allowed bid in the 

ALP. 
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focus here on a particular example of such a concept: behavioral equilibrium (Esponda 

2008). 

A variety of behavioral experiments show that mistakes in probabilistic reasoning 

are fairly common (Charness & Levin 2009, Kagel & Levin 1986, Krauss & Wang 2003, 

Samuelson & Bazerman 1985, Ball et al. 1991). This motivates equilibrium concepts that 

allow or require individuals to make mistakes in updating beliefs about opponents’ play 

and computing the associated best responses.  In particular, cursed equilibrium (Eyster 

&Rabin 2005) allows for a specific type of mistake in computing conditional 

expectations, without distinguishing between on-path and off-path errors. 

Behavioral equilibrium and cursed equilibrium make different predictions of 

behavior in the ALP. In addition, they suggest different causes for deviations from 

optimal play.  We now discuss these predictions.  

 

Behavioral Equilibrium 

Esponda (2008) develops the solution concept of behavioral equilibrium (BE) 

specifically for the ALP. This concept is meant to model settings where (1) subjects need 

to learn the distribution of Nature’s moves (i.e. values) at the same time that they learn 

the distribution of opponent’s play, and (2) buyers don’t see the seller’s value when the 

seller rejects the object.6  

In our setting BE can be expressed as a two-tuple (p*, bBE) where p* is a 

probability distribution on the interval [0,10]. BE imposes two conditions on this tuple. 

First, bBE must be optimal for the buyer given distribution p* and the belief that sellers 

play optimal strategies. Second, p* must be consistent with what buyers observe in 

equilibrium, so that p*(A) for any subinterval A of the interval [0, bBE] must coincide 

with the true probability (in this case, uniform) of A.  

However, no restrictions are placed on what probabilities p* may place on of the 

distribution of values that buyers never actually see. Given these two conditions, BE is a 

                                                        
6  BE allows for two types of agents: naïve agents whose beliefs are only required to be self-confirming but 
do not know the distribution of Nature’s move (as in Dekel et al. 2004) and sophisticated agents who know 
the payoff functions of the other players, as in rationalizable self confirming equilibrium (Dekel et al. 
1999). In our formulation of the ALP the buyers are told the seller’s strategy so the two type of agent are 
equivalent.  When the ALP is formulated as a game, the sophisticated agents deduce that the seller will not 
accept a price below their value, but the naïve agents need not do so.   
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set valued solution concept with the property that . Thus BE predicts that buyers 

cannot persistently overbid in either of the payoff conditions we examine in the ALP:  

Were they were to do so, they would learn that it would be better to make the NE bid 

instead. However, buyers can persistently underbid if they have overly pessimistic beliefs 

about the distribution of values above their bid.  

 

Cursed Equilibrium 

Individuals often fail to deal correctly with conditional probabilities. Eyster & 

Rabin (2005) build this assumption into the equilibrium concept of fully cursed 

equilibrium (CE).  Formally, CE assumes that when individuals in a Bayesian game 

optimize they completely ignore the correlation between their other players’ types and 

their strategies.7  

As a simple example, consider a game with two players, 1 and 2 and two states of 

Nature, A and B, with probabilities p and 1-p respectively. The states are observed by 

player 2 but not by player 1. Suppose player 2 plays action s when the state is A and 

plays r when the state is B. Then when player 1 sees action s, they should infer that the 

state is A. However, in CE player 1 ignores this information, and so optimizes against 

beliefs of the form “player 2 plays s with probability p, and r with probability 1-p 

regardless of the state of the world”  

Following Esponda (2008), we adapt CE to the additive lemons problem by 

supposing that the buyer’s maximization problem replaces the conditional expectation of 

the value v with its unconditional expectation 

 

. 

 

so the cursed equilibrium bid here is   

 

bCE= (5+k)/2. 

                                                        
7 In applying cursed equilibrium to the lemons problem Eyster & Rabin use a refinement to restrict off path 
play that is analogous to our assumption that the sellers do not use weakly dominated strategies.  Eyster & 
Rabin also propose the notion of partially cursed equilibrium, in which beliefs are a convex combination of 
the fully cursed beliefs and those in the Nash equilibrium. 

BE NE
b b≤

  
max

b
Pr(v ≤ b)E(v − b) = max

b
(b / 10)[5+ k − b]
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Note that this leads to overbidding (relative to the best response) if k < 5 and 

underbidding when k > 5. Thus CE predicts overbidding in the low added value 

conditions (k=3) and underbidding in high added value conditions (k=6). 

As noted above, the predictions of CE do not depend on whether or not players 

are told the distribution of Nature’s moves or on the sort of feedback they receive in the 

course of repeated trials. Another property of CE is that in many games, including the 

ALP, the payoff that players expect to receive in equilibrium does not match the actual 

payoffs they will receive. Thus, to the extent that CE is meant to describe behavior that 

persists when subjects have experience (as the “equilibrium” part of its name suggests), it 

implies that individuals have permanently incorrect yet stable beliefs about their expected 

payoffs. 

 

2.3: Predicted Play, II: Learning Dynamics with Recency  

A common argument given for the use of equilibrium analysis is that equilibrium 

arises as the long-run result of a non-equilibrium learning process (Fudenberg & Kreps 

1995, Fudenberg & Levine 1998, Samuelson 1997).  However, there is a substantial 

amount of evidence both from the lab (Camerer 2003, Erev & Haruvy 2013) and the field 

(Agarwal et al. 2008, Malmandier & Nagel 2011) that individuals react strongly to 

recently experienced outcomes and discount past information. Individuals who display 

such “recency effects” will not converge to using a single strategy in a stochastic 

environment, and so will be poorly described by an equilibrium model. Thus it is 

interesting to explore the use of learning dynamics to generate predictions in place of an 

equilibrium concept. This method is less concise, and will typically require the use of 

simulations, so it does not lead to as sharp predictions. However, it has the additional 

benefit of providing predictions over intermediate time scales as well as in the long run 

(Roth & Erev 1995, Erev & Roth 1998). 

Recency has been incorporated into both belief-based and reinforcement-based 

models of learning, by adding a parameter that controls the speed of informational 

discounting (see e.g. Cheung & Friedman 1997, Fudenberg & Levine 1998, Sutton & 

Barto 1998, Camerer & Ho 1999, Benaim et al. 2009). Recency effects have also been 
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modeled by supposing that individuals “sample” a set of experiences either with all 

experiences in the recent past weighted equally (Young 1993) or with more recent 

experiences being more likely to be sampled (Nevo & Erev 2012). Most of these learning 

models converge to an ergodic distribution. In general the details of those distributions 

depend on the specifics of the model, but it is easier to characterize the effect of recency 

in some limit cases. At one extreme, with very little recency,  each of a large number of 

past outcomes has approximately equal weight, so in a stationary decision environment 

we expect each individual to obtain close to the optimal payoff.8  On the other hand,  the 

most extreme case of recency is to play a best response to last period’s information. In 

the ALP if the seller’s value today is expected to be exactly the same as yesterday’s, then 

the optimal bid equals yesterday’s value; this implies that for both the k=3 and k=6 

versions of the ALP the population average bid will be the unconditional expectation of 

the seller’s value, which is 5.9 

In practice we do not expect observed behavior to correspond to either of these 

limits but instead to reflect an intermediate weight on recency, so we would like to know 

the aggregate implications of such intermediate weights in our two conditions. To get a 

sense of this we now specialize to a specific model that is easy to work with: the temporal 

difference reinforcement learning model (TDRL). This model has a single parameter that 

controls the rate at which information from past observations is discounted. Although 

more complex learning models fit various data better, variations of TDRL have been 

shown to fit human and animal learning behavior reasonably well (Glimcher et al. 2008) 

we believe that the qualitative effect of recency on the aggregate distribution of play will 

be roughly the same for many of the alternative models.   

                                                        
8 This assumes either that the agents play all actions with positive probability, as in smooth fictitious 

play, or that they receive counterfactual information about the payoffs of the actions they did not use.  

Benaim et al. (2009) prove a continuity result that relates the limit of the ergodic distribution of 

recency-weighted smooth fictitious play to the long run outcomes of smooth fictitious play without 

any recency bias at all.  
9 Note that if bids are restricted to be integers, the optimal response is to bid  the smallest integer 

larger than the realized computer value;  this  predicts an average bid of 5.5 in the ALP. 
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TDRL works as follows: for each action a the agent begins at time 1 with a 

valuation v1(a) which we assume is chosen randomly.10  In each period, individuals use a 

logit choice function, so they choose action a with probability  

  

 

Here  represents the degree of maximization; note that as goes to infinity, the 

probability of the action with the highest value goes to 1, so the choice function is 

approximates maximization, while as goes to 0 all actions are chosen with equal 

probability. 

After each choice, individuals receive feedback and update their valuations. In the 

case of the ALP, individuals receive different feedback depending on whether their offer 

is accepted or not. We deal with these cases in turn. 

First, suppose that the individual’s offer is accepted. The individual then sees the 

seller’s valuation for the object in that round. In the TDRL model individuals update their 

valuations for action a according to  

 

 

 

where is the payoff from choosing action a in that round. The basic idea is simple, 

the function v(a) measures the value assigned to action a. The term in parentheses 

represents the prediction error.  If it is positive, this means a did better than expected and 

conversely if it is negative, then a did worse than expected; the value ( )
t

v a  is then 

incremented upward or downward accordingly. Parameter is the learning rate – the 

higher it is, the more responsive individuals are to recent rounds.  

Note that this formula requires individuals to be able to compute the 

counterfactual payoffs when information sets are censored. How will updates occur when 

offers are rejected and individuals are not informed of the seller’s valuation? For this 

                                                        
10 A more realistic model would include a generating process for the initial valuations, but because the 
initial values are swamped by data fairly quickly we leave this out. 
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model, we assume that if individuals bid a and are rejected they correctly infer that the 

computer’s value v was above their bid a, draw a random value v from the interval [a, 10] 

and update their valuations as if this hypothetical v was the true computer value.11  

We simulate N=1000 agents playing 30 rounds of the ALP. Figure 1 shows the 

average simulated behavior in the final round for two different k values as well as 

different values of and =1.The simulation results are qualitatively robust to 

variations in . We note that even at = .9 we still see average offers very close to 

optimal for k=6 but in the k=3 condition low levels of  are required for approximately 

optimal play.  

 

 
Figure 1: Simulation results for TDRL. 
 

3.   General Experimental Design 

Subject Recruitment 

All of the experimental participants were recruited online using the labor market 

Amazon’s Mechanical Turk (MTurk); we had 617 subjects in various treatments of the 

ALP and another 150 in the Monty Hall problem described in experiment 4.  Although 

one might worry about the lack of control in an online platform, a number of studies have 

                                                        
11 Note that this assumes  individuals are drawing from the correct distribution for counterfactual payoffs. 
We will see in experiment 2 that providing the subjects with the full counterfactual information does not 
change our results.. 
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demonstrated the validity of psychological and economics experiments conducted on the 

MTurk platform; see for example Ouss & Peysakhovich (2013), Peysakhovich & 

Karmarkar (2013), Horton et al. (2011), Simons & Chabris (2012), Amir & Rand (2012), 

Peysakhovich & Rand (2013), Rand et al. (2013). All recruited subjects were US based 

(had US bank accounts). 

In all of the following studies individuals read the instructions for the games and 

answered a comprehension quiz. Individuals who failed the comprehension quiz were not 

allowed to participate in the study; reported participant numbers are for those who passed 

the quiz. Across all of our studies, the failure rate on the quizzes was approximately 25%, 

which is slightly higher than the rate in the studies above (typically 10-20%). However, 

our game is much more complicated than simple games such as the one shot Public 

Goods Game (see Appendix for instructions and example comprehension quizzes). 

All experiments were incentive compatible: participants earned points during the 

course of the experiment that were converted into USD. Participants earned a show-up 

fee of 50 cents and could earn up to $2 extra depending on their performance. All games 

were played for points and participants were given an initial point balance to offset 

potential losses.12 Experiments took between 10 and 17 minutes thus this amounted to, on 

average, approximately $9 per hour. Each subject participated in only one experiment in 

this series. 

 

Experiment 1: Baseline  

Design 

We recruited N=190 participants to play 30 rounds of the additive lemons 

problem. In each round participants made a bid to a computerized seller who played the 

dominant strategy. Participants were informed of the seller’s strategy in the instructions. 

If a participant’s bid was accepted, they received full feedback about the round including 

the value of v and their payoff. If a participant’s bid was rejected, they were informed 

about this and received no additional information.  

                                                        
12 In the ALP experiments participants began with a reserve of 50 points; – thus even if participants 
offered 9 points per round in the k=3 condition (where subjects could overpay the most) they would still, 
on average, not go broke over the course of the experiment. 
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We varied two parameters to form 4 conditions. First, we varied the level of k, 

setting it equal either to 3 or 6. Second, we varied whether participants were informed of 

the distribution of seller values. In one case, they were told that v is distributed uniformly 

between 0 and 10. In the other, they were informed that there was a distribution, but not 

what it was. This gave us 4 conditions, which let us “score” the fit of each of the theories 

discussed above. Individuals were randomized into a single condition. 

The theories discussed above give clear hypotheses about what should happen in 

each of these treatments. CE predicts overbidding when k=3 and underbidding when k=6 

(CE predicts bids of 4 and 5.5 respectively). BE is a set-valued solution concept; it rules 

out overbidding, allows underbidding in the “uniformed” condition, and predicts optimal 

bids in the informed treatments. Finally, simulations of the TDRL model with high 

recency higher than CE-overbidding in aggregate when k=3 and almost NE behavior 

when k=6 treatments. Table 1 summarizes these hypotheses. 

 

Table 1: Hypotheses by condition in the Baseline Experiment 

K=3, Informed 

CE BE TDRL 

> NE NE  
 

K=3, Uninformed 

CE BE TDRL 

> NE ≤  NE > NE 
 

K=6, Informed 

CE BE TDRL 

< NE NE Close to NE 
 

K=6, Uninformed 

CE BE TDRL 

< NE NE Close to NE 
 

 

Results 

Figure 2 shows time courses of average offers binned by 5 round blocks. There is 

no effect of being informed about the true distribution of values either in the averages 

(regressions show an insignificant effect of being informed; Table 2) or in the full 

distribution of behavior in the last round (pooled across k conditions, Kolmogorov-

Smirnov test p=.68).13  Bids are higher in the k=6 condition, as would be expected (Table 

                                                        
13 One possible explanation of this is that subjects who are not told the true distribution expect it to 

be uniform distribution.  In principle we could test this by using different value distributions, we 

chose not to because it is harder to describe other distributions to subjects, and the effect of 

described probabilities is not our main focus.  



14 

 

2). In particular this is true in the first round (col. 3; p<.001), so participants do condition 

their initial play on this payoff relevant parameter. To increase power, we now pool 

across informed and uninformed conditions. 

We first focus on the k=3 condition. By the last 10 rounds aggregate behavior 

appears to have converged: in regressions the significance of round number on bid 

disappears when we restrict the sample to the last 1/3 of the game (Table 3; mean first 5 

rounds = 5.59, mean bid in last 10 rounds = 5.148). In addition, the distribution of bids in 

the first 10 rounds is significantly different from the distribution of bids in the last 10 

rounds (Kolmogorov-Smirnov p<.001), but the distribution of behavior in rounds 11-20 

is not significantly different from the distribution of behavior in rounds 21-30 

(Kolmogorov-Smirnov p=.43). The average bid in the last 10 rounds is significantly 

above the optimal bid of 3 (95% confidence interval [4.88, 5.41]). 

 In the k=6 condition we see no experience effects. For symmetry with k=3, we 

focus on the last 10 rounds. Here bids are much closer to optimality and are not 

significantly different from the optimal bid of 6 (mean bid in last 10 rounds = 6.02 with 

subject-level clustered 95% confidence interval given by [5.72, 6.27]).  

To check whether average behavior is the correct statistic to represent the 

behavior of the population (or, for example, if using the average masks an underlying 

bimodal distribution), we show the histogram of bids in the last 10 rounds by condition in 

Figure 3.  The bid distributions look well centered, and the aggregate overbidding in k=3 

conditions reflects overbids by many subjects. The figure also shows that behavior does 

not correspond to a mixture of some subjects optimizing and others choosing at random 

due to inattention. 
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Figure 2: Average bids by condition smoothed at 5 round blocks. Error bars represent 
standard errors clustered at the participant level.  
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Table 2: Effects of treatments on behavior. 

 bid bid First round 

1=(k=6) 0.652 0.594 0.948 
 (0.164)*** (0.228)* (0.199)*** 

1=informed 0.103 0.052 0.135 
 (0.163) (0.223) (0.197) 

round -0.007 -0.007  
 (0.003)* (0.003)*  
(k=6)Xround  0.109  
  (0.327)  
constant 5.341 5.368 5.080 
 (0.129)*** (0.146)*** (0.156)*** 

R
2 0.04 0.04 0.11 

N 5,700 5,700 190 

 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 
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Figure 3: Bids in the last 10 rounds of experiment 1 by condition 
 

Table 3: Experience effects in Experiment 1. 

 All rounds round > 20 

K=6 dummy 0.337 0.476 

 (0.167)* (0.599) 

round -0.016 -0.011 

 (0.005)*** (0.016) 

(k=6)Xround 0.020 0.015 

 (0.006)** (0.022) 

constant 5.545 5.423 

 (0.115)*** (0.441)*** 

R
2 0.04 0.06 

N 5,700 1,900 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 
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Participants behave nearly optimally in k=6 conditions but even towards the end 

of the experiment they behave quite suboptimally in the k=3 conditions. To show that the 

misoptimization is economically significant we look at the payoff consequences of these 

decisions. We define the efficiency of an individual decision as the expected payoff as a 

percentage of the expected payoff of the optimal strategy. Figure 4 shows that this 

misoptimization does affect earned payoffs substantially:  average efficiency in the last 

1/3rd of the game is only approximately 10% in the k=3 conditions.  

 

Figure 4: Mean efficiency of offers in last 10 rounds in experiment 1 by condition. Error 
bars represent standard errors clustered at participant level. 

 

We now turn to the performance of the theories. There is a substantial amount of 

variance in the last 10 rounds (Figure 3) so we look at the average bids. In the averages, 

we see overbidding at k=3 and no underbidding at k=6, and we do not see any differences 

between informed and uninformed conditions. Thus, BE does not fit well with our data, 

despite its substantial intuitive appeal. The substantial overbidding in the k=3 conditions 

is qualitatively consistent with CE, but the overbidding is even higher than that CE 

predicts, and significantly so (mean bid in last 10 rounds = 5.148, 95% confidence 

interval clustered at participant level [4.88, 5.41]). Eyster & Rabin (2005) find a similar 

effect when trying to fit CE models to some experimental data. In addition we do not see 

the underbidding in the k=6 conditions that CE predicts (mean bid in last 10 rounds = 

6.02 with subject clustered 95% confidence interval given by [5.72, 6.27]). 
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Finally, we turn to the TDRL model. We first discuss whether the model matches 

patterns in the aggregate data: as in TDRL simulations with high recency we see that 

aggregate behavior exhibits extreme overbidding in the k=3 conditions and optimal 

behavior in the k=6 conditions.  

Next we look at the dynamics of behavior. Because both CE and BE are 

equilibrium concepts, they make predictions about aggregate behavior once subjects have 

enough experience/feedback for equilibrium to roughly approximate their behavior. 

However, these models do not make predictions about how behavior should change 

between rounds before the equilibrium is reached, and predict little change in play once 

subjects have enough experience. In contrast, any learning model with a high weight on 

recent outcomes predicts there should be non-random changes in individual behavior 

between rounds and that this non-stationarity should continue even when individuals 

have played and received feedback on a substantial number of trials.  

To look for this individual-level effect, we define a variable called ∆bid as the 

offer in round t minus the offer in round t-1. We then look at how ∆bid is affected by 

what happens in round t-1, with the prediction that good outcomes of accepted bids 

should lead individuals to revise their bid upward, bad outcomes should lead individuals 

to revise their bids downward and rejections (which indicate that the computer had a high 

value that round) should lead individuals to (on average) revise their bid upward. Again, 

we restrict this analysis to the last 1/3 of all rounds, where aggregate behavior has 

converged. 

Figure 5 shows ∆bid as a function of outcomes in a last round. We look at three 

bins: when an individual’s bid was accepted and earned a positive profit, when bids were 

accepted and yielded a loss, and when bids were rejected.  The figure shows that there is 

strong relationship between the previous period’s outcome and ∆bid. 

We can also use a linear regression of ∆bid on outcomes in rounds where offers 

were accepted to estimate the average slope of the relationship between last rounds’ 

outcome and bid.14 Our regressions show a positive sign (Table 4). Additionally, we can 

                                                        
14 As one might expect, the average response is much steeper in rounds where participants realize a 

loss compared to those where they realize a gain (Table 4, col. 3; slope in loss = .41, slop in gain = 

.14). 
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look at what happens when an offer is rejected: individuals raise their offer by .405 points 

(95% confidence interval [.302, .508]) next round.  

Although the TDRL model with high recency describes first-order patterns in the 

data well,  a high recency parameter implies a very strong behavioral response in the next 

round’s offer (1 for 1 in the limit case of extreme recency), and we do not see such a 

strong response in the individual-level regressions. We could improve the fit of  TDRL 

by adding additional parameters, but we are content to sacrifice in-sample fit for 

portability and simplicity. TDLR does better than either of the equilibrium concepts at 

organizing the general patterns in our experiments, and  can provide  intuition about the 

effects of recency bias on the ALP and other learning scenarios.  
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Figure 5: Relationships between outcomes in a round and changes in bid in the last 10 
rounds of experiment 1. Error bars represent standard errors clustered at participant level. 
 

Table 4: Effects of information on ∆bid (last 10 rounds) 

 ∆bid ∆bid ∆bid 

roundprofit 0.191 0.340 0.143 
 (0.026)*** (0.057)*** (0.039)*** 

1=(K=6)  0.028 -0.221 
  (0.143) (0.101)* 

(K=6)Xroundprofit  -0.207  
  (0.068)**  
1=Loss Round   -0.038 
   (0.164) 

(LossRound)XProfit   0.276 
   (0.137)* 

constant -0.576 -0.547 -0.299 
 (0.063)*** (0.076)*** (0.079)*** 

R
2 0.08 0.11 0.10 

N 1,014 1,014 1,014 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 
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To test whether this pattern is driven by a small subset of individuals or is 

representative, we define a step as moving a bid up or down 1 point. We then look at the 

number of steps that individuals take in the last 10 rounds of the ALP (Figure 6). If the 

recency results were driven by a small number of individuals then we should expect to 

see a large mass of individuals at 0. If the results are representative, we should expect to 

see a smaller mass at 0 and most people taking multiple steps. 

 

Figure 6: Number of steps taken by individuals. A majority of individuals change their 
offer decisions between rounds. 
 

 Between 65% (k=6) and 80% (k=3) of participants’ offer behavior exhibits 

persistent variance, even in the last 1/3 of experimental rounds. This finding is hard to 

reconcile with any sort of equilibrium analysis.15 We also examine the behavior of the 

20-30% of individuals who make no changes to their strategy in the last 10 rounds. 

Figure 7 shows the bids that these individuals have converged to. The fact that these 

individuals behavior is constant is consistent with some equilibrium notion, but even 

                                                        
15 The amount of this variance does not appear to be decreasing during the course of the experiment. 
The average absolute value of ∆bid is 1.02 in the first 10 rounds and .98 in the last 10 rounds and this 
difference is not significant (two-sided clustered t-test p=.58). 



23 

 

among this group there is substantial overbidding in the k=3 condition. Thus the 

assumption of rational Bayesians is a poor fit among this group as well. 

 

 

Figure 7: Bids of individuals whose strategies are constant over the last 10 rounds. 
 

Thus we see that most subjects have a high responsiveness to recent outcomes and 

that a simple model incorporating this recency effect does better at predicting aggregate 

behavior than the solution concepts of BE and CE. It is important to note that we do think 

these concepts are useful for some purposes. First, we believe that CE captures a real and 

important psychological phenomenon. However, we suggest that in repeated contexts CE 

is most useful as a guide to initial play before subjects get much feedback, while learning 

models are better for making medium and long-run predictions of most subjects’ 

behavior. Even in this longer run, a concept like CE may act as a useful prediction for 

some fraction of the population, as shown by the 20-30% of our subjects who do not 

appear to adjust their behavior in response to feedback. Second, we find it plausible that 

BE does occur in the field, and other experiments provide evidence for related forms of 



24 

 

self-confirming equilibrium (Fudenberg & Levine 1997) even though there is no 

evidence for them in the data we consider here. 

 In experiment 3 we show that our learning model is also useful in that it suggests 

particular interventions that can lead individuals closer to optimal behavior. Before 

turning to this, we present another experiment that tests the robustness of our results and 

further demonstrates the prevalence of recency-based learning. 

 

Experiment 2: Counter Factual Information 

The next experiment is designed to control for a potential confound in experiment 

1: we saw that the average ∆bid in a round in which an offer was accepted was -.270, so 

the observed overbidding primarily occurs due to individuals moving their bid upward 

after a rejected offer. One potential explanation for this is misperceptions about the value 

of v conditional on rejection. To check for this, as well as replicate our original results, 

we performed a second experiment. 

 

Design 

 We recruited 75 new participants to play k=3 and k=6 conditions with one twist: 

whereas in experiment 1 participants simply received a rejected message if their offer 

was not accepted, participants now received full feedback about the seller’s value v 

whether their offer was accepted or not 

 

Results 

Comparing the data from experiment CFI (“counter-factual information”) to the 

behavior from experiment 1, we see little difference between behaviors of individuals 

who have counterfactual information vs. those who do not (Figure 8). If anything, the 

individuals with counterfactual information do slightly worse (overbid more) in the k=3 

condition, but this difference is not significant (Table 5).  

As before, the aggregate outcomes are not driven by outliers. Figure 9 shows a 

histogram of bids in the last 10 rounds of the CFI experiment by condition – the data 

appear to be well centered. Thus, our results replicate and are the overbidding in k=3 

conditions are not driven by the lack of information in rejection rounds. 
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We can also investigate whether most individuals appear to change their behavior 

from round to round in the CFI experiment. We define a step as in our baseline 

experiment and plot the number of steps individual behavior takes in the last 10 rounds. 

As in experiment 1 we find that approximately 80% of individuals indeed change their 

behavior from round to round (Figure 10).  

 

 

Figure 8: Counterfactual information does not help individuals optimize.  
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Figure 9: Bids in the last 10 rounds in CFI. 

 

Figure 10: Number of steps taken by individuals in the last 10 rounds in CFI .  
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Table 5: OLS Regressions pooling data from experiments 1 and 2.  

 bid bid bid 

1=CFI experiment 0.108 0.108 0.174 

 (0.148) (0.148) (0.182) 

round -0.002 -0.012 -0.012 

 (0.003) (0.004)** (0.004)** 

1=+6 0.614 0.290 0.329 

 (0.137)*** (0.145)* (0.172) 

+6Xround  0.021 0.021 

  (0.006)*** (0.006)*** 

+6XCFI   -0.138 

   (0.299) 

constant 5.335 5.489 5.470 

 (0.108)*** (0.110)*** (0.118)*** 

R
2 0.03 0.04 0.04 

N 7,950 7,950 7,950 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 

 
 

The CFI experiment lets us perform a reduced form test of recency effects. In the 

baseline experiment, information that individuals received was partially endogenous 

(high bids were much more likely to get accepted). However, with counterfactual 

information, the computer’s value v acts like an exogenous shock in round t. In a 

monotone learning model, higher values of v increase potential valuations of higher bids 

and low values of v decrease valuations of higher bids. Thus, we expect a monotone 

relationship between bids at time t and histories of observed computer values v.  

We can see a recency effect very starkly even in the last 10 rounds. We first split 

realized computer values into very low (values of 3 or below, bottom 30% of 

realizations) or very high (values of 7 or bigger, top 30% of realizations).  We then take 



28 

 

the average bid of each individual over the last 10 rounds and set that as the individual’s 

“baseline”. We then look for the effect of observing a very high or very low value in 

round t on round t+1, t+2 and t+3 deviations from this average bid. Here, a positive 

deviation represents a higher than average (for that individual) bid and a negative 

deviation represents a lower than average bid. Figure 11 shows there is a large effect on 

behavior in the t+1
st round, and no statistically appreciable effect on the t+2

nd
 or t+3

rd 

round.   

 

 

Figure 11: Individual behavior in round t conditional on experiencing high/low outcomes 
in rounds t-1 or t-2 or t-3 in the last 10 rounds. 
  

Figure 11 pools the recency effect across conditions. In our regressions below, we 

see that when k=6 the effect of observed computer values is much less pronounced. We 

attribute this to the relatively flat payoff profile of the bids: Even if the computer’s value 

is extremely low, most bids will make similar (and positive) levels of profits. 

An alternative way to quantify recency effects is to regress bids at time t on 

lagged experiences then use a model selection criterion to choose an “optimal” (from a 

model fit point of view) number of lags. If there are strong recency effects,  the selected 

model should use a relatively small number of lags.  

We use the Bayesian Information Criterion (BIC) to select the number of lags to 

include. The BIC of a fixed model is given by  
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-2ln(L) + m*ln(n) 

 

where L is the likelihood of the model given the data, n is the number of observations 

(which we treat as number of subjects) and m is the number of model parameters. Thus, 

the BIC decreases in variance explained (model fit) and increases in number of free 

parameters (m*ln(n)).16  

Table 6 shows the results of this analysis restricted to the second half of the 

experimental rounds.17 We use bids pooled across conditions as our dependent variable, 

add subject level fixed effects and use BIC to select the optimal number of lagged 

experiences. To account for the fact that the same computer value v may have different 

effects on behavior in k=3 and k=6 conditions we also include lagged interaction terms. 

As predicted by the recency hypothesis, the linear regression model selected by the BIC 

involves only a single lag.18  

In addition to recency effects, research on learning and memory also 

identifies a primacy effect: first or initial experiences tend to be recalled more 

vividly and hence have a large impact on behavior later (Erev & Haruvy 2013). To 

test for the effects of primacy on behavior we remove the subject level fixed effects 

from our regressions and add a term for “computer value observed in first round” to 

the regression, while as above retaining one lagged computer value.  Doing so we 

find that the effect of first round experience is insignificant (p=.943; Table 7 col. 2) 

so primacy effects do not seem to be important here. 

Finally, we turn to individual level heterogeneity. Dropping subject level 

fixed effects from the one-lag regression we see the R2 drop dramatically from .49 to 

.05 (Table 7 col. 1). Thus there is a large amount of individual-level heterogeneity in 

our data.   If a major source of heterogeneity in bids was caused by differences in 

                                                        
16 See Hastie et al. 2009  for a  description and  derivation of  the BIC. 
17 Here we use the last 15 rounds instead of the last 10 as in the rest of our analyses to increase 

power. Restricting to the last 10 rounds gives qualitatively similar (but less significant) results and 

BIC continues to select a single lag.  
18 Note that this does not mean that individuals literally discount all information beyond the last outcome. 
Rather this result means that the additional predictive power from looking at longer individual-level 
histories is small. 
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risk attitudes or some other aspect of preferences we would expect first round bids 

to help explain the subsequent heterogeneity, so we add it as a regressor in Table 7 

col. 3. We see that first round bids is not a significant predictor of behavior in the 

last 10 rounds (p=.167) so we hypothesize that the individual level heterogeneity is 

driven by differences in learning processes. However, further exploration of the 

causes of this heterogeneity is beyond the scope of this paper. 

As a final robustness check, we can consider another method of model 

selection from the literature on machine learning: L1 regularized linear regression, i 

or “lasso.” 19  In this procedure the linear regression coefficients β   are chosen to 

minimize the sum of the squared residuals plus a coefficient λ times the sum of the 

absolute values of the coefficients (ie. a penalty for model complexity). We choose 

the penalty coefficient λ using cross-validation: splitting the sample into subsets, 

training a series of models on some of the data and using fit on the held-out set to 

gauge performances. As in our BIC analysis, lasso selects a model involving only a 

single lag of information and subject-level fixed effects as the best model for 

predicting individual bid behavior in the last 10 rounds. We describe the procedure 

and results more fully in the online appendix.  

  

                                                        
19 See Tibshirani (1996) or the textbook by Hastie et al (2009).   
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Table 6: BIC-based model selection. Regressions include subject-level fixed effects. 

 bid bid bid bid 

L1.v 0.078 0.075 0.078 0.079 

 (0.042)* (0.041)* (0.040)* (0.038)** 

L1.(k=6)Xv -0.092 -0.090 -0.093 -0.096 

 (0.046)** (0.045)** (0.044)** (0.043)** 

L2.v  0.017 0.012 0.012 

  (0.022) (0.022) (0.022) 

L2.(k=6)Xv  -0.013 -0.008 -0.009 

  (0.029) (0.030) (0.030) 

L3.v   0.030 0.029 

   (0.019) (0.018) 

L3.(k=6)Xv   -0.030 -0.027 

   (0.028) (0.027) 

L4.v    0.004 

    (0.028) 

L4.(k=6)Xv    -0.017 

    (0.037) 

constant 5.615 5.568 5.495 5.519 

 (0.123)*** (0.161)*** (0.159)*** (0.174)*** 

R
2 0.49 0.49 0.49 0.49 

N 1,200 1,200 1,200 1,200 

BIC 4063.22 4071.17 4077.78 4086.01 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.1; ** p<0.05; *** p<0.01 

  



32 

 

Table 7: Checking for primacy and effect of first round behavior on bids in last 10 
rounds. 

 bid bid bid 

L1.v 0.105 0.101 0.104 
 (0.053)* (0.055)* (0.053)* 

1=(k=6) 1.467 1.468 1.433 
 (0.448)*** (0.448)*** (0.441)*** 

L1.vX(k=6) -0.152 -0.152 -0.151 
 (0.063)** (0.064)** (0.063)** 

First Experience  -0.009  
  (0.060)  
First Bid   0.072 
   (0.094) 

Constant 4.926 4.996 4.542 
 (0.339)*** (0.529)*** (0.621)*** 

R
2 0.04 0.04 0.05 

N 750 750 750 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.1; ** p<0.05; *** p<0.01 

 
 

A Cautionary Note 

We noted before that we chose the ALP to avoid the extremeness of optimal 

offers that obtains in similar games such as the ACG. When optimal offers are on the 

boundary of the feasible set, censoring and corner aversion can each generate misleading 

inferences from the observed data. 

Censoring is a mechanical confound present when optimal play is implemented 

with errors.  Recall that in our experimental data we see that distributions of behavior 

appear to be symmetric and centered on an interior point of the strategy space. Thus, 

purely idiosyncratic noise should “wash out” in our estimations. When the optimal offer 

is on the lower boundary of the feasible set (as it is in the ACG) white noise in responses 

would push the observed mean of decisions higher than the optimum even if each agent’s 

uncensored strategy was to pick the optimum plus a mean-zero noise term Similarly, 

when k=6 in the ALP, censoring would lead to apparent underbidding by optimizing 

agents if the highest allowed bid were close to 6. 
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A second potential confound is corner aversion. Existing work shows that 

individuals are prone to ‘avoid the edges’ in some strategic settings (Rubinstein et al. 

1993). Such a bias would make optimal behavior in the ACG harder to learn than in the 

ALP. To test the effect of the feasible set on bids, we performed another experiment. 

 

Design 

We recruited an additional N=79 individuals to participate in 30 rounds of our 

baseline ALP conditions with offers restricted to the integers 0-6. This restriction makes 

the optimal offer in the k=6 condition on the edge of the interval and the optimal offer in 

the k=3 condition squarely in the middle. We see that this lowers offers in the final 10 

rounds from 5.09 to 4.29 when k=3  (clustered s.e. = .209) and from 5.98 to 4.21 

(clustered s.e. = .185) when k=6. Both of these changes are statistically significant 

(clustered t-test both p<.01).  

We can test whether this decrease is driven purely by censoring of bids or if 

corner aversion also appears to play a role. To do so, we take combine this data with the 

results of experiment 1. We then manually censor the distributions of bids in experiment 

1. If the difference in outcomes is driven purely by censoring, we should see that the 

manually censored experiment 1 distribution is identical to the one from the current 

experiment. If corner aversion plays a role, we should see a difference in distributions. 

Figure 12 shows the histogram produced by this exercise.   The distributions are different 

across experiments (Kolmogorov-Smirnov tests p<.01 for both k conditions) and 

especially so in the k=6 condition where optimal bids lie on the border of the strategy 

space. This shows that both censoring and corner aversion can act as confounds when 

optimal bids are on the edge of the interval.  
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Figure 12: Histogram of bids in last 10 rounds of the restricted strategy space experiment 
overlaid with experiment 1 bids censored at 6. 
 

Experiment 3: Recaps  

We now show that an explicitly dynamic viewpoint is useful in not just describing 

the data but also in designing interventions to help individuals make better decisions. 

Thus, considering the dynamics of learning delivers insights that equilibrium models did 

not. 

Why does suboptimal behavior persist at the aggregate level in our experiments? 

The ALP’s feedback structure is such that a relatively small sample of outcomes typically 

doesn’t reveal the optimal bid. Thus high recency acts as a barrier towards learning 

optimal behavior in this setting. This suggests a prescription for intervention: increasing 

the number of outcomes subjects observe simultaneously should help them make better 

decisions. To test this hypothesis, we performed another experiment. 

 

Design 

 We recruited N=273 more participants. In experiment 3 participants were 

assigned to one of 3 ALP conditions all with . The control condition simply 

replicated the k=3 condition from experiment 2. In the more information condition 

  k = 3
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participants played the ALP against 10 sellers simultaneously. Sellers’ object values were 

determined independently. Each round (of 30) buyers made a single offer decision that 

applied to all 10 sellers (who, as before played the optimal strategy). Participants were 

informed of all this. At the end of a round, participants received feedback about each of 

their transactions simultaneously: what the seller’s value was, whether the offer was 

accepted and the buyer’s profits on that transaction. 

There is much existing evidence that in addition to having limited memory, 

individuals also have limited computational resources (Miller 1956). Thus one may 

expect that more information is only useful if it is in easily “digestible” form.  To look for 

evidence of computational constraints we added a simple information condition. This 

condition was almost identical to the more information condition; individuals played 30 

rounds with 10 sellers simultaneously and made a single offer that applied to each seller. 

However, instead of receiving fully detailed feedback on each transaction, participants 

received pithy recaps: they were told their average profit out of the 10 transactions and 

average values of the objects they actually purchased (see online appendix section 4 for 

examples of feedback screens). 

 

Results 

Figure 13 shows the average offers in the experiment binned in 5 round 

increments. We see that the addition of more information doesn’t seem to help 

individuals converge to optimal behavior (round 21-30 mean offer in control = 5.02, 

mean offer in more info = 5.22). 20  However, simple information in the form of pithy 

recaps does appear to be useful (rounds 21-30 mean offers = 4.02), which suggests that 

the learning problems caused by recency do not stem solely from limited memory.21 

Table 8 confirms the statistical significance of these results.  This latter finding is 

consistent with that of Bereby-Myer & Grosskopf (2008), who find that recaps are 

                                                        
20 We also replicate our recency results:  BIC analysis on the baseline condition of experiment 3 again 

yields selection of a single lag.(see web appendix). 
21 Sampling -based learning models such as Erev & Haruvy (2013) would also predict that recaps are more 
useful than records.  
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helpful in their version of the ACG, though they do not compare recaps with the more-

information condition. 

Though individuals in the simple information condition still offer above the NE 

offer in the final round (one sided t-test p<.01) they perform significantly better in terms 

of efficiency (Figure 14) than in the control and more information treatments. (Table 8; 

col. 2).  

In addition to comparing sample averages we can also see what effect the simple 

information condition has on the full distribution of behavior. Figure 15 shows a 

histogram of bids in the last 10 rounds by condition. As the figure suggests, the simple 

information condition doesn’t just affect a subset of the population but rather seems to 

drive the whole distribution of bids towards the optimum as well as decreasing the 

variance (test for equal variance in last 10 rounds of baseline vs. simple info. condition 

rejects equal variance, p<.001). 

We also use the control condition to test whether many participants don’t 

understand and/or are not paying much attention to the experiment. We see an  effect of 

the payoff parameter k in each of our experiments, even in the first round, and these 

effects go in the expected direction (higher k leads to higher bids) so at least some of 

our respondents did pay attention. We can further investigate whether inattention is 

driving our results by  using data on response times. (We did not include a response time 

measure for each individual decision in experiments 1 and 2, but we do include one here.)  

In the control condition the average participant spends 4.21 seconds on each decision 

screen (bottom decile of participants spend on average 2.42, top decile of participants 

spend on average 5.8). We also see no correlation between average response time and 

bids, earnings or bid variance across experiment (linear regression clustered on 

participant gives p=.7, .55, .8 respectively). Note that this also implies that response time 

does not predict extent of recency bias as higher recency bias mechanically correlates 

negatively with earned payoff. 
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Figure 13: Bids (k=3) by 5 round blocks in experiment 3. Error bars represent standard 
errors clustered at participant level. 
 

Table 8: The effect of condition on bids and efficiency.  

 bid efficiency 

1=Extra Info 0.213 -0.213 
 (0.263) (0.171) 

1=Simple Info -0.812 0.489 
 (0.192)*** (0.111)*** 

constant 5.046 0.130 
 (0.162)*** (0.104) 

R
2 0.05 0.06 

N 5,730 5,730 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 
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Figure 14: Efficiency of strategies chosen in recaps experiment (last 10 rounds). Error 
bars represent standard errors clustered at participant level. 
 

 

Figure 15: Bids in the last 10 rounds of the recaps experiment, by condition.  
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Experiment 4:  Monty Hall  

Our experiments so far have dealt with a specific stochastic decision problem. To 

test whether our recency-based intuitions extend beyond the ALP we performed another 

experiment. 

 

Design 

We recruited N=139 more participants22 to participate in 30 rounds of the Monty 

Hall problem: participants are faced with 3 doors with a prize randomly hidden (by 

Monty Hall) behind one of the doors. The participants choose a door and Monty opens 

one of the other doors that does not hide the prize. Participants are then asked if they 

want to stick to their original choice or switch to the other unopened door.  

Note that because Monty always removes a non-winning door, the probability of 

winning the prize from switching is 66% while the probability of winning from your 

initial choice is 33%.  As in the ALP, to find the optimal strategy participants need to 

correctly compute conditional probabilities, so we again expect mistakes. Moreover, past 

work on Monty Hall games has concluded that most individuals will not learn the optimal 

strategy, even with experience and some sorts of “nudges” (Friedman 1998, Kraus & 

Wang 2003, Tor & Bazerman 2003, Palacio-Huerta 2003).   

Our subjects play a modified version of this game. First, we added a small cost of 

switching choices (the prize was 10 points and the cost of switching was 1 point). 

Without this modification CE predicts that participants are indifferent between switching 

and keeping (both having a probability of 1/3 of winning in CE). With the addition of this 

small cost the unique CE prediction is for participants to choose to keep their original 

choice. 

Our experiment included two conditions. One control condition where 

participants played 30 rounds of the Monty Hall game with full feedback and one simple 

information condition where participants played 30 rounds against 30 computers per 

round and received feedback in a manner similar to the simple information condition of 

the ALP (see online Appendix for screenshots of feedback screens).  

                                                        
22 A total of 150 participants finished the experiment. Due an error in our experimental program,  

choices for some rounds were not recorded for 11 participants; we drop these participants in what 

follows. Including them in the analysis does not change the results. 
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Because the Monty Hall Problem has received attention in popular culture, we 

framed it in terms of choosing one of three cards (see the online Appendix for 

screenshots of the experiment/full experimental instructions). At the end of the 

experiment, participants were asked whether they were familiar with this game or any 

game like it: approximately 9% of our participants responded affirmatively (and had a 

98% switch rate during their trials). We restrict our analysis to the naïve subjects 

(N=126).    

 

Results 

Figure 16 shows the aggregate behavior by condition. As in the ALP we found 

that with only standard feedback subjects did quite poorly. In the last 10 rounds of the 

control condition subjects played the optimal strategy only 37% of the time. However, in 

the simple information condition subjects played the optimal strategy (always switch) 

77% of the time in the last 10 rounds. This difference is statistically significant (Table 9 

col. 1). 

 

Figure 16: Monty Hall behavior by condition, by five round blocks. Error bars represent 
standard errors clustered at participant level. 
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predict choosing to switch or not. We include a round indicator, a condition dummy and 

an interaction term. The coefficient on round is significant and positive in the first 10 

rounds (as is the interaction with condition; Table 9 col. 2) but it is much smaller and not 

significant in the last 10 rounds (Table 9 col. 3). This is again consistent with high 

recency - the more recency a learning model displays, the faster it discounts initial 

conditions and the faster aggregate behavior converges to the ergodic distribution.  

 To make the finding even more stark, Figure 17 shows the number of switches 

individuals make in the last 10 rounds by condition.  Since it is always optimal to switch, 

making 10 switches implies that an individual played optimally in each of the last 10 

rounds. Many more individuals act in an optimal manner in the last 10 rounds of the 

simple information condition (57% vs. 10%; Ranksum test p<.001).  

In the ALP we explicitly checked for recency by looking at the effects of last 

period's computer value on current bid. In the Monty Hall problem, it is less clear how to 

check for recency in a reduced form specification. The simplest approach is to suppose 

that subjects use the binary strategy space "stay" or "switch." Replicating our regression 

analyses using this strategy space reveals no relationship between information and 

behavior. However, it is not clear that this is the appropriate strategy space; alternatives 

include a preference for ending up with a given card, and the 6- element set (3 choices for 

initial card followed by “switch” or “stay”). This problem is confounded further by the 

fact that different individuals may use different strategy spaces. As a consequence we do 

not have an explicit demonstration that recency matters in the ALP, but the fact that the 

simple recaps that helped subjects in the ALP help here as well is suggests that a similar 

learning process may be involved. 
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Table 9: Linear probability model predicting switching.  

 All Rounds Early 
Rounds 

Late 
Rounds 

1=Simple Info 0.394 0.282 0.506 
 (0.061)*** (0.066)*** (0.207)* 

round  0.022 0.004 
  (0.006)*** (0.007) 

(Simple)Xround  0.014 -0.004 
  (0.008) (0.008) 

constant 0.317 0.144 0.270 
 (0.042)*** (0.042)*** (0.184) 

R
2 0.15 0.16 0.17 

N 3,780 1,260 1,260 

 

Coefficients from OLS regressions.  

Standard errors in parentheses clustered at participant level. 

* p<0.05; ** p<0.01; *** p<0.001 

 

 

Figure 17: Number of switches made in the last 10 rounds of the Monty Hall problem, by 
condition. 
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 Conclusion 

Although suboptimal behavior can persist in the play of simple Bayesian decision 

problems, this depends crucially on the structure of the feedback that individuals receive. 

Importantly, we find that just giving participants more information does not aid 

convergence to optimal behavior, but recaps can be highly effective. We argued that the 

superiority of recaps comes from economizing on costly cognition. Table 10 summarizes 

our interpretations of our experimental findings. 

 

Table 10: Recap of experimental findings 

Experiment N Findings 

Baseline 190 Overbidding in k=3, optimal bidding in k=6, no effect of 

being informed of distribution, evidence of recency 

effects 

Counterfactual 75 Baseline results not driven by lack of counterfactual info, 

more evidence of recency effects, no evidence of 

primacy, large individual-level heterogeneity 

Truncated 79 Corner aversion can act as a confound when optimal 

bids are extreme 

Recaps 273 More information doesn’t help but simple recaps drive 

behavior closer to optimality 

Monty Hall 139 Recaps help in other confusing decision problems 

TOTAL 767 Learning models good at describing behavior in 

stochastic decision-problems, recency is not just a 

memory limitation, recaps useful for bringing behavior 

closer to optimal 

 

 Our results demonstrate that explicitly dynamic models of behavior can yield 

insights in ways that equilibrium models cannot. None of the equilibrium concepts  

(NE/CE/BE) we consider are able to capture the full variation of behavior in the ALP. By 

contrast, a learning model with high recency fits aggregate behavior across treatments 

well. In addition, thinking dynamically gives us intuition about interventions via 

feedback structure to help nudge individual behavior closer to optimum. 

  Our experiments show that computational, not just memory, constraints may 

contribute to the persistence of suboptimal behavior. This reinforces earlier arguments 

that recency effects are in part driven by computational constraints (Fiedler 2000; 

Hertwig & Pleskac, 2010), and suggests that here at least memory load is not a primary 
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driver of recency, in contrast to Barron & Erev (2003). Our results thus support 

incorporating more accurate representations of computational limits and other forms of 

bounded rationality into existing learning models.  

In addition, there is a debate in the literature about whether findings from learning 

experiments such as ours can be applied to understand behavior in the field. Individuals 

may have computational constraints, but in the field they often have access to 

technological aids. This is argued strongly in Levine (2012): 

“Even before we all had personal computers, we had pieces of paper that could 

be used not only for keeping track of information – but for making calculations as 

well. For most decisions of interest to economists these external helpers play a 

critical role…”  

Such technologies can provide recaps and thus help guide individuals towards optimal 

decisions. On the other hand, there is evidence of significant economic costs due to 

incomplete learning and recency bias in contexts such as credit card late fees (Agarwal et 

al. 2008), stock market participation (Malmandier & Nagel 2011) and IPO investment 

(Kaustia & Knupfer 2008), which suggests that even when recaps and record-keeping 

devices are available they may not be utilized. Recently Hanna et al. (2013) studied the 

effect of what we call recaps on seaweed farmers in Bali. Seaweed farmers “plant” pods 

and later harvest them. Two choice variables affect the production of crop: the size of the 

pods planted and the spacings between pods. Hanna et al. (2013) find that even 

experienced farmers typically used very suboptimal pod weights and spacings, and 

that providing a summary table on the returns from different methods that highlighted 

which method had the highest yields led to substantial improvements in yield and 

income.  They argue that the effect of their summaries comes from focusing farmers’ 

attention on the size of pod used. We note that the effect of their summaries is also 

consistent with our explanation based on limited cognition. Using their data alone, it 

seems hard to discriminate between an attention-based explanation and our claim that 

recency comes from some sort of computational constraint but the focusing explanation 

seems less suited to our findings in the ALP. At this point, though, the case seems far 

from settled. Further studies of recaps in the lab and the field could have both scientific 

and social benefit.  
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