Quality is in the Eye of the Beholder: Taste Projection in Markets with Observational Learning*

Tristan Gagnon-Bartsch† Antonio Rosato‡

November 29, 2021

Please Check Here For The Latest Version

Abstract

We study how misperceptions of others’ tastes influence beliefs, demand, and prices in a market with observational learning. Consumers infer the commonly-valued quality of a good based on the quantity demanded and price paid by other consumers. When consumers exaggerate the degree to which others’ tastes resemble their own, such “taste projection” leads to erroneous and disparate quality perceptions across consumers (i.e., “quality is in the eye of the beholder”). In particular, a consumer’s biased estimate of the good’s quality is negatively related to her own taste. Moreover, consumers’ quality estimates are increasing in the observed price, even when the price would have no influence on the beliefs of rational consumers. These biased beliefs result in perceived valuations that exhibit too little dispersion relative to rational learning and a demand function that is excessively price sensitive. We then analyze how a sophisticated monopolist optimally sets prices when facing short-lived taste-projecting consumers. Projection leads to a declining price path: the seller uses an excessively high price early on to inflate future buyers’ perceptions (e.g., creating “hype”), and then lowers the price to induce a larger-than-rational share to buy. When consumers can instead time their purchase, projection causes late buyers to under-appreciate selection effects, thereby exposing them to systematic disappointment. A final application examines how projection of risk preferences distorts portfolio choice when learning from asset prices.

JEL Classification: D42; D82; D83; D91.

Keywords: Social Learning; Dynamic Pricing; Projection Bias; False-Consensus Effect.

*For helpful comments, we thank Benjamin Bushong, Rahul Deb, Erik Eyster, Simone Galperti, Matthew Rabin, Joshua Schwartzstein, Sevgi Yuksel and the audiences at the Australasian Local Economic Theory Seminar (ALETs), the 2021 Australasian Economic Theory Workshop at the University of Sydney, and UTS.

†Harvard University (email: gagnonbartsch@fas.harvard.edu).

‡University of Technology Sydney and Università di Napoli Federico II (email: antonio.rosato@uts.edu.au).
1 Introduction

We often use the popularity of a product to assess its quality. We may naturally expect, for instance, that a new electric car has better performance when more people buy it, that a new health trend provides greater benefits when more of our friends adopt it, or that an investment has a higher expected return when our colleagues flock to it. Indeed, a large theoretical and empirical literature has emphasized how observational learning shapes the adoption of new products, spanning consumer goods, entertainment, insurance plans, agricultural technologies, and financial products.¹

But how does social learning operate when people don’t fully appreciate how others’ preferences differ from their own? In all the examples above, choices are not driven purely by perceptions of a commonly-valued quality, but also depend on idiosyncratic tastes and motives. For instance, some consumers driving electric vehicles might have a distinct desire to reduce their carbon footprints; and some people investing in cryptocurrencies might be more risk tolerant than others. Yet, do consumers and investors properly account for the fact that others’ choices reflect private information as well as their tastes? Long-standing literatures in psychology on social projection and the false-consensus effect, along with mounting evidence from economics, suggest the answer is no. In particular, people often exaggerate the degree to which others’ tastes are similar to their own (Ross et al., 1977; Marks and Miller, 1987; Krueger and Clement, 1994; Engelmann and Strobel, 2012; Orhun and Urminsky, 2013). For example, those with specific tastes for certain consumer products tend to overestimate how many share these tastes. Such misperceptions also arise when evaluating others’ risk preferences (Faro and Rottenstreich, 2006), political preferences (Delavande and Manski, 2012), and taste for effort (Bushong and Gagnon-Bartsch, 2021). Moreover, a recent meta-analysis (Bursztyn and Yang, 2021) demonstrates that misperceptions of others are widespread in the field, underlining the importance of further understanding their market implications.

In this paper, we analyze how such “taste projection” distorts consumers’ beliefs, market demand, and prices in a dynamic social-learning environment where consumers’ valuations for a product have both a common and private component. The common component—the product’s intrinsic quality—is initially unknown to (some) consumers, who try to infer it from the quantity demanded by others at a given price. While each consumer knows the private component of their valuation (i.e., their idiosyncratic taste for the product), they wrongly “project” this onto others: they exaggerate how similar others’ tastes are to their own. We show that taste projection leads consumers to systematically mislearn a product’s quality. We characterize how these biased beliefs depend on an individual’s own taste and the observed price, and how they ultimately shape market demand. Furthermore, we analyze the optimal pricing strategy of a sophisticated seller who is aware of consumers’ projection. The seller will use a high-to-low price path to inflate consumers’

¹For a review, see Mobius and Rosenblat (2014).
beliefs, thereby inducing projectors to buy even when they should not. More broadly, we contribute to a recent literature studying biased social learning among individuals who hold misperceptions of others (e.g., Gagnon-Bartsch, 2016; Frick et al., 2020; Bohren and Hauser, 2021). While most of this literature focuses on the convergence of long-run beliefs in settings resembling the canonical models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), we instead examine how taste projection in particular interacts with the market environment (e.g., prices) to shape biased learning and how this, in turn, affects a seller’s incentives and consumer welfare.

Our implications are particularly relevant for markets where consumers with heterogeneous tastes actively rely on others’ choices to guide their own—e.g., those with prominent best-seller lists or a tendency to trend on social media. For instance, consider the health and wellness industry, where new products—whose quality is ex-ante uncertain and difficult to ascertain—are routinely introduced; e.g., novel workout equipment, “innovative” fitness classes, or “revolutionary” dietary regimens. Consumers’ willingness to pay for such products and services is of course influenced by (perceptions of) their potential health benefits. Yet, consumers might differ in their idiosyncratic tastes for exercise or a particular diet. For a concrete example, consider Inês and Peter who are independently contemplating whether to enroll in a fitness program touting some of these new products. Inês has an active lifestyle and enjoys hiking. Peter, instead, is not very active, and his physician has encouraged him to get in shape. While they have different tastes for fitness, both would be more willing to join the program the stronger is their belief in its potential health benefit (i.e., its “quality”); Peter, however, would need to perceive a larger benefit than Inês.

Suppose that Inês and Peter each see an article reporting the number of people who joined the program in the past six months. Projection will lead them to draw different inferences about the program’s potential benefits based on this number because, fixing the true benefit, Inês expects to see a higher number than Peter. Inês, projecting her love of fitness onto others, will find the take-up rate disappointingly low; conversely, the number of adopters will look very high to Peter. Hence, they draw conflicting conclusions despite observing exactly the same signal—inflected quality is “in the eye of the beholder.” In particular, Inês, who likes exercise, forms a more pessimistic inference. Taste projection therefore induces consumers with a stronger idiosyncratic taste for a product to inadvertently be more critical when judging its popularity. By contrast, Peter becomes too eager to join the program, exaggerating its benefits and potentially over-consuming in various ways (e.g., enrolling in unnecessary classes or subscribing to an unproven diet plan).

Moreover, because Inês and Peter’s inferences are negatively related to their idiosyncratic taste, their (perceived) total valuations for the program will be too similar. Although the difference between these valuations should be driven solely by the difference in their private values, Inês’s pessimistic inference deflates her total perceived valuation, whereas the opposite holds for Peter’s. Hence, taste projection is self-fulfilling: because buyers believe that idiosyncratic tastes are less
dispersed than they actually are, they will draw divergent inferences about the common value in a way that results in total (perceived) valuations that are indeed less dispersed.

While the direction of Inês’s and Peter’s misperceptions will depend on their specific tastes, a perhaps more subtle implication of taste projection is that they will each form inferences that are increasing in the program’s price, irrespective of their taste. Indeed, because projectors underestimate the heterogeneity in others’ valuations, they both believe market demand is more elastic than it really is. Therefore, although they correctly predict the take-up rate to decrease with the program’s price, they expect to see even fewer patrons than what a rational consumer would predict as the price increases. To rationalize this higher-than-expected demand, they will conclude the quality is higher when the price is higher. More broadly, projectors systematically overestimate the quality of a product when they see others buying it at a price they themselves are not initially willing to pay: they over-attribute these purchases to positive information rather than differences in tastes. Hence, projection provides a simple yet novel explanation for why quality perceptions are often swayed by prices.

The properties of misinference described above create new incentives for a seller that would not arise under rational learning. First, the fact that perceived quality is increasing in the observed price introduces a “belief-manipulation effect”: in a dynamic setting, a monopolist will set high prices early on to inflate future consumers’ beliefs about the value of its product. This holds even when consumers think the seller does not have an informational advantage, and hence it is not driven by classical signaling motives. Second, the fact that projectors’ perceived valuations are excessively similar introduces an “elasticity effect”: the demand of projectors is more elastic than that of rational agents, and thus a slight reduction in the current price has an enhanced effect on attracting new consumers. Together, these effects imply that a monopolist’s optimal pricing strategy follows a declining path. The seller uses high prices in earlier periods to inflate later consumers’ quality perceptions (i.e., creating “hype”), and then reaps the benefits of such manipulation by lowering the price to induce adoption among a larger-than-rational share of these consumers.2

We present our model in Section 2. In each period \(n \), a new generation of consumers enters the market and decides whether or not to adopt a product with an uncertain quality, \(\omega \in \mathbb{R} \), at a price \(p_n \). Each consumer \(i \)’s valuation for the product is increasing in both \(\omega \) and their private value, or “taste,” \(t_i \). Some consumers observe a signal \(s \) correlated with \(\omega \) while others are uninformed and rely on social learning to estimate \(\omega \). In particular, we assume that individuals observe the quantity demanded and price from the previous round. We focus on a setting with a continuum of consumers acting in each period, which allows rational observers to perfectly infer their predecessors’ signal.

2In this way, we provide a novel explanation for why advertising high previous prices can be particularly effective at encouraging consumers to buy at a new lower price. This stands in contrast to other explanations based on salience (e.g., Bordalo et al., 2013, 2020) or intrinsic “tastes for bargains” (e.g., Jahedi, 2011; Armstrong and Chen, 2020), and it arises even when prices do not rationally signal quality (as in, e.g., Bagwell and Riordan, 1991; Taylor, 1999).
This provides a simple environment to study the effects of taste projection, since any learning failures arise from projection itself rather than rational frictions to information aggregation.

Our model of taste projection adapts Gagnon-Bartsch et al.’s (2021a) more general model to our setting. Individuals hold misspecified models about the distribution of tastes: private values are in fact independently drawn from a distribution F, yet an individual with private value t_i mistakes F for a distribution $\hat{F}(|t_i)$ that is overly concentrated around his own value, t_i. Specifically, individual i perceives the private value of individual j as $\hat{t}_j = \alpha t_i + (1 - \alpha) t_j$; that is, a convex combination of his own value and individual j’s true value. The parameter α measures the extent of this bias, where $\alpha = 0$ corresponds to the rational benchmark. We close the model with a solution concept in which individuals are naive about their own bias and that of others, but are otherwise rational. Hence, each individual i believes he faces an environment in which all players agree that private values are distributed according to $\hat{F}(|t_i)$.

Before analyzing the dynamic model, we begin in Section 3 by studying a static model. The purpose is twofold. First, it allows us to simply demonstrate comparative statics that are fundamental to understanding how biased beliefs evolve in the dynamic case. Furthermore, since the static model can be seen as the steady-state of our dynamic model, this analysis establishes that these comparative statics are not merely short-run effects, but are also robust steady-state phenomena. The steady-state analysis reflects the logic of a rational-expectations equilibrium (Grossman, 1976; Grossman and Stiglitz, 1980), albeit with agents forming diverse and misspecified expectations. In equilibrium, uninformed agents form beliefs about ω that are consistent with the observed quantity demanded (given their misspecified models), and this observed demand is in turn consistent with the adoption decisions of agents holding those beliefs.

As previewed by our example, taste projection has three main effects in this static equilibrium. First, an agent’s perceived quality is negatively related to his taste. To those with high private values—who wrongly believe the good is very attractive to others—demand will appear rather weak. They therefore infer low quality. To those with low private values—who wrongly believe the good is unattractive to others—demand will appear surprisingly strong. They infer high quality. Second, each agent’s perceived quality is increasing in the price. The fact that projectors underestimate the heterogeneity in valuations leads to a simple implication central to studying the economics of taste projection: a projecting agent’s conjectured demand curve is a counter-clockwise rotation of the true one. As a result, projectors exaggerate the local elasticity in demand. If the price were to increase, then the quantity demanded would fall by less than what a projector would predict under the beliefs he formed at the original price. Hence, projectors’ beliefs about quality must increase to compensate for this less-than-predicted drop in quantity demanded. Third, projecting agents’

3This approach is an interpersonal analogue of Loewenstein, O’Donoghue and Rabin’s (2003) model of intrapersonal projection bias in which an individual exaggerates the similarity between his future and current tastes.
perceived total valuations are less dispersed than under rational learning. Although a buyer with a high private value (i.e., a “high type”) perceives a greater benefit from adoption than a low type, the wedge between these perceptions is diminished relative to the rational benchmark.

How would a profit-maximizing monopolist set prices over time to exploit these biases? We turn to this question in Section 4, where we analyze our dynamic model. As an initial result building from the intuition above, we show that consumers’ demand overreacts to a price change: a price cut attracts too many consumers since it moves the margin into the region of types who overestimate quality, whereas a price hike excludes too many for the opposite reason.

More generally, projection induces an intertemporal link in the seller’s pricing incentives that is absent under rational inference. In our simple environment, the optimal strategy under rational learning is to continually charge the static monopoly price. With projection, however, the seller prefers a decreasing price path. This results from a balancing of the effects described above in the static model, which analogously emerge in the dynamic case. On the one hand, since demand overreacts to price changes, undercutting the previous price would attract a magnified mass of consumers in the current period. On the other hand, increasing the current price boosts the perceived quality of future consumers at the cost of forgoing current sales. The seller’s pricing strategy optimally balances these effects by setting an inflated initial price above the static monopoly price and then gradually reducing it. High initial prices inflate future consumers beliefs, while also providing scope to reduce prices over time and hence capitalize on consumers’ overreaction to price cuts.

Our analysis of optimal pricing first considers the two-period case. There, we show that a high initial price followed by a low subsequent price is a general feature of our model. We also show that the seller’s profit is increasing in the degree of projection and discuss how projection affects consumer welfare. Although the expansion of sales in the second period can shrink the traditional deadweight loss associated with monopoly pricing, projection can introduce new forms of inefficiency. Since low types tend to overestimate quality, they are systematically lured into buying even when they should not. Indeed, the seller’s manipulative pricing scheme induces excessive take-up among uninformed buyers, consistent with notions of herding or bandwagon effects. Moreover, when projection is sufficiently strong, even consumers with negative valuations can be induced to buy the good. We then consider longer horizons, focusing on the particularly tractable case of uniformly distributed tastes. There, we show that a declining price path—with an initial price above the rational monopoly price—emerges for a horizon of any arbitrary length.

This manipulating role of high initial prices is reminiscent of other signaling strategies discussed in the marketing literature. For instance, Stock and Balachander (2005) show that a monopolist might choose to make a product scarce in order to signal its quality to uninformed consumers; similarly, Miklós-Thal and Zhang (2013) argue that in the early life of a product, “demarketing” strategies that discourage consumers (e.g., limited advertising, understocking inventory) can raise the product’s perceived quality. Compared to this literature, we emphasize a different mechanism through which restraining initial sales via high prices can inflate later consumers’ quality perceptions.

4This manipulating role of high initial prices is reminiscent of other signaling strategies discussed in the marketing literature. For instance, Stock and Balachander (2005) show that a monopolist might choose to make a product scarce in order to signal its quality to uninformed consumers; similarly, Miklós-Thal and Zhang (2013) argue that in the early life of a product, “demarketing” strategies that discourage consumers (e.g., limited advertising, understocking inventory) can raise the product’s perceived quality. Compared to this literature, we emphasize a different mechanism through which restraining initial sales via high prices can inflate later consumers’ quality perceptions.
Section 5 considers three extensions of our model. First, we consider a two-period setting with “long-lived” consumers who can buy in either period, and show that projectors still over-adopt the good even when the price is fixed. A selection effect naturally emerges, where high types buy early and uninformed low types delay in order to glean information from initial adopters. Projectors who delay under-appreciate this selection effect, since they underestimate the taste difference between early adopters and themselves. Thus, they overestimate quality when observing high initial demand, which causes too many to buy and generates systematic disappointment among those who do. Empirical studies showing that second-wave consumers tend to display greater dissatisfaction suggest that this may stem from selection neglect (e.g., Li and Hitt, 2008; Dai et al., 2018); our model provides a specific mechanism explaining why consumers may under-appreciate these selection effects. Second, we revisit the static equilibrium from Section 3 but allow for multi-unit demand. Since perceived quality is negatively related to taste, projectors with a strong taste for the product will under-consume while those with a weak taste will over-consume. Thus, all projectors experience inefficiencies, and those with more esoteric tastes suffer more. Finally, we show how these results extend to a setting where agents only observe the price and not others’ actions. We consider a canonical portfolio-choice problem where traders learn about the expected return of a risky asset based on its equilibrium price (e.g., Grossman, 1976; Grossman and Stiglitz, 1980) but project their idiosyncratic taste for risk. Traders who are more risk averse become overly optimistic about the expected return and hold too much of the asset (relative to the optimal portfolio), while traders who are less risk averse become overly pessimistic and hold too little.5

Section 6 concludes by discussing some additional applications of our framework. We suspect that taste projection may have important consequences for how people value their information sources. For instance, suppose that individuals entertain the possibility that others are biased in favor of a particular option (e.g., a brand or politician), supporting it regardless of their information. Even when such blind support is absent in reality, projectors are prone to think it exists. For example, a projector who realizes that she despises an option will see far too many people supporting it. To explain this discrepancy, she may come to believe that others’ support stems from some ulterior motive, neglecting that it may come from mere differences in taste. Such skepticism of others’ motives may lead people to discredit others’ actions, which may shed light on why some factions are unmoved by others’ actions even when they reveal valuable information.

Related Literature

We contribute to a recent literature that explores how specific behavioral biases, along with more general forms of model misspecification, interfere with social learning. Much of this literature

5Bastianello and Fontanier (2021) examine other forms of model misspecification in this context.
examines the convergence of long-run beliefs in environments similar to the sequential “herding”
models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), identifying
when long-run beliefs may converge on a false state of the world or fail to converge at all. For
instance, Eyster and Rabin (2010), Bohren (2016), and Gagnon-Bartsch and Rabin (2021) examine
how neglecting the redundancy of information in others’ actions can lead society to grow convinced
of a false state. Bohren and Hauser (2021) and Frick et al. (2021) provide frameworks for studying
the convergence of beliefs under a wide range of misspecified models. Closer to the specific error
we study, Frick et al. (2020) shows that when agents share a common misperception of the type
distribution, even small amounts of misspecification can cause incorrect learning almost surely.
Gagnon-Bartsch (2016) considers a simple variant of taste projection with two types who hold
conflicting misperceptions, showing how it can cause different types to grow confident in distinct
states or generate beliefs that perpetually cycle. In contrast, instead of asking whether or not
information aggregates in the long-run, we study the comparative statics of projectors’ erroneous
beliefs in cases where they necessarily mislearn. Moreover, unlike the papers above, we focus on
market outcomes in a context where prices explicitly influence agents’ beliefs, and we examine
how a sophisticated seller would optimally use prices to strategically distort those beliefs.

In this way, we similarly contribute to an IO literature on pricing in the presence of observa-
tional learning, as this literature has largely concentrated on rational inference.\footnote{There is a similar finance literature on sequential trading and social learning; see Welch (1992), Chemmanur (1993), Avery and Zemsky (1998), and Goldstein and Guembel (2008).} This literature primarily considers settings with frictions to information aggregation, analyzing how the seller’s optimal behavior either alleviates or intensifies these frictions. For instance, Bose et al. (2006, 2008) consider a pure common-value environment with a long-lived monopolist who, in each pe-
niod, sells to an uninformed, short-lived buyer. Buyers learn about the common value based on
the history of prices and their predecessors’ purchase decisions. Information aggregates slowly
because there is a single buyer in each period with a discrete signal, and the monopolist maximizes
profits by setting prices that reveal as much information as possible.\footnote{Bhalla (2013) shows that Bose et al.’s (2008) qualitative results extend to cases with multiple buyers per period.} Using a similar setting, Parakhonyak and Vikander (2021) show that a monopolist may want to strategically create prod-
uct scarcity in order to trigger a “buying herd.” More similar to our setup, Caminal and Vives
(1996, 1999) consider a model with a continuum of short-lived consumers who are privately but
imperfectly informed about the quality of two competing products. Consumers in a later gener-
ation don’t observe past prices, but try to infer a product’s quality from its market share in the
previous period; the presence of “noisy” traders prevents learning from happening immediately in
their model. Differently from us, because consumers cannot see the previous price, sellers set low
introductory prices to boost sales in an attempt to convince buyers that their quality is high.\footnote{More recently, articles incorporating observational learning with consumer search have also emerged; see Kircher}
The literature described above mainly focuses on cases where the seller does not have an informational advantage over buyers, and we follow in this tradition. However, another related strand of the IO literature examines how a privately informed seller can signal the quality of its good through prices and other means. While we do not analyze such signaling, some of our predictions resemble those from this literature.9 For instance, Bagwell and Riordan (1991) analyze a monopolistic market with a mix of informed and uninformed consumers (like us), and show that high and declining prices can signal higher quality to uninformed consumers when the high-quality seller has a sufficiently high cost. In contrast, our mechanism generates quality perceptions that are increasing in price even when a seller’s quality is not tightly linked to their costs. Furthermore, since consumers in their model are rational, the seller’s price beyond the first period is never lower than the static monopoly price, whereas in our model it can be.10 Taylor (1999) considers a two-period model with private and common values where a seller is privately informed about the quality of its house, and short-lived consumers try to learn this quality from its time on the market. The seller’s optimal price path is declining due to an incentive to signal jam: a higher first-period price sends a less negative signal when the house is not sold. At a broader level, relative to both strands above, we differ by considering a setting that neutralizes the informational frictions that impede rational learning (e.g., incomplete learning, search costs, or classical signaling motives) in order to isolate how taste projection itself interferes with learning.

Our modeling approach is related to others in which players misperceive the link between others’ types and behavior (e.g., Eyster and Rabin 2005; Esponda 2008; Jehiel and Koessler 2008; Madarász 2021). In particular, Madarász (2012) formalizes “information projection” in which players exaggerate the extent to which their private information is known by others. Our paper differs from Madarász (2012, 2021) both because we focus on (i) projection of preferences rather than information and (ii) an environment with observational learning. There is also a small but growing theoretical literature studying the implications of taste projection and the false-consensus effect in domains different from ours.11 For instance, Goeree and Grosser (2007) examine how a false-consensus effect can lead to inefficient election outcomes. Frick et al. (2019) show how the false-consensus effect may arise when agents neglect the assortative nature of matching when interacting with others. Gagnon-Bartsch et al. (2021a) study how projection of private values can lead to overbidding and inefficient allocations in auctions.

9Although placed in the first strand, Caminal and Vives (1996) consider an extension with signaling.
10The optimal price path with signaling can also be increasing if consumers learn about quality or their idiosyncratic tastes from repeat purchases, as in Milgrom and Roberts (1986) and Judd and Riordan (1994). In such cases, the seller may use introductory offers to induce learning and repeat purchases. We focus on a setting without repeat purchases.
11Although we focus on the projection of preferences, the term “false-consensus effect” is also used to describe situations where people exaggerate the prevalence of their beliefs or actions. For other models capturing these alternative forms of projection, see Williams (2013), Rubinstein and Salant (2016), Jimenez-Gomez (2019), and Wang (2020).
2 Model

In this section, we introduce the basic features of the environment we study and present our model of taste projection. Subsequent sections examine projection in various contexts (e.g., static versus dynamic settings). We will describe the specific features of those settings in each section, and we introduce their common core here.

2.1 Environment

Preferences. Agents attempt to learn the commonly-valued quality of a good, denoted by $\omega \in \mathbb{R}$, based on others’ purchase decisions. Each individual i’s total valuation for the good derives from both the common value, ω, and a private value (or “taste”), denoted by $t_i \in \mathcal{T} \equiv [t, \bar{t}] \subseteq \mathbb{R}$. For simplicity, we assume individual i’s total valuation for the good is $u(\omega, t_i) = \omega + t_i$; we discuss at various points how our results extend to more general utility functions. Adopting the good at price p yields a payoff of $u(\omega, t) - p$, while rejecting it yields a payoff normalized to zero. We allow \mathcal{T} to include values such that some types may have a negative valuation for the good; this lets us show how projection may lead to inefficient adoption.

Private values are i.i.d. across individuals with a CDF $F: \mathcal{T} \rightarrow [0, 1]$. We assume that F admits a smooth, positive density $f \equiv F'$ and an increasing hazard rate. In our formulation of taste projection detailed below, we assume each agent has a misspecified model of F, treating it as excessively concentrated around his own taste relative to the true distribution.

Actions and Timing. A sequence of consumers decide whether to buy the good. In each period $n \in \{1, \ldots, N\}$, a unit mass of new agents with tastes independently drawn from F enters the market. They simultaneous choose once-and-for-all whether to buy at price $p_n \geq 0$ and then exit. These choices maximize each agent’s expected utility given their subjective beliefs over ω. Let d_n denote the resulting quantity demanded in period n.

Information Structure. Agents begin with a non-degenerate common prior over ω and also have private information about ω. We primarily focus on a simple signal structure: there is a single signal in the economy and, in each period, a fraction of agents observe its realization, $s \in \mathbb{R}$. Let $\bar{\omega}(s) \equiv \mathbb{E}[\omega|s]$ denote the Bayesian posterior expectation of ω conditional on s and the common prior. We assume the signal has a continuous CDF $G(\cdot|\omega)$ that obeys the (strict) Monotone Likelihood Ratio Property in ω so that $\bar{\omega}(s)$ is strictly increasing in s. Informed agents will thus take actions based on $\bar{\omega}(s)$ and uninformed agents try to infer $\bar{\omega}(s)$ from these actions.

We also assume that $\bar{\omega}(s)$ has full support on \mathbb{R}. This simplifies the analysis by guaranteeing that projectors will draw a coherent Bayesian inference from any possible market outcome (i.e., they will never observe outcomes that their model deems impossible). This signal structure is consistent, for instance, with the familiar Gaussian structure where the signal and prior are both...
normally distributed. While it is useful to keep that example in mind, our results hold more generally. Additionally, we assume the signal structure is common knowledge.

This “single-signal” structure is sufficient to study several features of misinference due to taste projection, and we therefore focus on it unless explicitly noted otherwise. For the sake of robustness, Appendix A shows that the main effects of projection on beliefs continue to emerge in two richer structures: (i) “fully heterogeneous signals,” where each agent observes a distinct independent signal; (ii) “heterogeneous signals across periods,” where all agents acting within each period observe a common signal, $S_n \overset{iid}{\sim} G(s|\omega)$, that is unobserved by agents acting in other periods.

Social Learning. We assume that each Generation $n \geq 2$ observes the price and quantity pair from the previous generation, (p_{n-1}, d_{n-1}). They use this data to infer their predecessors’ beliefs over ω. Since we assume $\bar{\omega}(s)$ has full support on \mathbb{R}, any observed pair (p, d) is uniquely rationalized by a feasible value of $\bar{\omega}(s)$ whenever $d \in (0, 1)$, although the value that rationalizes the data will differ across projectors with differing misspecified models. Moreover, as we describe in our specific applications, the fact that a continuum of consumers act in each period implies that the behavior of a preceding generation perfectly reveals $\bar{\omega}(s)$ in the rational equilibrium (via the law of large numbers). Correct social learning is therefore immediate in the rational benchmark of our setup. Taste projecting agents will nevertheless mislearn: since they have misspecified models, they will extract biased signal estimates.

Prices. Throughout our analyses, we consider two cases regarding the origin of prices. First, we sometimes consider exogenously determined prices (e.g., a price-taking seller) and describe beliefs as a function of those fixed prices. Second, we consider a profit-maximizing monopolist who sets a price p_n at the start of each period n. In the latter case, we assume the seller has a constant marginal cost normalized to zero and, importantly, is aware of consumers’ projection bias, setting prices to exploit it. Additionally, the seller observes s prior to period 1 but does not have any private information about ω beyond that of the informed buyers. Since the settings we consider always allow rational uninformed agents to extract s from their predecessors’ actions, this assumption guarantees that the seller and rational agents effectively have symmetric information.

12 We assume individuals have correct perceptions of the signal structure in order to isolate the effects of taste projection from other biases. In particular, individuals project tastes but not information. Taste projection will, however, distort an individual’s perception of others’ information.

13 This environment is somewhat similar to models of sequential observational learning with common preferences in which a single agent acts in each period and takes a continuous action (e.g., Lee, 1993; Eyster and Rabin, 2010). In the rational equilibrium of these models, an agent can perfectly deduce a predecessors’ beliefs based on their action. In our setup, an individual agent’s action does not reveal their information in the rational equilibrium, but the aggregate behavior of agents acting in a single period does reveal their collective information.

14 As we discuss further below, uninformed agents who do not directly observe s think they can perfectly extract s form the market outcome they observe, regardless of the seller’s chosen price. Thus, although the seller and some buyers might have asymmetric information ex ante, buyers expect symmetric information at the interim stage. This expectation is correct for rational buyers. And projecting buyers who misinfer s still think (albeit wrongly) that they share common information with the seller at the interim stage.
In this way, we neutralize classical motives for the seller to use prices as signals about ω, which allows us to isolate pricing dynamics that arise entirely due to taste projection.

As such, our focus is on agents drawing inference from demand rather than prices per se. Agents in period n ask themselves what signal s best predicts a quantity demanded equal to d_{n-1} when the price is p_{n-1}, but do not attempt to draw any inference about s based on the seller’s particular choice of price. While this assumption is admittedly strong, it helps simplify and focus our analysis.\footnote{We are not unique in this approach. As noted in our discussion of the related literature, most existing papers on pricing in markets with observational learning either abstract from cases in which the seller uses prices to signal private information or impose other simplifying assumptions.} Yet, this assumption does not imply that consumers completely ignore prices when drawing inference. Indeed, the price is essential for interpreting aggregate demand—conditional on s, observers reasonably expect fewer sales when p_{n-1} is higher. Put differently, agents in our model infer from others’ reaction to prices, rather than the chosen price itself. Additionally, the environment we consider is conducive to this assumption since agents believe that d_{n-1} alone is sufficient to reveal s once they know p_{n-1}, regardless of why p_{n-1} was chosen.\footnote{As emphasized by Gagnon-Bartsch et al. (2021b), subjectively rational inattention (with respect to an agent’s misspecified model) may lead an agent to “channel his attention” toward seemingly sufficient data to update his beliefs, while forgoing careful attention to other aspects of the data (e.g., pricing strategy). Indeed, when the seller’s cost is subject to noise that is unobserved by buyers—and hence the seller’s strategy cannot perfectly reveal her information—then our results are “attentionally stable” in the sense of Gagnon-Bartsch et al. (2021b): under their solution concept, an agent in our model will not confront data that deems his misspecified model as false relative to the true model.}

And perhaps most importantly, we suspect that the basic effects of projection on beliefs that we analyze would continue to hold if projectors drew inferences exclusively based on the realized price; Section 5.3 and Appendix B verify this for some specific cases.

2.2 Taste Projection

Gagnon-Bartsch et al. (2021a) provide a general model of taste projection that is applicable to a wide range of Bayesian games. Here, we present that model and extend it to our particular inferential context. Broadly, the model assumes that each agent’s own idiosyncratic taste t has undue influence on their perceived distribution of others’ tastes: they misperceive F to be $\hat{F}(\cdot|t)$, which—relative to the true distribution—overweights the likelihood of values near t. Agents are also naive about this bias: each agent neglects that they (and others) misperceive the distribution.

First, we briefly review the motivating evidence (for further discussion, see Gagnon-Bartsch et al., 2021a). Several strands of research suggest that people systematically mispredict others’ preferences. A large literature in psychology studies “social projection” and the “false-consensus effect”: the tendency for people to perceive their own tastes and attitudes as more common than they really are. The seminal study by Ross et al. (1977)—along with numerous studies that followed—find a positive correlation between subjects’ own stated preferences and their estimates
of others’ preferences across many domains (e.g., art, sports, wine, consumer products, politics, risk). While this correlation may be rational when there is uncertainty about others’ preferences (Dawes, 1989, 1990; Prelec, 2004), later studies suggest that these perceptions reflect a systematic bias, whereby subjects weight their own preference too heavily relative to information about others’ preferences when making predictions about others (e.g., Krueger and Clement, 1994). In incentivized experiments, Engelmann and Strobel (2012) and Ambuehl et al. (2021) similarly find that a false-consensus bias remains if subjects must exert minimal effort to view information about others’ choices. Preference misperceptions therefore appear robust even in settings with ample opportunity to observe others, where rational explanations due to limited information are tenuous.

There is also evidence that people project their transient preference states onto others. For instance, Van Boven and Loewenstein (2003) find that subjects asked to predict whether others would prefer food or water made predictions that were strongly biased in the direction of their own exercise-induced thirst. Bushong and Gagnon-Bartsch (2021) show that workers in a real-effort experiment project their sense of fatigue onto others when predicting others’ willingness to work. Additionally, Van Boven et al. (2000) and Van Boven et al. (2003) show that sellers who experience an endowment effect project their high valuation of a good onto the valuations of potential buyers, causing sellers to set inefficiently high prices. Our model captures a similar intuition, yet we focus on buyers projecting their own valuations onto other buyers when learning from their actions.

Our model of taste projection channels Loewenstein et al.’s (2003) model of intrapersonal projection bias by assuming that each agent i perceives the private value of any other agent j’s as closer to his own than it really is. For simplicity, we take a convex-combination approach: i believes j’s private value is $\hat{v}_j(t_i) \equiv \alpha t_i + (1 - \alpha) t_j$ for some $\alpha \in [0, 1)$. The parameter α captures the “degree of projection”: $\alpha = 0$ is the rational benchmark, while $\alpha \to 1$ represents the extreme case where an agent believes that others share his exact taste. For tractability, we assume the degree of projection is identical across agents.

Perceptions of the Taste Distribution. The convex-combination specification above implies that

17Marks and Miller (1987) document the false-consensus effect in 45 studies published in the decade following Ross et al. (1977), and Mullen et al. (1985) find robust evidence of the effect in a large meta-study. More recently, Bursztyn and Yang (2021) find that correlations consistent with the false-consensus effect are widespread in a meta-analysis of economics field studies. Evidence on the false-consensus effect also spans a broad range of domains, including political preferences (e.g., Brown 1982), preferences over income redistribution (e.g., Cruces et al. 2013), and risk preferences (e.g., Faro and Rottenstreich 2006).

18Delavande and Manski (2012) show that survey respondents demonstrate a false-consensus bias with respect to preferences over political candidates in both the 2008 U.S. presidential election and 2010 U.S. congressional election. Moreover, respondents continue to exaggerate the similarity between their own and others’ preferences even after the release of poll results, further indicating that rigidity of (mis)perceptions despite abundant contrary information.

19This represents an interpersonal analogue of intrapersonal projection bias, whereby people exaggerate the degree to which their future tastes will resemble their current tastes (Loewenstein et al., 2003). Several recent studies within economics document such a bias (see, e.g., Conlin et al., 2007; Simonsohn, 2010; Acland and Levy, 2015; Busse et al., 2015; Chang et al., 2018; Augenblick and Rabin, 2019).
agent i’s perception of others’ private values is described by the random variable
\[
\hat{T}(t_i) \equiv \alpha t_i + (1 - \alpha)T,
\]
where $T \sim F$ is the true random variable describing private values. Hence, each agent i perceives a distribution of tastes that, relative to reality, is overly concentrated around his own taste, t_i.\(^{20}\)

This formulation of projection pins down the perceived distributions held by projecting agents, $\{\hat{F}(\cdot|t)\}_{t \in T}$, in terms of the true distribution, F, and the projection parameter, α. Each agent perceives a distribution with the same shape as F, but with the probability mass compressed around his own value. The support of this distribution is also compressed when T is bounded: Equation (1) implies that an agent with type t has a perceived support of $\hat{T}(t) \equiv [\underline{t}(t), \overline{t}(t)] \subset T$, where $\underline{t}(t) \equiv \alpha t + (1 - \alpha)t$ and $\overline{t}(t) \equiv \alpha t + (1 - \alpha)t$.\(^{21}\) Moreover, this type’s perceived CDF is
\[
\hat{F}(x|t) = \Pr(\hat{T}(t) \leq x) = \begin{cases}
0 & \text{if } x < \underline{t}(t) \\
F\left(\frac{x - \alpha t}{1 - \alpha}\right) & \text{if } x \in [\underline{t}(t), \overline{t}(t)] \\
1 & \text{if } x > \overline{t}(t).
\end{cases}
\]

These perceived distributions inherit our assumptions on F: each $\hat{F}(\cdot|t)$ admits a smooth, positive density and an increasing hazard rate.\(^{22}\) Going forward, let $\hat{E}[\cdot|t]$ denote expectations with respect to type t’s model, $\hat{F}(\cdot|t)$, and let $E[\cdot]$ denote expectations with respect to the true distribution, F.

As described in Gagnon-Bartsch et al. (2021a), the family of perceived distributions exhibits several intuitive properties which will be useful for our analysis.

Observation 1. Consider a projecting agent with an arbitrary private value $t \in T$.

1. **Self-Centered Mean:** The agent believes the mean private value is $\hat{E}[T|t] = \alpha t + (1 - \alpha)E[T]$.

2. **Underestimated Variance:** The agent believes the variance in private values is $(1 - \alpha)^2\text{Var}[T]$.

\(^{20}\)Gagnon-Bartsch et al. (2021a) discusses how this approach naturally extends to cases where players are not symmetric—and thus values are not identically distributed—and to cases where values are correlated. Since we focus on settings with i.i.d. types, we forgo these elaborations.

\(^{21}\)Our results do not hinge on misperceptions of the support per se. All of our qualitative results would hold with perceived distributions that are approximately the same as Equation (1), yet slightly modified to have support T. For instance, an agent with private value t could believe that others’ private values are drawn from $\hat{T}(t_i)$ with probability $1 - \varepsilon$, and from $\hat{T} \sim U(\underline{t}, \overline{t})$ with probability ε. For ε sufficiently small, this distribution has the same support as the true one, yet leads to the same qualitative conclusions delivered by our simpler approach.

\(^{22}\)We similarly denote type t’s perceived density of valuations by $\hat{f}(\cdot|t)$, which is obtained by differentiating (2):
\[
\hat{f}(x|t) = \left(\frac{1}{1 - \alpha}\right) f\left(\frac{x - \alpha t}{1 - \alpha}\right) \quad \text{for } x \in \hat{T}(t).
\]
3. Ordered Misperceptions: The agent’s perceived distribution first-order stochastically dominates (FOSD) that of any projecting agent with private value $t' < t$.

4. Rotation Property: The agent’s perceived distribution is a counterclockwise rotation of the true distribution: $\hat{F}(x|t) < F(x)$ if $x < t$; $\hat{F}(x|t) > F(x)$ if $x > t$; and $\hat{F}(t|t) = F(t)$.

To give an example, suppose that in reality $T \sim U(t, \bar{t})$. Our model implies that an agent with private value t still thinks T is uniform, but compressed around t; namely, $\hat{T}(t) \sim U(\alpha t + (1 - \alpha)\bar{t}, \alpha t + (1 - \alpha)\bar{t})$. For a visual example, Figure 1 considers normally-distributed values and shows the perceived CDFs and PDFs of two agents with different tastes. The perceived CDF of the high-value agent first-order stochastically dominates that of the low-value agent, and both perceived distributions are less dispersed than the true one. Furthermore, the perceived distributions are counter-clockwise rotations of F, and the degree of this rotation will increase with α.

![Perceived CDFs](image1)

![Perceived PDFs](image2)

Figure 1: Perceived CDFs and PDFs of agent’s with private values t_L and $t_H > t_L$.

Higher-Order Beliefs. We assume each projector is naive about his bias: he neglects that he and others mispredict the distribution of tastes and therefore fails to appreciate that others form discrepant perceptions of this distribution. An agent with private value t thus believes that (i) all others think that private values are distributed according to $\hat{F}(-|t)$, and (ii) this mutual perception is common knowledge. In essence, people imagine they are playing a game with common knowledge of the environment when in fact perceptions are heterogeneous across players. Our naivete assumption is motivated by the idea that people who are ignorant about their own projection bias are likely not carefully attending to others’ projection bias.\(^{23}\) Naivete differentiates our model.

\(^{23}\) Although studies on the false-consensus effect rarely elicit second-order beliefs, the few that do, e.g. Egan et al. (2014), find that people greatly overestimate how many share their second-order beliefs, which suggests naivete.
from rational models in which an agent’s own taste influences his beliefs about others’ tastes; e.g., correlated private values or uncertainty about F. However, as detailed in Gagnon-Bartsch et al. (2021a), our framework naturally extends to these settings as well: in such cases, a projector is aware of heterogeneous priors, but does not fully appreciate the dispersion in those priors.

Solution Concept. Aside from misperceptions about F (and about others’ misperceptions of F), we assume projecting agents are otherwise rational and believe their opponents are rational. Each player maximizes his expected payoff according to his distorted beliefs and the presumption that others share his misspecified model. Therefore, each Player i plays a BNE strategy of the “perceived game” in which $\hat{F}(\cdot|t_i)$ is indeed the commonly-known taste distribution. We call the resulting profile of strategies a *Naive Bayesian Equilibrium (NBE)*.

Our application of this concept slightly modifies the definition in Gagnon-Bartsch et al. (2021a) due to differences in the environment. We first present the formalism from Gagnon-Bartsch et al. (2021a) applied to a symmetric game to elucidate how we adapt it. Suppose the true symmetric game under consideration is Γ with an action space $A \subseteq \mathbb{R}$. Let $\Gamma(\hat{F})$ denote that same game when the type distribution is \hat{F} instead of F; all other elements of $\Gamma(\hat{F})$ are identical to Γ. A player with type t thinks the game is $\Gamma(\hat{F}(\cdot|t))$ and presumes that players will follow a BNE of $\Gamma(\hat{F}(\cdot|t))$. Let $\tilde{\sigma}(\cdot|t)$ denote a symmetric pure strategy profile within the perceived game $\Gamma(\hat{F}(\cdot|t))$.

Definition 1. A symmetric strategy profile $\hat{\sigma} : \mathcal{T} \to A$ is a symmetric Naive Bayesian Equilibrium (NBE) of Γ if, for all $t \in \mathcal{T}$, there exists a symmetric strategy profile $\tilde{\sigma}(\cdot|t) : \hat{\mathcal{T}}(t) \to A$ that is a BNE of $\Gamma(\hat{F}(\cdot|t))$ and $\hat{\sigma}(t) = \tilde{\sigma}(t|t)$.

To provide some intuition, each player with taste t introspects about others’ behavior within his perceived game, and this process leads him to a conjectured BNE strategy profile, $\tilde{\sigma}(\cdot|t)$, of that game. He then follows the strategy prescribed by this conjectured equilibrium; i.e., he takes action $\tilde{\sigma}(t|t)$. A NBE is the strategy profile that emerges when each player engages in this reasoning.

In our setting, new agents enter each period and decide whether to buy after observing their predecessors’ choices. Importantly, an agent’s action has no direct effect on the payoff of any other agent, aside from the information it reveals. As such, a full equilibrium concept is not needed to close our model—a concept describing how individuals best respond to inferences from others’ behavior is sufficient. We assume that players form these inferences according to a NBE. Each observer with taste t thinks the sequence of generations is playing a BNE in which $\hat{F}(\cdot|t)$ is common knowledge. Thus, any player i in Generation $n \geq 2$ thinks that each player in any previous Generation $k < n$ took the action that maximized her expected utility, where that expectation was with

24 Because $\hat{F}(\cdot|t)$ inherits our assumptions on F, existence of such a BNE in the perceived game $\Gamma(\hat{F}(\cdot|t))$ follows from the existence of a BNE in the original game Γ.
respect to i’s erroneous model (due to naivete). Player i consequently thinks that the behavior he observes, \(d_{n-1} \), represents the aggregate behavior of a generation with tastes distributed according to \(\tilde{F}(\cdot|t_i) \) who best respond to the beliefs they formed under i’s model given their information.

Note that a BNE strategy in this setting is just a map \(\sigma \) from \((t, \hat{\omega}, p)\) to a binary purchase decision, where \(\hat{\omega} \) is the agent’s expectation of \(\omega \) and \(p \) is the price. A projecting player correctly understands another player’s strategy conditional on \((t, \hat{\omega}, p)\). However, the aggregate behavior that the projecting player observes depends on the distribution of \(t \) and \(\hat{\omega} \) in the market. He thus misinterprets aggregate behavior due to two mistakes about these distributions: (i) he misperceives the distribution of types, \(t \), acting in the market; and (ii) he mispredicts others’ quality expectations, \(\hat{\omega} \), since he neglects that those with different types employ inferential strategies different from his.

3 Static Case

We begin by showing how taste projection distorts beliefs in a static model, which can be interpreted as the steady-state equilibrium of the dynamic model we consider in the next section. This analysis allows us to establish a few key implications of mislearning due to taste projection before moving to the more complex dynamic setting; it also demonstrates that the comparative statics that arise in the dynamic context robustly emerge in the steady-state as well. Namely, an agent’s perceived quality is (i) decreasing in his private taste, and (ii) increasing in the price. As a further implication, the perceived total valuations of agents in equilibrium are excessively similar to one another, leading to a market demand that would overreact to price changes.

The setup mirrors the environment from Section 2.1. A continuum of potential buyers with unit mass face a fixed price \(p \). Each agent’s total valuation for the good is \(u(\omega, t) = \omega + t \) (although our results here apply more generally).\(^{25}\) A fraction \(\lambda \) of the agents privately observe the realization of \(S \sim G(\cdot|\omega) \) and the remaining fraction \(1 - \lambda \) do not. The “uninformed agents”—those who do not observe the signal—attempt to extract this information from the equilibrium level of demand.

3.1 Steady-State Equilibrium and Comparative Statics on Perceptions

The steady-state equilibrium follows a logic similar to a rational-expectations equilibrium (e.g., Grossman, 1976; Grossman and Stiglitz, 1980), except agents wrongly use their misspecified models to extract signals. More specifically, suppose the fraction of agents who buy is \(d \in [0, 1] \). Each uninformed agent follows an inference rule that maps \(d \) into an expectation over \(\omega \), and then buys the good if their expected valuation given this expectation exceeds \(p \). In equilibrium, agents’ inferences about \(\omega \) must be consistent with the observed quantity demanded, and this quantity must in

\(^{25}\)Our proofs of Propositions 1 and 2 in Appendix C establish these results for more general utility functions.
turn be consistent with agents’ inferences.

We now derive the equilibrium more concretely. Informed agents base their buying decisions entirely on \(s \), as they know there is nothing more to learn. Thus, an informed agent with taste \(t \) buys if \(\bar{\omega}(s) + t \geq p \), and the demand among informed agents is \(D^I(p; \bar{\omega}(s)) \equiv \Pr[\bar{\omega}(s) + T \geq p] = 1 - F(p - \bar{\omega}(s)) \). Reflecting our interest in states where consumers should rationally take heterogeneous actions, we say that the pair \((p, s)\) admits interior demand when \(D^I(p; \bar{\omega}(s)) \in (0, 1) \).

Uninformed agents infer \(\hat{\omega}(s) \) from the aggregate quantity demanded, \(d \). To build intuition, we first describe agents’ inferences in the rational benchmark. Let \(\hat{\omega}(d) \) denote the inferred value of \(\bar{\omega}(s) \) upon observing \(d \). Demand among the uninformed is thus \(\Pr[\hat{\omega}(d) + T \geq p] = 1 - F(p - \hat{\omega}(d)) \), and the total demand is

\[
d = \lambda \left(1 - F(p - \bar{\omega}(s))\right) + (1 - \lambda) \left(1 - F(p - \hat{\omega}(d))\right). \tag{3}
\]

We require that \(\hat{\omega}(d) \) is Bayes-rational given an agent’s model. Hence, in the rational benchmark—where players share common knowledge of \(F \)—the unique symmetric inference rule is \(\hat{\omega}(d) = p - F^{-1}(1 - d) \). When following this rule, the observed quantity demanded \(d \) is such that uninformed agents infer \(\hat{\omega}(d) = \bar{\omega}(s) \) and hence mimic the buying decisions of the informed agents. This follows from the fact that, in equilibrium, \(d \) reveals the marginal type. For instance, if 30% of the market buys at \(p \), then the marginal buyer has a private value at the 70th percentile of \(F \). Thus, rational uninformed agents who observe \(d \) simply choose to buy if their taste is above the 70th percentile and decline otherwise. This strategy leads uninformed buyers to act exactly as they would if they too were informed.

This strategy of identifying others’ information off of the inferred marginal type leads projectors astray since their distorted perceptions of \(F \) cause them to misinfer the marginal valuation. More specifically, a projecting agent thinks the market is in the rational equilibrium described above, and draws inferences following that logic. They do so, however, using their misspecified model. A buyer with taste \(t_i \) thinks the demand function among informed agents is \(\hat{D}^I(p; \bar{\omega}(s)|t_i) \equiv 1 - \hat{F}(p - \bar{\omega}(s)|t_i) \). Furthermore, naivete about projecting implies that he thinks others share his perception of \(F \)—and hence of the demand function—and thus he thinks that others will draw the same inference from the quantity demanded as him. Thus, an agent with taste \(t_i \) thinks the rational symmetric inference rule is \(\hat{\omega}(d|t_i) \) and that, in equilibrium, \(\hat{\omega}(d|t_i) \) must satisfy

\[
d = \lambda \left(1 - \hat{F}(p - \hat{\omega}(s)|t_i)\right) + (1 - \lambda) \left(1 - \hat{F}(p - \hat{\omega}(d|t_i)|t_i)\right). \tag{4}
\]
An agent with taste t_i therefore comes to believe the value of $\bar{\omega}(s)$ is

$$\hat{\omega}(d|t_i) = p - \hat{F}^{-1}(1 - d|t_i).$$

This inferential strategy would correctly extract others’ information if agent i’s misspecified model were correct—that is, if it were indeed true that $T \sim \hat{F}(\cdot|t_i)$ and that agents shared this belief. Furthermore, $\hat{F}^{-1}(1 - d|t_i) \rightarrow F^{-1}(1 - d)$ for all t_i as $\alpha \rightarrow 0$, and hence each agent’s inference collapses to the common rational inference as projection vanishes.

Notice that the misinference described above involves two distinct errors. One stems from an error in first-order beliefs: agent i’s conjectured equilibrium condition (Equation 4) wrongly posits that tastes are distributed according to $\hat{F}(\cdot|t_i)$ instead of F. Additionally, due to naivete, agent i’s erroneous second-order beliefs cause him to think others draw the same inference as him, $\hat{\omega}(d|t_i)$, since he neglects that others employ discrepant models.

In truth, the demand among uninformed agents arises from each type of agent acting on their distinct equilibrium inference. The equilibrium quantity demanded is then the value of d solving

$$d = \lambda \cdot D^I(p; \bar{\omega}(s)) + (1 - \lambda) \cdot \Pr[\hat{\omega}(d|T) + T \geq p]$$

where $\hat{\omega}(d|t)$ is given by (5) for each $t \in T$. This equilibrium quantity, call it d^*, pins down the profile of agents’ perceptions of $\bar{\omega}(s)$. We denote this profile by $\hat{\omega}(t)$; that is, $\hat{\omega}(t) = \hat{\omega}(d^*|t)$. The following proposition establishes that a unique equilibrium exists whenever (p, s) admits interior demand and characterizes two central properties of misinference under taste projection.

Proposition 1. Suppose $\lambda \in (0, 1)$ and consider (p, s) that admits interior demand. For any $\alpha > 0$, there exists a unique equilibrium profile of beliefs, and it has the following properties:

1. $\hat{\omega}(t)$ is strictly decreasing in t. Moreover, there exists an interior type \tilde{t} such that agents with $t > \tilde{t}$ underestimate ω while those with $t < \tilde{t}$ overestimate ω.

2. For each type $t \in T$, the perception $\hat{\omega}(t)$ is strictly increasing in p.

Part 1 of Proposition 1 establishes that quality perceptions are inversely related to tastes. If agent i has a high private taste, he expects that others do too and exaggerates the fraction of people who would buy at price p and belief $\bar{\omega}(s)$. Accordingly, the demand he observes at price p is weaker than he would expect from consumers with belief $\bar{\omega}(s)$, and he rationalizes this lower-than-expected demand by inferring that the signal is lower than it truly is. Conversely, if agent i

26Since agents with the same taste have the same model of others’ preferences, they will make identical inferences.

27Appendix A shows that these properties extend to richer signal structures.
has a low private taste, then he infers that the signal is higher than it truly is. In other words, the interpretation of a good’s popularity is in the eye of the beholder.

Where is the divide between types who overestimate quality and those who underestimate it? As noted above, inference in this setting stems from identifying the valuation of the marginal consumer. The nature of projectors’ misinference can thus be understood from how they misidentify the marginal type. Suppose that in equilibrium a fraction z of consumers turn down the good. The marginal type thus has a private value t^* at the zth percentile of the taste distribution. An uninformed consumer tries to deduce t^* since this would reveal $\bar{\omega}(s)$ via the indifference condition $t^* = p - \bar{\omega}(s)$. However, a projector misperceives the private value at each percentile other than his own. To see this, let $\hat{t}(z|t_i)$ be the perceived type at the zth percentile according to an agent with taste t_i, and let $t^*(z)$ denote the true type. From (2), this value solves

$$z = \hat{F}(\hat{t}(z|t_i)|t_i) = F\left(\frac{\hat{t}(z|t_i) - \alpha t_i}{1 - \alpha}\right) \Rightarrow \hat{t}(z|t_i) = \alpha t_i + (1 - \alpha)t^*(z). \quad (7)$$

Reflecting the idea that projectors think others’ values are compressed around their own, type t_i’s perception of the type at the zth percentile is shifted toward his own. This recasts the intuition from above: those with high private values overestimate the marginal type, and thus underestimate the good’s quality; those with low private values do the opposite. Furthermore, this means that a projector who is at the zth percentile himself—who has a taste matching that of the informed marginal type—is the unique type who infers $\bar{\omega}(s)$ correctly. To summarize: (i) $\hat{\omega}(t^*) = \bar{\omega}(s)$ where $t^* = p - \bar{\omega}(s)$ is the rational marginal type; (ii) $\hat{\omega}(t) < \bar{\omega}(s)$ for all agents with $t > t^*$; and (iii) $\hat{\omega}(t) > \bar{\omega}(s)$ for all agents with $t < t^*$. It is worth noting that, in equilibrium, agents’ perceived total valuations, $\hat{\omega}(t) + t$, are still increasing in t even though $\hat{\omega}(t)$ is decreasing in t; we return to this point in Proposition 2.

Part 2 of Proposition 1 shows that agents form higher perceptions of the common value when p is higher, irrespective of their private taste. This stems from the fact that projectors underestimate the heterogeneity in others’ private values. A projector therefore underestimates the fraction of types who would remain in the market at a higher price. Thus, if the price were to increase, a projector would see more remain than expected. To rationalize this discrepancy, a projector must infer a higher quality than he would have at the original, lower price. Figure 2 depicts this intuition. First, note that a projector’s inferred quality $\hat{\omega}$ is such that their perceived demand function given $\hat{\omega}$, $\hat{D}(\cdot; \hat{\omega}|t)$, passes through the observed outcome, (d, p). As the price increases from p' to p'', the observed quantity demanded adjusts along the true demand curve, $D(\cdot; \bar{\omega}(s))$. The new quantity, however, is inconsistent with the projectors’ demand curve that rationalized the outcome at p': since a projector underestimates heterogeneity, their perceived demand curve is a counter-clockwise rotation of $D(\cdot; \bar{\omega}(s))$ (see Johnson and Myatt, 2006) and is thus more price
elastic. Hence, to rationalize the observed demand at price p'', the projector will form a higher expectation of ω, consistent with an outward shift of his perceived demand curve.

Another intuition for this result comes from the discussion above about identifying the marginal type. The farther a type is from the margin, the more distorted is his perception of the marginal type. Thus, a high type who is above the margin at price p will be closer to the margin after a small price increase. Since this high type originally underestimates ω, he will underestimate ω by less if the price increases. A similar logic holds for those below the margin at price p: they will be farther from the margin after a price increase, and hence they will subsequently overestimate ω by more. In other words, the higher is the true marginal type, the higher is each projector’s perception of ω.

While the results of Proposition 1 hold more generally, they are particularly transparent when $u(\omega, t) = \omega + t$. In this case,

$$\hat{\omega}(t) = (1 - \alpha)\bar{\omega}(s) + \alpha(p - t).$$

(8)

The degree of projection, α, drives both the positive distortionary effect of p and the negative distortionary effect of an individual’s taste. Furthermore, an uninformed agent’s perceived total value of the good is $\hat{\omega}(t) + t = (1 - \alpha)(\bar{\omega}(s) + t) + \alpha p$. Thus, as α increases, a projector’s idiosyncratic taste t has less influence on their perceived valuation. Importantly, this implies that

28 In addition to holding for more general utility functions, these results hold for additional signal structures as well. We discuss this in more detail in Appendix A.
the perceived values among uninformed agents exhibit less variation than they would under rational inference.

Proposition 2. Suppose $\lambda \in (0, 1)$ and consider (p, s) that admits interior demand. For any $\alpha > 0$, the (mis)perceived valuations of agents in the steady-state have diminished variance relative to the rational benchmark.

Proposition 2 reveals a sense in which taste projection is self-fulfilling: when agents initially believe that idiosyncratic tastes are more similar than they really are, their distorted inferences lead to perceived valuations that are, in fact, more similar than they ought to be. In other words, the agents’ initial misperception of the environment generates data that confirms that misperception.

This result also suggests caution when measuring heterogeneity in consumers’ preferences. When social learning shapes consumers’ valuations, their stated willingness to pay will underestimate the true heterogeneity in valuations if they suffer from projection bias. Furthermore, measuring the degree of taste projection in markets must also account for this endogeneity problem: while it may appear that there is low variance in valuations and that consumers correctly believe that there is low variance, the low apparent variance in valuations may be caused by consumers’ erroneous beliefs about others and the distortionary effect they have on learning.

Proposition 2 additionally implies that demand among misinformed consumers will overreact in the short run to a change in price. That is, if consumers use their perceptions of $\hat{\omega}(t)$ formed in an equilibrium with price p to decide whether they should buy at a new price p', then the demand response to this price change will exceed the rational benchmark. For an intuition, recall that projecting consumers who are above the margin at price p underestimate ω. Thus, relative to rational consumers, they are less willing to continue buying after a price increase. Similarly, projecting consumers who are initially below the margin overestimate ω, and thus they are too willing to buy after a price reduction. We return to this point when analyzing dynamic pricing (Section 4).

3.2 Optimal Monopoly Pricing

Taste projection in this setting does not distort the quantity demanded: in equilibrium, the same set of consumers adopt the good regardless of whether they are rational or suffer from taste projection. As noted above, this happens because the type with a taste matching that of the rational marginal type learns correctly and is therefore still marginal under projection. Thus, even though projection causes almost all types to mislearn ω, a profit-maximizing monopolist in this market would set the rational monopoly price regardless of whether she faces rational consumers or taste projectors.

The reason why projection does not affect behavior here is an artifact of the particular setting. Although this setting is ideal for developing intuitions on why and how projection distorts beliefs,
the following sections show that relaxing particular features will cause biased beliefs to directly influence market outcomes. Namely, this happens with dynamic pricing or multi-unit demand.

4 Dynamic Case

We now turn to the dynamic setup introduced in Section 2. Section 4.1 first presents some preliminary observations describing how beliefs and aggregate behavior evolve under an arbitrary price path. Section 4.2 then analyzes dynamic monopoly pricing. Although we consider a setting where the optimal dynamic price is constant under rational learning, projection will induce an optimal price path that starts higher than the rational benchmark and declines over time.

Our dynamic setup closely mirrors the static model. In each period \(n = 1, 2, \ldots, N \), a unit mass of new consumers with tastes independently drawn from \(F \) enters the market. Each consumer in Generation \(n \) makes a once-and-for-all decision whether to adopt the good at price \(p_n \) and then exits; \(d_n \) denotes the fraction of these consumers who adopt. In each generation \(n \geq 2 \), (i) all individuals observe the price and aggregate demand from the previous generation, \((p_{n-1}, d_{n-1}) \), and (ii) a fraction \(\lambda \leq 1 \) privately observe \(s \). Thus, \(1 - \lambda \) uninformed consumers in each generation \(n \geq 2 \) engage in social learning while the informed consumers simply follow the signal.

In period 1, consumers must make decisions based solely on their private information. To simplify matters, we assume all consumers in period 1 observe \(s \). There are two interpretations of this assumption: (i) early consumers have greater access to information than later consumers (e.g., initial advertising or “hands-on” promotions spread information more widely early on); (ii) the market begins in the steady-state equilibrium derived in Section 3. Under the second interpretation, our results here describe the short-run dynamics of beliefs and behavior when price changes move the market out of the steady state. This assumption also simplifies the analysis by ensuring that the seller does not have an informational advantage over buyers, thereby neutralizing any incentive for the seller to use prices to signal quality (see the discussion at the end of Section 2.1).

Rational learning is straightforward. Since a continuum of agents act in each period, the aggregate demand from the previous period perfectly reveals the signal when there is common knowledge of \(F \) (and of rationality). While agents learn immediately in rational benchmark, projectors do not: they wrongly extract the signal as if it were common knowledge that \(T \sim \hat{F}(\cdot | t_i) \).

\[^{29}\text{While the assumption that all consumers in Generation 1 are privately informed simplifies the analysis in various ways, it does not significantly influence the results. For instance, if a fraction } \lambda < 1 \text{ of consumers observe } s \text{ in each period } n = 1, 2, \ldots \text{ and face a fixed price, then the environment corresponds to the dynamic analog of the static model in Section 3: as } n \to \infty, \text{ beliefs and behavior converge to the steady-state values described in Section 3.}\]
4.1 Preliminary Observations

We first describe how beliefs evolve under an arbitrary price path. We begin by characterizing the beliefs and behavior of uninformed consumers in period 2 upon observing \((p_1, d_1)\).

In period 1, aggregate demand is equal to the rational benchmark:

\[
d_1 = D^I(p_1; \bar{\omega}(s)) = 1 - F(p_1 - \bar{\omega}(s)).
\]

In period 2, an individual with taste \(t\) thinks that when buyers in period 1 have expectations equal to \(\hat{\omega}\), their demand is

\[
\hat{D}^I(p_1; \hat{\omega}|t) = 1 - \hat{F}(p_1 - \hat{\omega}|t) = 1 - F\left(\frac{p_1 - \hat{\omega} - \alpha t}{1 - \alpha}\right).
\]

This individual will then infer a value of \(\hat{\omega}\) that solves \(\hat{D}^I(p_1; \hat{\omega}|t) = d_1\). Denoting this value by \(\hat{\omega}_2(t)\), the previous condition yields

\[
\hat{\omega}_2(t) = (1 - \alpha)\bar{\omega}(s) + \alpha(p_1 - t).
\]

Notice that the misinferences among observers in this dynamic context exhibit the same steady-state properties described in Propositions 1 and 2 from the static case, above. Indeed, (10) exactly matches the steady-state perceptions derived in Equation (8). These perceptions are decreasing in an observer’s taste, increasing in the price, and give rise to perceived total valuations that exhibit too little heterogeneity relative to the rational benchmark.

Building on that final point, we can show that the demand function of uninformed types in period 2 is locally more elastic with respect to \(p_2\) than the rational one (Johnson and Myatt, 2006). More specifically, it is a counter-clockwise rotation of the demand function of informed types, and the rotation point is the market outcome from the previous period, \((p_1, d_1)\). Notice that if we let \(\bar{\omega}_2 \equiv (1 - \alpha)\bar{\omega}(s) + \alpha p_1\) denote the “taste-independent” (mis)perception of \(\bar{\omega}(s)\) among consumers in period 2, then (10) implies that each uninformed consumer \(i\)’s perceived total valuation is

\[
u(\hat{\omega}_2(t_i), t_i) = \bar{\omega}_2 + (1 - \alpha)t_i.
\]

The demand among uninformed consumers in period 2 is thus

\[
D^U(p_2; \bar{\omega}_2) \equiv \Pr[u(\hat{\omega}_2(T), T) \geq p_2] = 1 - F\left(\frac{p_2 - \bar{\omega}_2}{1 - \alpha}\right).
\]

By contrast, under rational inference, this demand would match that of informed consumers; i.e., \(D^I(p_2; \bar{\omega}(s)) = 1 - F(p_2 - \bar{\omega}(s))\). It is clear that \(\alpha > 0\) implies that \(D^U(p_2; \bar{\omega}_2)\) is more sensitive to \(p_2\) than demand among rational observers with those same beliefs (see Figure 3). The rationale builds from intuitions developed in the static case: in period 2, perceptions of \(\bar{\omega}(s)\) are declining in consumers’ private values, and the buyer with a private value equal to that of the marginal type from period 1, denoted \(t^*_1\), is the unique uninformed type who infers \(\bar{\omega}(s)\) correctly. Those with private

\[30\]This follows from our assumption that all consumers in period 1 are informed.
values above t^*_1 see a weaker demand in period 1 than anticipated in state $\bar{\omega}(s)$ and consequently underestimate ω. If $p_2 > p_1$, then only those types with overly pessimistic beliefs will be served in period 2, and the quantity demanded will thus fall below the rational benchmark at p_2. In contrast, those with $t < t^*_1$ see a stronger demand than anticipated in state $\bar{\omega}(s)$ and overestimate ω. If $p_2 < p_1$, then those with overly optimistic beliefs will be served—the marginal type will be among this contingent—and hence the quantity demanded will exceed the rational benchmark.

![Figure 3: Demand Functions of the Informed and Uninformed in Period 2.](image)

Now we analyze how beliefs and aggregate behavior evolve over time. Generation 3 forms their quality expectations based on the quantity demanded in period 2, which is

$$d_2 = D(p_2; \bar{\omega}_2; \bar{\omega}(s)) \equiv \lambda D^I(p_2; \bar{\omega}(s)) + (1 - \lambda) D^U(p_2; \bar{\omega}_2).$$

(12)

While misinference among Generation 2 stemmed directly from misunderstanding others’ tastes (i.e., an error in first-order beliefs), the misinference among Generation 3 also includes a “social misinference” effect stemming from naivete about others’ projection. Namely, individuals neglect that their predecessors failed to reach consistent beliefs. Since uninformed consumers expect to extract s from their predecessors’ behavior, an individual in period 3 accordingly thinks that the uninformed consumers in period 2 consistently and correctly inferred s and are thus now informed. This presumption is false: projectors in period 2 draw distinct, type-dependent beliefs (as in Equation 10). Nevertheless, a naive observer in Generation 3 with taste t thinks period-2 demand is determined by the function $\hat{D}^I(p_2; \hat{\omega}|t)$ in (9)—she does not realize that it derives from a composition of demand functions as in (12). This observer then infers a value of $\hat{\omega}$ that solves $d_2 = \hat{D}^I(p_2; \hat{\omega}|t)$,
which we denote by $\hat{\omega}_3(t)$. As with Generation 2, if we let $\bar{\omega}_3$ denote the taste-independent part of $\hat{\omega}_3(t)$, then we can write $\hat{\omega}_3(t) = \bar{\omega}_3 - \alpha t$. Aggregate demand among Generation 3 then follows the same form as Generation 2: $d_3 = D(p_3; \hat{\omega}_3, \bar{\omega}(s))$ where D is as defined in (12).

A similar logic unfolds in each period $n \geq 2$. The perceived quality among uninformed agents in Generation n can be written in terms of a taste-independent component, denoted by $\bar{\omega}_n$, which we refer to as the aggregate biased belief in period n.

Lemma 1. In each period $n = 2, \ldots, N$, the quality that an uninformed agent with taste t expects is $\hat{\omega}_n(t) = \bar{\omega}_n - \alpha t$, where $\bar{\omega}_n$ is independent of t. Thus, the sequence of aggregate biased beliefs, $(\bar{\omega}_n)$, is a sufficient statistic for each type’s belief over time.

Despite a continuum of types forming distinct beliefs from each observation, Lemma 1 implies that we can account for this infinite-dimensional process by studying the evolution of the uni-dimensional sequence, $(\bar{\omega}_n)$. Since this sequence describes the path of uninformed consumers’ beliefs, the quantity demanded in each period n, d_n, is determined by the functional form in (12):

$$D(p_n; \bar{\omega}_n, \bar{\omega}(s)) = \lambda \left[1 - F(p_n - \bar{\omega}(s)) \right] + (1 - \lambda) \left[1 - F \left(\frac{p_n - \bar{\omega}_n}{1 - \alpha} \right) \right].$$

(13)

However, an uninformed consumer in period $n + 1$ then thinks d_n is determined by

$$\hat{D}(p_n; \bar{\omega}_{n+1}) \equiv 1 - F \left(\frac{p_n - \bar{\omega}_{n+1}}{1 - \alpha} \right).$$

Furthermore, $\bar{\omega}_{n+1}$ must be consistent with d_n for all $n \geq 2$; that is, $d_n = \hat{D}(p_n; \bar{\omega}_{n+1})$. Hence, the law of motion describing the process $(\bar{\omega}_n)$ is characterized by the equality

$$\hat{D}(p_n; \bar{\omega}_{n+1}) = D(p_n; \bar{\omega}_n, \bar{\omega}(s)),
$$

starting from the initial condition of $\bar{\omega}_2 = (1 - \alpha) \bar{\omega}(s) + \alpha p_1$.

Before turning to the optimal price path given this belief process, we describe outcomes under two natural scenarios: (i) a constant price, and (ii) a single change in price. First, if the price is fixed at p (e.g., the market is in a competitive equilibrium or other frictions mandate a fixed price), then $\bar{\omega}_n = \bar{\omega}_2$ for all $n > 2$. Beliefs remain constant over time, and the quantity demanded in each period matches the rational benchmark at price p. Intuitively, since the type in Generation 2 who learns correctly has a private value equal to the rational marginal type, this type will again be marginal given that the price is constant. Hence, Generation 2 demands the same quantity as

31 More precisely, an uninformed consumer in period $n + 1$ with taste t thinks d_n is determined by $\hat{D}^f(p_n; \bar{\omega}_{n+1}(t)|t)$ as in (9). Applying the fact that $\bar{\omega}_{n+1}(t) = \bar{\omega}_{n+1} - \alpha t$ yields the expression here.
Generation 1. Since Generation 3 then observes the same quantity as Generation 2 did, they draw the same inference. This result reflects the notion that our dynamic process can be viewed as starting from the steady-state: when the price stays constant, the system remains fixed.

On the other hand, when the price changes, aggregate demand will initially overreact and then slowly converge back to the rational level given the new price. The logic is similar to the reason why demand among the uninformed in Generation 2 is excessively sensitive to p_2 (e.g., the discussion around Figure 3). For instance, suppose the price permanently drops in period 2. All uninformed types with a private value below the marginal type from Generation 1 overestimate ω; hence, relative to the rational benchmark, a larger measure of those who were originally sub-marginal buy once the price drops. A similar overreaction occurs if the price instead increases.

Proposition 3. Let $\alpha > 0$ and $\lambda \in (0, 1)$. Suppose there exists a period $n^* \geq 1$ such that $p_n = p$ for $n \leq n^*$, and $p_n = \tilde{p} \neq p$ for all $n > n^*$. Consider s such that both (p, s) and (\tilde{p}, s) admit interior demand, and let \tilde{d} denote the quantity demanded at price \tilde{p} under rational learning.

1. **Initial Overreaction:** If $\tilde{p} > p$, then $d_n < \tilde{d}$ for all $n > n^*$. If instead $\tilde{p} < p$, then $d_n > \tilde{d}$ for all $n > n^*$.

2. **Convergence to Rational Equilibrium:** $|d_n - \tilde{d}|$ is decreasing in n and $\lim_{n \to \infty} |d_n - \tilde{d}| = 0$.

Social learning under taste projection therefore offers a novel explanation for temporary overreaction to price changes, thereby complementing other existing, yet conceptually distinct, explanations. For instance, a change in the price could momentarily increase attention or salience to the price shortly thereafter (Bordalo et al., 2013, 2020). Or consumers with a “taste for bargains” may experience additional elation when buying the good at a price below some reference level (e.g., the previous price), thereby leading more to buy while the new price still feels like a “deal” (Jahedi, 2011; Armstrong and Chen, 2020).

4.2 Optimal Monopoly Pricing

We now analyze how a sophisticated seller optimally sets prices over time when facing taste-projecting consumers. The seller chooses a sequence of prices (p_1, \ldots, p_N) to maximize

$$
\Pi \equiv p_1D^I(p_1; \bar{\omega}(s)) + \sum_{n=2}^{N} p_nD(p_n; \bar{\omega}_n, \bar{\omega}(s))
$$

subject to the dynamic constraint in (14) for all $n \geq 2$.32 In order for the next generation to draw a well-defined inference from quantity demanded, we require that the seller serves a positive fraction

32For simplicity, we abstract from the seller discounting future profits. All of our results would continue to hold if the seller exponentially discounted future profits with a discount factor $\delta \in (0, 1)$.

26
of consumers in each period. We operationalize this by imposing a price ceiling that is arbitrarily close to the valuation of the highest informed type: \(\bar{p} \equiv \bar{\omega}(\bar{s}) + \bar{\ell} - \kappa \) for some \(\kappa > 0 \).

Let \(p^*_n \) denote the seller’s profit-maximizing price in period \(n \). Under rational learning, all consumers will correctly infer \(s \), and the seller essentially faces an identical market of informed consumers in each period. Let \(p^M \) denote the static optimal monopoly price when facing informed consumers. The price path in the rational benchmark (i.e., \(\alpha = 0 \)) is to simply charge \(p^*_n = p^M \) for all \(n \). As we emphasize below, this is not so when facing projecting consumers (i.e., \(\alpha > 0 \)).

Our analysis first considers the two-period case, which will be sufficient for showing how prices influence and respond to the key features of taste-projectors’ erroneous beliefs. We then consider longer horizons. Unlike in the two-period case, projectors in later rounds form beliefs after observing the irrational behavior of projectors who acted previously. While this difference introduces a richer set of incentives for the seller’s pricing strategy, we show that the optimal price path still starts high and gradually declines.

4.2.1 Two-Period Model

Taste projection among consumers introduces dynamic pricing incentives for the seller. Since the current price inflates the beliefs of consumers in later periods, the seller may benefit from increasing today’s price—at the cost of losing immediate sales—in order to increase perceptions and demand among future consumers. Notably, projection induces these dynamic interdependencies even in settings, such as ours, where there is no temporal link in pricing in the rational model.

The benefit from such manipulation is clearly suggested by the distorted beliefs formed in Generation 2, as described in (10). The private value of the marginal type in Generation 1 determines the threshold in the taste distribution where \(\hat{\omega}_2(t) \) switches from overestimating quality to underestimating it. As this threshold is increasing in \(p_1 \), a higher \(p_1 \) will result in a larger share of individuals in Generation 2 who overestimate quality. But is it worthwhile for the seller to forego sales today in order to boost demand in the future?

The answer is unambiguously yes. To provide intuition, consider two pricing strategies: (i) constant pricing, where \(p_1 = p_2 = p^M \) and (ii) declining prices such that \(p_1 = p^M + \epsilon \) and \(p_2 = p^M - \epsilon \) for some \(\epsilon > 0 \). The first strategy generates profits identical to the rational benchmark. While the second strategy generates diminished sales in period 1 relative to the rational benchmark, it generates a disproportionate expansion in period 2. This happens because the demand curve in Generation 2 is a counter-clockwise rotation around \(p_1 \) of the demand curve from the previous

\[33\] This price ceiling will have little effect on projectors’ beliefs and behavior since projectors can never be induced to have a willingness to pay above the highest informed type. The price ceiling is also not consequential for our qualitative results: the optimal price path still involves an inflated price in period 1 and a subsequent price reduction regardless of whether \(p_1 \) is at the ceiling or not. Furthermore, for every value of \(\alpha \), there exists a value \(\bar{\lambda} \) such that \(\lambda > \bar{\lambda} \) guarantees an interior solution to the seller’s problem, rendering the ceiling irrelevant.
generation. Locally, a small reduction of \(p_2 \) below \(p^M \) leads to a greater expansion in period-2 sales compared to the contraction of period-1 sales induced by a commensurate increase of \(p_1 \) above \(p^M \). This follows from the fact that those who were previously submarginal hold inflated perceptions; hence, a price cut attracts an exaggerated share of consumers (as in Proposition 3). As a result, the profits gained in period 2 more than offset those lost in period 1.\(^{34}\) This intuition holds more generally.

Proposition 4. Suppose \(\lambda < 1 \) and consider any \(s \) such that \((p^M, s)\) admits interior demand.

1. For any \(\alpha > 0 \), we have \(p^*_1 > p^M \) and \(p^*_1 > p^*_2 \).

2. The seller’s profit under the optimal price path is increasing in \(\alpha \) and decreasing in \(\lambda \).

Intuitively, as \(\alpha \) increases, there is greater scope to manipulate beliefs, thereby increasing the seller’s profit above the rational benchmark. The seller’s profit is instead decreasing in \(\lambda \): with fewer uninformed agents in the market, it becomes more costly to deviate from the rational-benchmark price. Additionally, although \(p^*_1 \) always exceeds \(p^M \) (i.e., the rational-benchmark price), the relationship between \(p^*_2 \) and \(p^M \) depends on the degree of projection. When \(\alpha \) is low and projectors’ beliefs are only mildly distorted by \(p_1 \), the seller optimally chooses \(p_2 < p^M \) in order to induce a large share of overoptimistic types to buy. When \(\alpha \) is high and beliefs are strongly distorted by \(p_1 \), then even a \(p_2 > p^M \) can induce these types to buy.

Pricing under projection clearly harms consumers in period 1 since \(p^*_1 > p^M \). But it also harms some consumers in period 2: beliefs are manipulated in a way that induces some consumers to buy at a price they would refuse under rational learning. While some of this harm to consumers’ surplus simply represents a transfer to the seller, sufficiently strong projection can also induce consumers with truly negative valuations to adopt the good. Such adoption is clearly inefficient.

Proposition 5. Suppose \(\lambda < 1 \) and consider any \(s \) such that \((p^M, s)\) admits interior demand.

1. Under the profit-maximizing price path, there exists a positive measure of types who buy and overpay: for these types, \(\tilde{\omega}(s) + t < p_2 \).

2. If there exist types with truly negative valuations, i.e., \(\tilde{\omega}(s) + t < 0 \), then there exists a threshold \(\tilde{\alpha} \) such that for \(\alpha > \tilde{\alpha} \) the profit-maximizing price path induces inefficient adoption: there exists an interval of types \(t \) who buy despite \(\tilde{\omega}(s) + t < 0 \).

Another interpretation of this proposition is that the seller’s optimal pricing scheme always induces excessive take-up among uninformed buyers, consistent with familiar notions of herding or bandwagon effects in markets. It is straightforward to show that the marginal uninformed type in period

\(^{34}\)By similar logic, choosing \(p_2 > p_1 \) is particularly costly for the seller, as this would exclude optimistic consumers while targeting just the pessimistic ones.
2, \hat{t}_2, is strictly below the marginal informed type, \hat{t}_2^*, and the interval of uninformed types who wrongly adopt the good has measure \(t_2^* - \hat{t}_2 = \frac{\alpha}{1 - \alpha} [p_1^* - p_2^*] > 0. \)

To elucidate the welfare effects of projection and other comparative statics more concretely, consider the case where \(T \) is uniform on \([\hat{t}, \bar{t}]\). This generates linear demand curves; the (interior) demands of informed agents (in either period) and uninformed agents (in period 2) are

\[
D^I(p; \bar{\omega}(s)) = \bar{\omega}(s) + \frac{\bar{t} - p}{\bar{t} - \hat{t}} \quad \text{and} \quad D^U(p; \bar{\omega}_2) = \bar{\omega}_2 + \frac{(1 - \alpha)\bar{t} - p}{(1 - \alpha)(\bar{t} - \hat{t})},
\]

(16)

respectively, where \(\bar{\omega}_2 = (1 - \alpha)\bar{\omega}(s) + \alpha p_1 \). It is straightforward to show that the interior solution is such that \(p_1^* > p^M > p_2^* \). Moreover, \(p_n^* \to p^M \) for both \(n = 1, 2 \) as either \(\alpha \to 0 \) or \(\lambda \to 1 \). Intuitively, as either the distortion in beliefs or the fraction of agents with distorted beliefs vanishes, the seller’s problem converges to the rational monopoly problem.

![Figure 1: Effect of Projection on Total Surplus and Market Coverage.](image)

Panel (a) of Figure 4 shows how each \(p_n^* \) changes with \(\alpha \) in the uniform case.\(^{35}\) As \(\alpha \) increases, \(p_1 \) has a stronger positive effect on the beliefs of Generation 2, and hence \(p_1^* \) increases in \(\alpha \). By contrast, \(p_2^* \) is not monotone in \(\alpha \). Since the consumers who would be submarginal at \(p_1^* \) are those with inflated beliefs, \(p_2^* \) will necessarily fall below \(p_1^* \). Moreover, when \(\alpha \) is small, the perceived valuations of consumers in Generation 2 exhibit near-rational levels of variation, so a reduction in \(p_2 \) will not attract many more buyers than it would under rational learning. Hence, there is little benefit in deviating from the rational monopoly price. But as \(\alpha \) increases, perceived valuations

\(^{35}\)In this example, \(\bar{t} = 10, \hat{t} = -10, \bar{\omega}(s) = 0 \), and \(\lambda = 0 \). We plot outcomes for \(\alpha \leq 2/3 \) since this is the region that admits an interior solution (shown in the figure). For \(\alpha > 2/3 \), we necessarily have a corner solution at which the seller sets \(p_1 \) at the price ceiling (see footnote 33).
become more clustered around $\bar{\omega}_2$, meaning that a price drop will attract a bigger proportion of the market and will thus be more profitable. This explains why p^*_2 initially decreases in α. However, once α is sufficiently large—and thus beliefs are substantially inflated due to a high p^*_1—the seller can capture a significant fraction of the market with a smaller deviation from p^M.

Consumers’ Gain from Beneficial Adoption

Consumers’ Loss Due to Erroneous Adoption

Efficiency Loss from Erroneous Adoption

Figure 5: Demand functions in Period 2 (for both informed and uninformed agents).

Turning to welfare in the uniform case, it is immediate that projection harms consumers in Generation 1 since $p^*_1 > p^M$. In Generation 2, however, projection can positively or negatively affect consumers, depending on their type. Informed consumers clearly benefit from projection when $p^*_2 < p^M$ since they face a lower price. The welfare effects for uninformed consumers are more subtle. Figure 5 shows the demand curves among informed (blue) and uninformed consumers (red) in period 2. The demand curve among informed consumers, $D^I(p; \bar{\omega}(s))$, reflects the rational valuation of the marginal buyer for any level of market coverage d. The demand curve among uninformed consumers, $D^U(p; \bar{\omega}_2)$, instead reflects the willingness to pay of the marginal consumer given d. Thus, for any d, the vertical distance between the red and blue curves shows the wedge between the marginal uninformed consumer’s willingness to pay and his true valuation. Manipulative pricing under projection causes a range of uninformed types to buy the good when they should, in fact, abstain given p^*_2: the rational level of demand at p^*_2 is d^I_2, yet a market of projectors would
demand a quantity $d_2 > d^*_2$. Projectors’ consumer surplus is no longer simply the area below their demand curve and above the price, since all consumption beyond d^*_2 involves overpaying. Instead, projectors’ surplus is the area above p^*_2 yet below their valuation curve (the area in blue) minus the area below p^*_2 yet above their valuation curve (the area in red)—the latter area represents a loss to consumers.

![Graphs showing change in total surplus and total quantity demanded.](image)

(a) Change in Total Surplus
(b) Total Quantity Demanded

Figure 6: Total surplus and quantity demanded across both periods.

From a broader welfare perspective, projection can actually increase total surplus so long as the degree of projection is not too high. This follows from the fact that the total quantity demanded across both periods can be higher under projection than the rational benchmark. This reduces the traditional deadweight loss due to monopoly pricing. However, this inflated level of sales can sometimes be detrimental to total surplus, since sufficiently strong projection can induce consumers who have truly negative valuations to buy the good (as in Proposition 5). Such adoption is clearly inefficient. Figure 5 depicts a case where this inefficiency emerges; it is represented by the dark red triangle. Figure 6 shows how total surplus and total quantity demanded (across periods) change in the uniform example as a function of α; total surplus begins to fall once sales have expanded to the point that those with negative valuations are lured into buying.\(^{36}\)

4.2.2 Arbitrary Horizon

We now demonstrate how our declining-price result extends beyond $N = 2$. Namely, we show that the initial price is inflated above the static monopoly price, and prices gradually decline thereafter. This result follows from a novel trade-off the seller faces in any given period (except for the first or last one). On the one hand, lowering the current price allows the seller to reap high current sales

\(^{36}\)Figure 6 considers the same parameter values as Figure 4.
by exploiting the inflated beliefs generated by high prices in previous periods. On the other hand, keeping the price high and restraining current sales helps maintain inflated beliefs further into the future. This inter-temporal trade-off results in a declining optimal price path.

For this analysis, we continue to focus on the case in which private values are uniformly distributed over \([\underline{t}, \overline{t}]\), and we restrict attention to interior cases where it is never optimal to serve the lowest type (which amounts to assuming \(\underline{t}\) is sufficiently low).\(^{37}\) Equation (14) implies that the aggregate biased beliefs evolve according to

\[\bar{\omega}_{n+1} = \lambda [(1 - \alpha)\bar{\omega}(s) + \alpha p_n] + (1 - \lambda)\bar{\omega}_n. \]

Building from this recursive structure of beliefs, the following lemma shows how the aggregate belief in Generation \(n\) depends on each previous price.

Lemma 2. Suppose \((p_k, s)\) admits interior demand for all \(k \leq n\). The aggregate belief in period \(n\) is \(\bar{\omega}_n = (1 - \alpha)\bar{\omega}(s) + \alpha \tilde{p}^{n-1}\), where \(\tilde{p}^{n-1}\) is a weighted average of past prices:

\[\tilde{p}^{n-1} \equiv (1 - \lambda)^{n-2} p_1 + \sum_{k=2}^{n-1} \lambda(1 - \lambda)^{n-1-k} p_k. \]

Since the weights on all past prices in (18) sum to one (by virtue of being a weighted average), the overall effect of past prices on \(\bar{\omega}_n\) is always equal to \(\alpha\). Notably, however, more recent prices tend to carry more weight on the current belief than earlier ones.

The “stock variable” \(\tilde{p}^{n-1}\) captures the sway of past prices on current beliefs. As such, the features of the optimal price path are illuminated by re-writing the demand for Generation \(n\) in terms of \(\tilde{p}^{n-1}\) rather than \(\bar{\omega}_n\). From (13) and Lemma 2, demand in period \(n\) as a function of each previous price is

\[D(p_n; \tilde{p}^{n-1}, \bar{\omega}(s)) = \frac{(1 - \alpha) (\bar{t} + \bar{\omega}(s)) + \alpha (1 - \lambda) \tilde{p}^{n-1} - (1 - \lambda \alpha) p_n}{(1 - \alpha) (\bar{t} - \bar{t})}. \]

Given the objective function in Equation (15), we then arrive at the following first-order condition for the price in a non-terminal period \(n \geq 2\):

\[p_n = \frac{1}{1 - \lambda \alpha} \left((1 - \alpha) p^M + \frac{\alpha(1 - \lambda)}{2} \left[\tilde{p}^{n-1} + \sum_{k=n+1}^{N} p_k \frac{\partial \tilde{p}^{k-1}}{\partial p_n} \right] \right), \]

where we’ve used the fact that \(p^M = (\bar{t} + \bar{\omega}(s)) / 2\) when \((p^M, s)\) admits interior demand. The final

\(^{37}\) With uniform tastes, our usual assumption that \((p^M, s)\) admits interior demand is equivalent to \(\bar{\omega}(s) + \bar{t} > 0\) and \(\bar{\omega}(s) < \bar{t} - 2\bar{t}\). It is never optimal to serve the lowest projecting type if we also have \((1 - \alpha)\bar{\omega}(s) + \alpha \bar{p} < \bar{t} - 2\bar{t}\).
sum in Equation (20) highlights the intertemporal incentives in pricing. Namely, the seller has a greater incentive to inflate the current price in order to manipulate future consumers’ beliefs when: (i) the current period is earlier in the horizon, and thus influences a greater number of subsequent generations, and (ii) the current price has a stronger effect on any future generation’s beliefs (i.e. when $\frac{\partial p_{k-1}}{\partial p_n} = \lambda(1-\lambda)^{k-1-n}$ is larger). This leads to an optimal price path that declines over time.

Proposition 6. Suppose $\lambda \in (0, 1)$. Consider any $\alpha > 0$ and any s such that (p^M, s) admits interior demand.

1. The initial price is inflated: $p_1^* > p^M$.

2. The optimal price path is declining: For all $n \geq 2$, we have $p_n^* < p_{n-1}^*$.

As discussed above, this result follows from the seller balancing the trade-off between exploiting consumers’ current beliefs by undercutting the previous price versus manipulating the beliefs of future consumers by maintaining a high current price. While our model introduces a clear incentive to initially inflate the price and then drop it, it does not predict occasional sales where the price temporally drops and then returns to a high level. Rather, we predict a gradual decline in prices, which is consistent with the pricing pattern observed for novel products (e.g., a new smartphone or a new fitness program), where consumers are uncertain about the product’s quality; see Bayus (1992), Krishnan et al. (1999), Jain et al. (1999), Nair (2007), and Liu (2010).

![Figure 7: Example Price path for $N = 20$ for various degrees of projection. The example assumes $\bar{t} = 10$ and $\bar{\omega}(s) = 0.$](image)
Figure 7 provides an example of the optimal price path for $N = 20$ for different degrees of projection. Intuitively, the extent to which prices deviate from the monopoly price increases when α is high, since in this case prices have more sway on beliefs. Although it’s not captured in Figure 7, a similar intuition holds as λ decreases: deviating from the monopoly price is less costly when there are fewer informed agents.

This declining price path has natural implications for the path of aggregate beliefs and demand, as well. Since the current aggregate belief is a convex combination of the previous belief and price, a declining price path implies that beliefs also decline over time: later generations of consumers perceive a lower quality, on average, than earlier generations. Additionally, the quantity demanded in periods with distorted beliefs (i.e., for period 2 onward) is “U-shaped”: the inflated price in the first period leads Generation 2 to demand an aggregate quantity above the rational benchmark. However, as the price levels off near the rational monopoly price, the aggregate demand converges to the rational monopoly level. Finally, near the end of the horizon—once there is little remaining incentive to maintain high prices to manipulate future generations—the seller will lower the price below p^M, which again leads to significantly more sales than the rational monopoly benchmark.

5 Extensions and Further Applications

In this section, we discuss further implications of taste projection when we relax our assumptions that consumers (i) are short lived and (ii) have unit demand. We also consider how projection distorts portfolio choice in an application where agents learn from asset prices.

5.1 Endogenous Timing: Underappreciation of Selection Effects

Section 4 showed how high-to-low pricing can induce “short-lived” low-valuation projectors to excessively adopt the good. We now show that such over-adoption can arise even if the price is fixed when “long-lived” consumers can choose when to buy the good. Thus, the idea that projection causes uninformed consumers to be overly influenced by earlier purchases is not limited to settings with changing prices. To demonstrate the logic, we consider a two-period model. Uninformed consumers with low private values defer their decisions until the second period in order learn from the quantity demanded by early-adopters. But since they fail to appreciate the difference in tastes between themselves and those with an incentive to adopt early, they treat high initial demand as an overly-optimistic signal about the good’s quality. As such, they systematically over-consume and face greater disappointment relative to the rational benchmark.

38This reflects the fact that aggregate demand in the steady state of our model matches the aggregate demand under rational learning (Section 3). Hence, when the price is near constant for many periods, the resulting quantity demanded converges to the rational level given that (near) constant price; see Proposition 3.
More broadly, this application speaks to the empirical finding that late adopters exhibit greater disappointment with a product, as reflected by declining consumer reviews (e.g., Li and Hitt, 2008; Dai et al., 2018). In particular, we argue that taste projection provides a specific mechanism for why selection effects may be under-appreciated in this particular context: while projectors understand that there is selection across periods, they systematically underestimate the strength of this effect.

We consider a two-period variant of our dynamic model from Section 4. Instead of assuming a new mass of consumers in each period, there is a single group of consumers with unit demand who can buy in either period 1 or 2 (or not at all). We focus on the case where the price p is fixed across periods. We additionally assume T is uniform to ease exposition, but the logic will transparently generalize. Finally, as above, a fraction λ of consumers observe s while $1 - \lambda$ are uninformed.

Informed agents buy in period 1 or never, since they have nothing to learn from delaying; they buy immediately if $\bar{\omega}(s) + t \geq p$.\(^{39}\) Uninformed agents with low private values may defer their purchase decision to period 2 in order to learn from those adopting in period 1. Specifically, an uninformed agent buys in period 1 if $\bar{\omega}_0 + t \geq p$, where $\bar{\omega}_0$ reflects the expected quality among uninformed agents.\(^{40}\) Otherwise, they observe the quantity demanded in period 1, form an updated expectation $\hat{\omega}$, and then buy in period 2 if $\hat{\omega} + t \geq p$.

The quantity demanded in period 1 is $d_1 = \lambda D(p; \bar{\omega}(s)) + (1 - \lambda) D(p; \bar{\omega}_0)$ where $D(p; \omega) = 1 - F(p - \omega)$. As usual, a projecting agent in period 2 with taste t updates their belief to $\hat{\omega}_2(t)$, which is the value $\hat{\omega}$ that fits their model to the observed outcome: $\hat{\omega}$ solves $d_1 = \lambda \tilde{D}(p; \hat{\omega}|t) + (1 - \lambda) \tilde{D}(p; \bar{\omega}_0|t)$, where $\tilde{D}(p; \omega|t) = 1 - \tilde{F}(p - \omega(t))$. To state our result, we impose some convenient technical assumptions to ensure that there are well-defined marginal types in period 2 under both rational inference and projection, denoted by t^*_2 and \hat{t}_2, respectively. Namely, suppose that $D(p; \bar{\omega}_0) \in (0, 1)$, $\tilde{D}(p; \bar{\omega}_0|\hat{t}) > 0$, and $d_1 \leq \lambda + (1 - \lambda) \tilde{D}(p; \bar{\omega}_0|\hat{t})$. The first condition means that an interior fraction of uninformed agents delay. The final two conditions mean that all projectors expect an interior fraction to delay and the observed demand is consistent with their models; this happens when λ is sufficiently large compared to α.

Proposition 7. Consider the setup above. Suppose (p, s) admits interior demand and $\lambda > \alpha > 0$.

1. Suppose informed agents have positive information about the good; i.e., $\bar{\omega}(s) > \bar{\omega}_0$. (i) The quantity demanded in period 2 exceeds the rational benchmark, and the range of types who suboptimally adopt, $[\hat{t}_2, t^*_2]$, is increasing in both α and $\bar{\omega}(s) - \bar{\omega}_0$. (ii) There exists a threshold value $\tilde{t} > t^*_2$ such that all types $t \in [\hat{t}_2, \tilde{t}]$ will, on average, receive lower quality than they expect; i.e., $t < \tilde{t}$ implies $\mathbb{E}[\omega - \hat{\omega}_2(t)|s] < 0$.

\(^{39}\)This relies on a mild (unmodeled) assumption that delaying consumption is costly to consumers, or that indifference is broken in favor of buying sooner rather than later.

\(^{40}\)Our conclusions in this application would not change if $\bar{\omega}_0$ were to depend on p—which might naturally occur if p partially signals quality—so long as informed consumers have additional information that is not revealed by p.

35
2. Suppose informed agents have negative information about the good; i.e., $\bar{\omega}(s) < \bar{\omega}_0$. Then there is zero demand in period 2, as in the rational benchmark.

Proposition 7 stems from projectors underestimating the natural selection effect that emerges in such environments: consumers who decide to buy in period 1 tend to have higher private values than those who delay. Those who delay are aware of this selection effect, but they underestimate it. Since the delayers systematically underestimate the private values of those with stronger tastes than them, they over-attribute observations from period 1 to quality rather than this difference in tastes. When d_1 is stronger than expected, delayers become too optimistic and buy—they are subsequently disappointed by the quality they receive. When d_1 is weaker than expected, delayers become too pessimistic and don’t buy. However, they would not buy based on this bad news even if rational: since they were unwilling to buy with belief $\bar{\omega}_0$, they are only willing to buy in period 2 if they receive good news. Hence, projection generates an asymmetric bias in behavior, leading to over-adoption among delayers, but not under-adoption. Additionally, insofar as unmet quality expectations drive negative product reviews, the fact that over-adoption is coupled with systematic disappointment suggests that high initial reviews for a product will too frequently be followed by negative reviews (Li and Hitt, 2008; Papanastasiou et al., 2015; Dai et al., 2018).

5.2 Static Case with Multi-Unit Demand

We now revisit the static equilibrium from Section 3 but allow for consumers to have multi-unit demand. As before, consumers still form type-dependent beliefs that are negatively related to their tastes. In contrast to that previous case, however, projectors now fine-tune their actions to their erroneous beliefs. Thus, all projecting types will generically consume a sub-optimal amount in equilibrium, leading to potentially large inefficiencies. In particular, since perceptions are negatively related to tastes, high types underconsume while low types overconsume.41

For simplicity, we consider the familiar case of quadratic utility (see, e.g., Judd and Riordan, 1994; Caminal and Vives, 1996), where a consumer’s valuation for x units of the good is given by $u(x; \omega, t) = (\omega + t)x - x^2/2$. A consumer with a quality expectation of $\hat{\omega}$ facing a per-unit price of p then demands a quantity $x^*(p; \hat{\omega}, t) = \hat{\omega} + t - p$ if $\hat{\omega} + t - p \geq 0$ and $x^*(p; \hat{\omega}, t) = 0$ otherwise.

As in Section 3, a fraction λ of consumers observe s and form a quality expectation of $\bar{\omega}(s)$. The remaining fraction $1 - \lambda$ form this expectation based on the aggregate demand (and price p). The steady-state equilibrium is analogous to the one defined above: uninformed agents make inferences that are consistent with the observed quantity demanded and their misspecified model.

41 Although this is straightforward given our earlier results on biased perceptions, it is nevertheless important to verify whether projection indeed creates steady-state inefficiencies—the reason such inefficiencies were absent in Section 3 was an artifact of the unit-demand structure.
and the resulting quantity is consistent with those beliefs. More specifically, let \(\hat{\omega}(t) \) be type \(t \)'s quality expectation in equilibrium; this type will then demand \(x^*(p; \hat{\omega}(t), t) \) units. The aggregate demand in equilibrium is thus

\[
d = \lambda \cdot \int_T x^*(p; \hat{\omega}(s), t) dF(t) + (1 - \lambda) \cdot \int_T x^*(p; \bar{\omega}(t), t) dF(t). \tag{21}
\]

Since uninformed agents expect that all types reach a common and correct expectation of \(\omega \) in equilibrium, each \(\hat{\omega}(t) \) is the value that predicts quantity \(d \) under type \(t \)'s model given the presumption that all types have inferred this same value.

Proposition 8. Suppose \(\lambda \in (0, 1) \) and consider \((p, s) \) that admits positive aggregate demand among informed consumers. For any \(\alpha > 0 \), there exists a unique equilibrium profile of beliefs, \(\hat{\omega}(t) \), and it has the following properties:

1. **Quality perceptions are negatively related to tastes:** \(\hat{\omega}(t) \) is strictly decreasing in \(t \).

2. **Relative to the rational benchmark, demand along the extensive margin increases:** the lowest uninformed type who buys a positive quantity is lower than the lowest type who buys a positive quantity in the rational benchmark.

3. **Relative to the rational benchmark, high types demand too little and low types demand too much:** there exists an interior threshold type \(\tilde{t} \) such that \(t > \tilde{t} \) implies that \(x^*(p; \hat{\omega}(t), t) < x^*(p; \hat{\omega}(s), t) \) and \(t < \tilde{t} \) implies that \(x^*(p; \hat{\omega}(t), t) > x^*(p; \hat{\omega}(s), t) \).

4. **More extreme types exhibit greater inefficiency:** \(|x^*(p; \hat{\omega}(t), t) - x^*(p; \hat{\omega}(s), t)| \) is strictly increasing in \(|t - \tilde{t}| \).

The intuition for Part 1 of Proposition 8 is identical to the unit-demand case. However, consumers now tailor their individual demand to their idiosyncratic beliefs. This underlies Part 2: since high types are typically underwhelmed by the observed demand, they consume too little; low types instead consume too much. In this sense, consumption along the intensive margin is reduced, since projection reduces the quantity demanded among the high types who consume the most. But consumption along the extensive margin increases (Part 3). That is, the set of types who consume the good in equilibrium expands: some low types who would entirely abstain under rational inference are now persuaded to use the product. Parts 2 and 3 together imply that, relative to the rational benchmark, consumption is spread more thinly across a wider range of buyers.

The logic behind these results is quite transparent as \(\alpha \to 1 \). In this case, observers think there is essentially no heterogeneity in tastes, and that aggregate demand derives from all individuals.
consuming roughly the same quantity. From a projector’s point of view, the average quantity demanded is then a near perfect signal about how much he himself should consume—he should consume that same amount, since he is just like everybody else. Thus, in equilibrium, the difference in consumption across types narrows, while the set of types who consume expands.

Finally, among the segment of consumers who adopt in equilibrium, those with types closer to the extremes make worse decisions (Part 4). Intuitively, these types are farther from the average buyer, and thus their mental model provides a worse interpretation of the data. A truly average projecting consumer is fairly accurate when she imagines that most people share her tastes. But those with more esoteric tastes form a more distorted world view when assuming their tastes are typical. Proposition 8, along with the results of Section 4, reveal that where the burden of projection falls depends on the demand structure: with single-unit demand, it is only low types who can be manipulated into inefficiently adopting a product; with multi-unit demand, the burden primarily falls on extreme types, either high or low.

5.3 Inference from Price and Portfolio Choice

In our final application, we consider a setting where agents observe only the market price and not others’ actions. This allows us to demonstrate that taste projection continues to distort perceptions about a commonly-valued feature in similar ways even when agents draw inferences from prices alone. In showing this, we also shed light on how taste projection may influence asset markets.

Specifically, we consider a canonical portfolio-choice problem where traders learn about the expected return of a risky asset based on its equilibrium price. Similar to the classical models of Grossman (1976) and Grossman and Stiglitz (1980), we consider a competitive rational-expectations equilibrium of a market in which traders exchange a risky asset for a riskless one over one period. As in the standard setup, we assume that traders have constant absolute risk aversion and face a Gaussian information structure. However, we assume that traders differ in their degree of risk aversion and project their taste for risk onto one another. For brevity, the details and formal analysis are in Appendix B.1. The basic results mirror those above: traders who are less risk tolerant become overly optimistic about the expected return and hold too much of the risky asset (relative to their optimal portfolio), while traders who are more risk tolerant become overly pessimistic and hold too little.

We also show that projection puts downward pressure on the market-clearing price. This stems from the fact that, relative to less risk-tolerant traders, the individual demands of more risk-tolerant ones are more sensitive to their expectations over the risky asset’s return. Thus, the perceptions formed by these traders have greater influence on the market price. And since these perceptions tend to be overly-pessimistic, the market price under projection drops below the rational-
benchmark price. Of course, this conclusion relies on our assumption that all traders have the same degree of projection. If, for instance, the risk-tolerant traders tend to be institutional investors who do not suffer from projection, then the overly-optimistic perceptions of the risk-averse traders may inflate the price above the rational benchmark.

6 Conclusion

Evidence suggests that people often misperceive others’ tastes, attitudes, and motives by exaggerating the similarity between others and themselves. In this paper, we have examined some basic market implications that arise when consumers interpret market data through the lens of these misperceptions. In contexts where consumers aim to learn the commonly-valued quality of a product from others’ demand, we showed that projection leads to systematically distorted beliefs. Namely, projecting consumers will form estimates of the quality that are negatively related to their tastes, and these estimates are increasing in the product’s price. These misinferences create new pricing incentives for a monopolistic seller: in a dynamic setting, the seller will charge high initial prices to inflate future consumers’ beliefs and then will gradually lower the price to capitalize on these distorted beliefs. Projection also has implications for efficiency. For instance, either the seller’s manipulative pricing or a failure to appreciate selection effects can lead projectors to over-adopt a good even when such adoption is inefficient under rational learning. It is worth emphasizing that our statements about efficiency implicitly disregard externalities; indeed, projection could be beneficial from a social-welfare perspective when large-scale adoption is a critical objective (e.g., adoption of clean-energy technologies). We leave this analysis for future work.

There are several other potential applications of our framework. As discussed above, projection leads to lower dispersion in consumers’ valuations and hence to a counter-clockwise rotation of the market demand curve. Johnson and Myatt (2006) study how demand rotations influence various features of a monopolist’s marketing strategies. In this sense, the insights from Johnson and Myatt (2006) should apply to a market with projectors. For instance, in a setting where the seller engages in second-degree price discrimination by offering a menu of multi-unit bundles, they show that a counter-clockwise rotation of the demand curve can lead the seller to prefer a smaller menu. Thus, a seller should have a similar preference when facing projecting consumers versus rational ones.

Finally, projection may also distort an individual’s perception of her information sources in various ways. For instance, consider an individual who is uncertain about the variance in signals conditional on \(\omega \) and updates her belief over this value after consuming the good and learning \(\omega \). This belief revision will depend on the deviation between \(\omega \) and her expectation, \(\hat{\omega}(t) \). Since \(\hat{\omega}(t) \) is typically biased, projectors will, on average, perceive greater deviations between the realized quality and their expectations, leading them to overestimate the variance in signals. Thus, projectors
may come to underweight valuable information. Alternatively, suppose consumers entertain the possibility that others may be biased in favor of a particular option (e.g., a particular brand, author, or politician), supporting it even when they know it has low quality. If a projector forms beliefs about whether such a bias exists ex post, she will be predisposed to think others are systematically biased against options that suit her tastes. This is because the observed popularity of the option will be inconsistent with a projector’s misspecified model once she learns its true quality. For example, a projector who realizes that she dislikes an option will observe a stronger demand than expected; she may therefore conclude that others’ support stems from some ulterior motive, neglecting that it may come from mere differences in tastes. Such skepticism of others’ motives may lead people to discredit others’ actions, which may shed light on why some groups are unmoved by others’ actions even when they reveal valuable information.

References

Appendix

A Alternative Signal Structures

In this appendix, we show that our key comparative statics emerge in settings with richer heterogeneity in private information. We also note a few additional implications that emerge in these settings.

A.1 Fully-Heterogeneous Private Signals

In this section, we consider the case in which each agent receives a private signal correlated with \(\omega \). We show that a projector’s inferred quality upon observing the aggregate quantity demanded by these privately informed agents is still: (i) negatively related to her taste; and (ii) positively related to the price that predecessors paid. We will show this in a two-period model similar to Section 4.

As in the main text, suppose that individuals share a common prior over \(\omega \) with support \(\Re \). In each generation \(n = 1, 2 \), individual \(i \) observes the realization of a private signal \(S_{i,n} \) that is correlated with \(\omega \). We assume that signals are i.i.d. across all individuals in both periods, and that no signal realization perfectly reveals \(\omega \). Let \(Z_{i,n} \equiv \mathbb{E}[\omega|S_{i,n}] \) denote a consumer’s “private belief”—their expected quality conditional on their signal and the prior. We work directly with the distribution of \(Z_{i,n} \) conditional on \(\omega \) rather than conditional distributions over signals. As such, let \(Z(\omega) \) denote the random variable representing individuals’ private beliefs conditional on \(\omega \). We assume that \(Z(\omega) \) can be expressed as \(Z(\omega) = m(\omega) + Y \) for some strictly increasing function \(m \) and a random variable \(Y \) that is independent of \(\omega \) (and \(T \)) and has a log-concave density.\(^{42}\) This implies that consumers’ interim valuations for the good in period 1 are distributed according to \(V(\omega) \equiv m(\omega) + Y + T \). Let \(H(\cdot; \omega) \) denote the CDF of \(V(\omega) \). In period 1, individuals act on their private signals alone. Thus, the demand function in period 1 is \(D_1(p; \omega) \equiv 1 - H(p_1; \omega) \).

Fixing the true quality \(\omega \), we are interested in the inferred quality of consumers in period 2 upon observing \(d_1 = D(p_1; \omega) \) and price \(p_1 \). Let \(\hat{\omega}(t; p_1) \) denote the quality inferred by a consumer with taste \(t \).

Proposition A.1 (Comparative Statics in the Heterogeneous-Signal Model). Consider the signal structure of Section A.1. Fix \(\omega \), and consider any \(p_1 \) such that demand in period 1 is interior (i.e., \(d_1 \in (0, 1) \)). For any \(\alpha > 0 \), the inferred quality of a projector with type \(t \) who observes \(d_1 \) is: (i) decreasing in \(t \) (ii) increasing in \(p_1 \).

The proof, presented below, follows a similar logic to the graphical argument in Figure 2. Since a projector thinks interim valuations are less dispersed than they truly are, her perceived demand curve intersects the true demand curve at a point where the perceived demand curve has a greater price elasticity. Thus, to explain a market outcome at a higher price, the projector must consider a demand curve that is shifted outward relative to the initial perceived demand. This outward shift corresponds to a higher perceived quality. The key difference between this case and the one considered in the main text is that the observed quantity demanded now results from both variation in consumers’ tastes and variation in their signals. We therefore make use of results on the

\(^{42}\)This structure nests the familiar Gaussian structure noted in the main text, but is also more general.
“dispersion ordering” of convolutions of log-concave random variables to prove that the perceived and true demand curves continue obey a single-crossing property crucial to the logic depicted in Figure 2 even when consumers’ have disperse private information.

Proof of Proposition A.1. Fix ω, and consider any p_1 such that the quantity demanded in period 1 is interior (i.e., $d_1 \in (0, 1)$). We examine how $\hat{\omega}(t; p_1)$ varies in t and p_1. Note that $\hat{\omega}(t; p_1)$ is the value of $\hat{\omega}$ that solves $\hat{D}_1(p_1; \hat{\omega}) = D_1(p_1; \omega)$, where $\hat{D}_1(p_1; \hat{\omega})$ is type t’s misperceived demand function: $\hat{D}_1(p_1; \hat{\omega}) = 1 - \hat{H}(p_1; \hat{\omega})$ where $\hat{H}(\cdot; \hat{\omega})$ is the CDF of $\hat{V}(\hat{\omega}|t) \equiv m(\hat{\omega}) + Y + \hat{T}(t)$. Hence $\hat{\omega}(t; p_1)$ is the value of $\hat{\omega}$ that solves $L(\hat{\omega}; t, p_1) \equiv \hat{D}_1(p_1; \hat{\omega}) - D_1(p_1; \omega) = 0$.

Part 1: The Effect of t on Perceived Quality. By the Implicit Function Theorem (IFT):

\[
\frac{\partial \hat{\omega}(t; p_1)}{\partial t} = -\frac{\partial L(\hat{\omega}; t, p_1)}{\partial t} \left(\frac{\partial L(\hat{\omega}; t, p_1)}{\partial \hat{\omega}} \right)^{-1} \bigg|_{\hat{\omega} = \hat{\omega}(t; p_1)}. \tag{A.1}
\]

Notice that, for any p_1 that generates interior demand and any t, $\frac{\partial}{\partial \omega} L(\hat{\omega}; t, p_1) = \frac{\partial}{\partial \omega} \hat{D}_1(p_1; \hat{\omega}) > 0$ given our mild assumption that demand is increasing in quality (i.e., m is a strictly increasing function).

Thus

\[
\text{sgn} \left(\frac{\partial \hat{\omega}(t; p_1)}{\partial t} \right) = \text{sgn} \left(-\frac{\partial L(\hat{\omega}; t, p_1)}{\partial t} \bigg|_{\hat{\omega} = \hat{\omega}(t; p_1)} \right). \tag{A.2}
\]

Note that

\[-\frac{\partial L(\hat{\omega}; t, p_1)}{\partial t} = -\frac{\partial}{\partial t} \hat{D}_1(p_1; \hat{\omega}) < 0. \tag{A.3}\]

This follows from the fact that $t' > t$ implies that $\hat{V}(\hat{\omega}|t')$ first-order stochastically dominates $\hat{V}(\hat{\omega}|t)$ since in this case $\hat{T}(t')$ first-order stochastically dominates $\hat{T}(t)$; accordingly, $\hat{H}(p_1; \hat{\omega})$ is decreasing in t and thus $\hat{D}_1(p_1; \hat{\omega})$ is increasing in t.

Part 2: The Effect of p on Perceived Quality. Invoking the IFT again, the discussion following (A.1) implies that

\[
\text{sgn} \left(\frac{\partial \hat{\omega}(t; p)}{\partial p} \right) = \text{sgn} \left(-\frac{\partial L(\hat{\omega}; p)}{\partial p} \bigg|_{\hat{\omega} = \hat{\omega}(t; p_1)} \right). \tag{A.4}
\]

Note that

\[-\frac{\partial L(\hat{\omega}; p)}{\partial p} = \frac{\partial}{\partial p} D_1(p; \omega) - \frac{\partial}{\partial p} \hat{D}_1(p; \hat{\omega}). \tag{A.5}\]

With downward-sloping demand functions, the previous expression is positive when evaluated at $\hat{\omega}(t; p_1)$ iff

\[
\left| \frac{\partial}{\partial p} D_1(p_1; \omega) \right| < \left| \frac{\partial}{\partial p} \hat{D}_1(p_1; \hat{\omega}(t; p_1)|t) \right|; \tag{A.6}
\]

that is, iff the perceived demand function is locally more price sensitive at the original market outcome than the true demand function.

Since $\hat{\omega}(t; p_1)$ is a state in which type t’s perceived demand curve intersects the true demand curve at the observed market outcome (d_1, p_1) (i.e., $\hat{D}_1(p_1; \hat{\omega}(t; p_1)|t) = d_1 = D_1(p_1; \omega)$), a sufficient condition for Condition (A.6) is that for any arbitrary $\hat{\omega}$, $\hat{D}_1(\cdot; \hat{\omega})$ crosses $D_1(\cdot; \omega)$ at most once and does so from above. That is, there exists at most one price p^* such that $\hat{D}_1(p^*; \hat{\omega} =
\[D_1(p^*; \omega), \text{ and } p^* \text{ is such that } \widehat{D}_1(p^*; \hat{\omega}|t) < D_1(p^*; \omega) \text{ for all } p > p^* \text{ and } \widehat{D}_1(p; \hat{\omega}|t) > D_1(p; \omega) \text{ for all } p < p^*. \] (Note that the demand curves in Figure 2 are drawn, as usual, with \(p \) on the \(y \)-axis; from that perspective, the previous condition implies that the perceived demand curve crosses the true one from below.)

To complete the proof, we prove the sufficient condition above: for any arbitrary \(\hat{\omega} \) and \(t \), there exists at most one price \(p^* \) such that \(\widehat{D}_1(p^*; \hat{\omega}|t) = D_1(p^*; \omega) \), and \(p^* \) is such that \(\widehat{D}_1(p^*; \hat{\omega}|t) < D_1(p^*; \omega) \) for all \(p > p^* \) and \(\widehat{D}_1(p^*; \hat{\omega}|t) > D_1(p^*; \omega) \) for all \(p < p^* \). Given that \(D_1(p; \omega) = 1 - H(p; \hat{\omega}) \) and \(\widehat{D}_1(p; \hat{\omega}|t) = 1 - H(p; \hat{\omega}|t) \), it suffices to show that \(\widehat{H}(p|\hat{\omega}; t) \) crosses \(H(p|\omega) \) at most once and does so from below (i.e., there exists at most one price \(p^* \) such that \(\widehat{H}(p|\hat{\omega}; t) < H(p|\omega) \) if \(p < p^* \) and \(\widehat{H}(p|\hat{\omega}; t) > H(p|\omega) \) if \(p > p^* \)).

We prove this using the concept of dispersive ordering defined by Shaked (1982) and Shaked and Shanthikumar (2007). For any arbitrary random variables \(X \) and \(Y \) with CDFs \(F_X \) and \(F_Y \), we say that \(X \) is less dispersed than \(Y \), denoted \(X \leq_{\text{disp}} Y \), if \(F_X^{-1}(b) - F_X^{-1}(a) \leq F_Y^{-1}(b) - F_Y^{-1}(a) \) whenever \(0 \leq a \leq b \leq 1 \). By Theorem 2.1 of Shaked and Shanthikumar (2007), \(X \leq_{\text{disp}} Y \) if \(F_X \) crosses \(F_Y \) at most once and does so from below. Thus, it suffices to show that \(\widehat{V}(\hat{\omega}; t) \leq_{\text{disp}} V(\omega) \), which is equivalent to \(\widehat{T}(t) + Z(\hat{\omega}) \leq_{\text{disp}} T + Z(\omega) \). Since \(Z(\omega) = m(\omega) + Y \), the previous condition is equivalent to \(\widehat{T}(t) + m(\hat{\omega}) + Y \leq_{\text{disp}} T + m(\omega) + Y \), where \(m(\hat{\omega}) \) and \(m(\omega) \) are constants given that we are conditioning on \(\omega \) and \(\hat{\omega} \). As noted in Comment 3.B.2 of Shaked and Shanthikumar (2007), the order \(\leq_{\text{disp}} \) is location invariant, meaning that \(\widehat{T}(t) + m(\hat{\omega}) + Y \leq_{\text{disp}} T + m(\omega) + Y \) since \(Y \) has a log-concave density and is independent of \(T \) and \(\widehat{T}(t) \), Theorem 3.B.8 of Shaked and Shanthikumar (2007) implies that \(\widehat{T}(t) + Y \leq_{\text{disp}} T + Y \) if \(\widehat{T}(t) \leq_{\text{disp}} T \). Thus, to complete the proof it suffices to show that \(\widehat{T}(t) \leq_{\text{disp}} T \). Again by Theorem 2.1 of Shaked (1982), this holds so long as \(\widehat{F}(\cdot|t) \) crosses \(F \) only once and does so from below. This is true by Part 4 of Observation 1, completing the proof. \[\blacksquare\]

A.2 Heterogeneous Signals Across Periods

In this section, we consider the structure in which each generation of consumers observes a distinct signal. All consumers in each Generation \(n \) observe the same signal realization, which we denote by \(s_n \). We assume that \(s_n \) is i.i.d. for all \(n \). Furthermore, \(s_n \) is “quasi-public”: it is observed by all agents within Generation \(n \), but not by agents in any other generation.\(^{43}\) As in the main text (and the previous appendix section), we again show that the perceived quality of each agent in each Generation \(n \geq 2 \) is: (i) negatively related to their taste; and (ii) positively related to the price that predecessors paid.

Setup. Agents in Generation \(n \) attempt to infer the posterior beliefs of agents in period \(n - 1 \) from their quantity demanded. If agents are rational, then all agents in each generation hold a common expectation over \(\omega \). Let \(\tilde{\omega}_{n-1} \) denote this rational expectation among Generation \(n - 1 \) for \(n \geq 2 \). Agents in Generation \(n \) can then perfectly extract \(\tilde{\omega}_{n-1} \) from the observed market coverage in Generation \(n - 1 \) (assuming this value is interior).

To make matters concrete, we consider the familiar Gaussian information structure: \(\omega \sim \)
\(N(\bar{\omega}_0, \rho^2)\), and \(s_n \sim N(\omega, \eta^2)\). Rational updating then takes the form

\[
\hat{\omega}_n = \gamma_n s_n + (1 - \gamma_n)\bar{\omega}_{n-1}, \quad \text{where} \quad \gamma_n = \frac{1}{n + \eta^2/\rho^2}.
\]

(A.7)

As the updating process in A.7 suggests, a rational Generation \(n\) will combine their own signal, \(s_n\), with the inferred posterior belief of Generation \(n - 1\), \(\bar{\omega}_{n-1}\), to reach their posterior estimate of \(\omega\).

With projection, an agent in Generation \(n\) thinks he can perfectly extract the posterior expectation of \(\omega\) held by the previous generation, but does so incorrectly. As usual, his incorrect inference will depend on his taste, \(t\). Denote this (mis)extracted value of \(\bar{\omega}_{n-1}\) by \(\bar{\omega}_{n-1}(t)\). The projector will then use A.7 to form a posterior estimate of \(\gamma_n s_n + (1 - \gamma_n)\bar{\omega}_{n-1}(t)\). Below, we analyze how projectors’ beliefs evolve within this structure.

We first consider how beliefs evolve within the first few periods. For simplicity, we normalize \(\bar{\omega}_0 = 0\). Since Generation 1 does not observe others, their is no scope for mislearning in period 1. Hence, agents in Generation 1 share a common (rational) estimate of \(\omega\) equal to \(\bar{\omega}_1 = \gamma_1 s_1\). Thus, an agent buys iff \(\bar{\omega}_1 + t_i \geq p_1 \iff t_i \geq p_1 - \bar{\omega}_1\), and hence demand in period 1 is

\[
D_1(p_1; \bar{\omega}_1) = 1 - F(p_1 - \bar{\omega}_1).
\]

(A.8)

Distorted Beliefs in Generation 2. An agent in Generation 2 with taste \(t\) thinks that, conditional on Generation 1 holding a posterior expectation of \(\hat{\omega}\), their demand is given by

\[
\hat{D}_1(p_1; \hat{\omega}|t) = 1 - \hat{F}(p_1 - \hat{\omega}|t) = 1 - F\left(\frac{p_1 - \hat{\omega} - \alpha t}{1 - \alpha}\right).
\]

(A.9)

This agent wrongly infers that the posterior expectation in Generation 1 is the value of \(\hat{\omega}\) that solves \(D(p_1; \hat{\omega}_1) = D(p_1, \hat{\omega}|t)\), which we denote by \(\hat{\omega}_1(t)\). Hence,

\[
\hat{\omega}_1(t) = (1 - \alpha)\bar{\omega}_1 + \alpha(p_1 - t).
\]

(A.10)

This misperception is identical to the one formed by agents in Generation 2 of the baseline model in the main text (see Equation 10). Furthermore, given that \(\bar{\omega}_1 = \gamma_1 s_1\), the preceding equation implies that an agent with taste \(t\) misinfers the signal to be

\[
\hat{s}_1(t) = (1 - \alpha)s_1 + \frac{1}{\gamma_1}\alpha(p_1 - t).
\]

(A.11)

An immediate implication of (A.10) and (A.11) is that, under projection, an observer underweights the true information of the previous generation. Moreover, they wrongly put weight on irrelevant factors (i.e., the price and their own taste), and this erroneous weight is larger when signals are less precise relative to the prior (i.e., when \(\gamma_1\) is smaller). There is a straightforward intuition for this. A projector will, on average, observe a level of demand that deviates from their initial expectations since they incorrectly predict demand conditional on the signal. They attribute this deviation to the value of \(s_1\). Thus, when a projector anticipates that the signal will have little effect on predecessors’ beliefs (i.e., \(\gamma_1\) is small), they require a more extreme value of \(s_1\) to rationalize the deviation between the observed demand and their biased predictions.

Now consider demand in Generation 2. An agent with taste \(t\) forms an expectation of \(\omega\) based
on \(s_2 \) and \(\omega_1(t) \) equal to \(\mathbb{E}[\omega|s_2, \omega_1(t)] = \gamma_2 s_2 + (1 - \gamma_2) \omega_1(t) \). Using the expression for \(\omega_1(t) \) above, the expected valuation of an agent in Generation 2 with taste \(t \) is

\[
\mathbb{E}[u(\omega, t)|s_2, \omega_1(t)] = \gamma_2 s_2 + (1 - \gamma_2) \left((1 - \alpha) \omega_1 + \alpha p_1 \right) + \left(1 - \alpha (1 - \gamma_2) \right) t. \tag{A.12}
\]

Let \(\hat{\omega}_2(t) \) denote the expected valuation in (A.12). Similar to the approach in the main text, we can write this perceived valuation in terms of a taste-independent component, denoted by \(\bar{\omega}_2 \), where

\[
\bar{\omega}_2 \equiv \gamma_2 s_2 + (1 - \gamma_2) \left((1 - \alpha) \bar{\omega}_1 + \alpha p_1 \right). \tag{A.13}
\]

In the rational model (i.e., \(\alpha = 0 \)), \(\bar{\omega}_2 \) reduces to \(\bar{\omega}_2 \)—the rational expectation of \(\omega \) given \((s_1, s_2)\). Given (A.13), we can write perceived valuations in Generation 2 as \(\bar{\omega}_2(t) = \bar{\omega}_2 + \beta_2 t \), where \(\beta_2 \equiv 1 - \alpha (1 - \gamma_2) \).

The Evolution of Beliefs. In fact, the perceived valuations of consumers in all Generations \(n \geq 2 \) can be expressed as \(\bar{\omega}_n(t) = \bar{\omega}_n + \beta_n t \) where \(\bar{\omega}_n \) is independent of tastes. Thus, the dynamics of the model are described by the evolution of the sequences of \((\bar{\omega}_n)\) and \((\beta_n)\).

To verify for this claim, suppose that, as in Generation 2, the perceived valuations of agents in any Generation \(n > 2 \) are given by \(\hat{\omega}_n(t) = \bar{\omega}_n + \beta_n t \). The demand in period \(n \geq 1 \) is then

\[
D_n(p_n; \bar{\omega}_n) \equiv 1 - F \left(\frac{\beta_n (p_n - \bar{\omega}_n)}{1 - \alpha} \right). \tag{A.14}
\]

A projecting agent in Generation \(n + 1 \) with taste \(t \) thinks that agents in Generation \(n \) share a common expectation of \(\omega \), denoted \(\bar{\omega}_n \), and thus have a demand given by

\[
\hat{D}_n(p_n; \bar{\omega}_n) = 1 - \hat{F}(p_n - \bar{\omega}_n) = 1 - F \left(\frac{p_n - \bar{\omega} - \alpha t}{1 - \alpha} \right). \tag{A.15}
\]

The agent thus infers that the posterior expectation of Generation \(n \) is the value of \(\bar{\omega}_n \) that equates (A.14) and (A.15), yielding

\[
\bar{\omega}_n(t) = \left(\frac{1 - \alpha}{\beta_n} \right) \bar{\omega}_n + \left(1 - \frac{1 - \alpha}{\beta_n} \right) p_n - \alpha t. \tag{A.16}
\]

Thus, the updated expectation of \(\omega \) for an agent with taste \(t \) in Generation \(n + 1 \) is

\[
\mathbb{E}[\omega|s_{n+1}, \bar{\omega}_n(t)] = \gamma_{n+1} s_{n+1} + (1 - \gamma_{n+1}) \left[\left(\frac{1 - \alpha}{\beta_n} \right) \bar{\omega}_n + \left(1 - \frac{1 - \alpha}{\beta_n} \right) p_n - \alpha t \right]. \tag{A.17}
\]

This agent’s total perceived valuation is \(\hat{v}_{n+1}(t) = \mathbb{E}[\omega|s_{n+1}, \bar{\omega}_n(t)] + t \); hence,

\[
\hat{v}_{n+1}(t) = \gamma_{n+1} s_{n+1} + (1 - \gamma_{n+1}) \left[\left(\frac{1 - \alpha}{\beta_n} \right) \bar{\omega}_n + \left(1 - \frac{1 - \alpha}{\beta_n} \right) p_n + \alpha t \right] + \left(1 - \alpha (1 - \gamma_{n+1}) \right) t.
\]
This reveals how \((\beta_n)\) and \((\bar{\omega}_n)\) evolve:

\[
\beta_{n+1} = 1 - \alpha (1 - \gamma_{n+1}), \quad (A.18)
\]

\[
\bar{\omega}_{n+1} = \gamma_{n+1} s_{n+1} + (1 - \gamma_{n+1}) \left[\left(\frac{1 - \alpha}{\beta_n} \right) \bar{\omega}_n + \left(1 - \frac{1 - \alpha}{\beta_n} \right) p_n \right]. \quad (A.19)
\]

Thus, for all \(n \geq 2\), the perceived valuations of consumers in period \(n\) are given by \(\hat{v}_n(t) = \bar{\omega}_n + \beta_n t\), where \(\beta_n\) and \(\bar{\omega}_n\) and follow the processes in (A.18) and (A.19), respectively, starting from the initial conditions of \(\beta_1 = 1\) and \(\bar{\omega}_1 = \bar{\omega}_1 = \gamma_1 s_1\). Furthermore, the quantity demanded in each period \(n\) is given by \(d_n = D_n(p_n; \bar{\omega}_n)\) as in (A.14).\(^{44}\)

There are a few features of this process worth noting. First, since \(\gamma_n\) is monotonically decreasing in \(n\) with \(\lim_{n \to \infty} \gamma_n = 0\), it follows that \(\beta_n\) monotonically decreases from 1 and converges to \(1 - \alpha\). Thus, in every period, a consumer’s perceived valuation puts too little (yet positive) weight on his own taste. In the limit, this diminished weight is equal to \(1 - \alpha\). This is identical to our results in both the static and dynamic cases of our baseline model in the main text. See, for instance, the discussion preceding Proposition 2.

Additionally, since \(\beta_n \in (1 - \alpha, 1)\) for all \(n\), the term \((1 - \alpha)/\beta_n\) that appears in the transition equation for \((\bar{\omega}_n)\) must take a value in \((0, 1)\). Thus, the term in square brackets in Equation (A.19) is a convex combination of \(\bar{\omega}_n\) and \(p_n\), implying that the aggregate biased belief in each period \(n\) is strictly increasing in the price faced by the previous generation. Furthermore, the weight on \(\bar{\omega}_n\) (i.e., \((1 - \alpha)/\beta_n\)) converges to 1 as \(n \to \infty\), and thus the effect of the preceding price on current beliefs diminishes over time.

Finally, we can use Equation (A.19) to write the beliefs of the current generation in terms of the entire history of signals and prices. Toward that end, let \(\lambda_n \equiv (1 - \alpha)/\beta_n \in (0, 1)\). For all \(k = 1, 2, \ldots\) and all \(n \geq k + 2\), define \(\alpha^n_k = \prod_{j=k+1}^{n-1} \lambda_j\). We then have:

\[
\bar{\omega}_n = \gamma_n s_n + (1 - \alpha) \gamma_n \left(\frac{1}{\beta_{n-1}} s_{n-1} + \sum_{k=1}^{n-2} \alpha^n_k s_k \right) + \alpha \gamma_n \left(\frac{1}{\beta_{n-1}} p_{n-1} + \sum_{k=2}^{n-2} \alpha^n_k p_k + \frac{\alpha^n_1 p_1}{\gamma_1} \right). \quad (A.20)
\]

The key implications of this expression are that aggregate biased beliefs put too little weight on predecessors’ signal values and instead erroneously put positive weight on all past prices.

The next result summarizes some of the points above, emphasizing that the comparative statics in our baseline model of the main text continue to hold within this richer signal structure.

Proposition A.2 (Comparative Statics in the Quasi-Public-Signal Model). Consider the signal structure of Section A.2. Beliefs and valuations in each period \(n\) follow the process described in (A.19) so long as demand remains interior (i.e., \(d_k \in (0, 1)\) for all \(k < n\)). In this case, the perceived quality of each agent in each period \(n \geq 2\) is decreasing in their private value and increasing in the price charged in each preceding period.

\(^{44}\)Note that the transition equations in (A.18) and (A.19) characterize the process in the case where the quantity demanded in each period prior to \(n + 1\) is interior (i.e., \(d_k \in (0, 1)\) for \(k \leq n\)).
B Inference from Price

In this appendix, we consider two ways in which projection can distort inferences from prices. The first considers traders’ inferences about the expected return of a risky asset. The second considers consumers’ inferences about the quality of a good when they observe the price a monopolist offers to fully-informed consumers.

B.1 Inference from Price and Portfolio Choice

In this section, we examine the effect of projection in a canonical portfolio-choice problem in which agents learn about the fundamental value of a risky asset from its equilibrium price. We consider a variant of the competitive rational-expectations equilibrium in a linear-normal model. Traders differ in their degree of risk tolerance, and they project their tolerance onto others. Traders’ erroneous perceptions of others’ risk attitudes lead them to misinfer from the risky asset’s equilibrium price. More specifically, projection again leads to a negative relationship between an individual’s idiosyncratic taste and her perception of the common value: traders who are more risk tolerant underestimate the expected return of the risky asset, while those who are less risk tolerant overestimate it. These misperceptions mirror our results obtained in the case where consumers learn from the quantity demanded (Proposition 1), and they additionally imply inefficient allocations as in Proposition 8.

We also show that projection reduces the equilibrium price of the risky asset. This is because the demand of more risk-tolerant agents is more sensitive to their beliefs about the return, and thus the pessimistic inferences formed by these types outweigh the the optimistic inferences formed by less-risk-tolerant types. Thus, on aggregate, projection dampens the equilibrium price.

B.1.1 Setup

There are two periods, \(n = 1, 2 \). In period 1, traders divide their wealth between two assets. One asset is riskless, and we normalize its price and gross rate of return to 1. The other asset is risky and yields a payoff of \(\omega \sim N(\omega_0, \tau_0^{-1}) \) in period 2. The risky asset is in fixed supply \(Q \), and let \(p \) denote its price in period 1.

Consider a continuum of traders with unit measure. As in the main text, a fraction \(\lambda \in (0, 1) \) of agents are informed: each of these agents observes a common signal \(s = \omega + \epsilon \), where \(\epsilon \sim N(0, \tau_s^{-1}) \). The remaining fraction of agents (measure \(1 - \lambda \)) have no private information. These agents attempt to infer \(s \) from \(p \). Put differently, each agent \(i \) receives a private signal \(s_i \in \{s, \emptyset\} \) and \(\lambda = \Pr[s_i = s] \).

Preferences and Misperceptions. Each agent has constant absolute risk aversion (CARA) preferences over terminal wealth. Agent \(i \)’s coefficient of absolute risk aversion is \(\theta_i \). It is well-known that, under these preferences, agent \(i \) with information set \(I_i \) will invest \(x_i \) in the risky asset where

\[
x_i = \frac{\mathbb{E}[\omega|I_i] - p}{\theta_i \text{Var}[\omega|I_i]},
\]

for instance, see Grossman (1976). As it will simplify the exposition below, let \(t_i = 1/\theta_i \) denote the reciprocal of an agent’s measure of risk aversion (i.e., an agent with lower risk aversion has a...
stronger “tolerance” for risk, captured by t_i). Agents differ in their taste for risk: as in the main text, suppose t_i is i.i.d. across agents according to a CDF F with positive support, and suppose t_i is independent of s_i. Furthermore, Agent i thinks that $t \sim \hat{F}(\cdot|t_i)$ as specified by (2).

Individual and Aggregate Demand. As in the main text, suppose that informed agents base their demand on the true signal. Uninformed agents, however, attempt to infer the signal from the market price. The solution below will involve uninformed agents misinferring the signal as a function of their type. As such, let $\hat{s}(t)$ denote the perception of the signal formed by agents with type t. With this (supposed) knowledge of the signal, an agent with information $I_i = \{\hat{s}(t_i)\}$ will form beliefs such that

\[
E[\omega|I_i] = \omega_0 + \frac{\tau_s}{\tau_s + \tau_0}(\hat{s}(t_i) - \omega_0) \quad \text{(B.2)}
\]

\[
\text{Var}[\omega|I_i] = (\tau_s + \tau_0)^{-1}. \quad \text{(B.3)}
\]

From (B.1), this implies that an individual’s demand as a function of (i) the price, (ii) her perceived signal, and (iii) her taste for risk is

\[
x(p; \hat{s}(t_i), t_i) = t_i \left(\frac{E[\omega|I_i = \{\hat{s}(t_i)\}] - p}{\text{Var}[\omega|I_i = \{\hat{s}(t_i)\}]} \right) = t_i \left(\tau_0 \omega_0 + \tau_s \hat{s}(t_i) - (\tau_0 + \tau_s) p \right). \quad \text{(B.4)}
\]

Conditional on uninformed agents’ perceived signals, which will be determined endogenously in equilibrium, the aggregate demand for the risky asset is then

\[
D(p; s) = \lambda \int_T x(p; s, t)f(t)dt + (1 - \lambda) \int_T x(p; \hat{s}(t), t)f(t)dt.
\]

B.1.2 (Ir)rational Expectations Equilibrium

We now analyze a variant of the classical competitive rational-expectations equilibrium. Following our NBE solution concept, we assume that each uninformed agent believes the market is in a rational-expectations equilibrium, but wrongly thinks the equilibrium is with respect to her misspecified model. It is worth noting that in the rational benchmark of this model, uninformed agents correctly infer s from p, which is the standard result of the rational-expectations equilibrium in this simple setup without shocks. Thus, under our solution concept with projection, each misspecified agent believes that: (i) all others share her perception of the distribution of types, (ii) all uninformed agents properly extract the signal s from p with respect to this perception and use that extracted signal to form their own demand, and (iii) the price clears the market.

Biased Extracted Signals. Given that a projecting trader i thinks that all others correctly extract the true signal, her perceived aggregate demand function in equilibrium conditional on signal \hat{s} is

\[
\hat{D}(p; \hat{s}|t_i) = \int_T x(p; \hat{s}, t)f(t|t_i)dt.
\]

Her perceived market-clearing condition is then $\hat{D}(p, \hat{s}|t_i) = Q$. As such, trader i’s inferred signal

\[\text{(45) We put no constraints on traders’ positions or prices. Negative values of } x \text{ represent shares sold.}\]
given p can be obtained by inverting this condition. From (B.4), note that
\[
\int_{T} x(p; \hat{s}, t) \hat{f}(t|t_i) dt = \left(\tau_0 \omega_0 + \tau_s \hat{s} - (\tau_0 + \tau_s) p \right) \hat{E}[T|t_i].
\]
(B.7)

This implies that trader i believes the relationship between the equilibrium price and s is given by
\[
\hat{p}(s|t_i) \equiv \frac{\tau_s}{\tau_s + \tau_0} s + \frac{1}{\tau_s + \tau_0} \left(\tau_0 \omega_0 - \frac{Q}{\hat{E}[T|t_i]} \right).
\]
(B.8)

An uninformed trader i’s perceived signal in equilibrium is the value $\hat{s}(t_i)$ that equates the preceding function with the observed price; i.e., $\hat{p}(\hat{s}(t_i)|t_i) = p$. Hence, fixing p, trader i’s perceived signal is
\[
\hat{s}(t_i) = \frac{\tau_s + \tau_0}{\tau_s} p - \frac{1}{\tau_s} \left(\tau_0 \omega_0 - \frac{Q}{\hat{E}[T|t_i]} \right).
\]
(B.9)

Notice that for $\alpha > 0$, $\hat{E}[T|t_i]$ is increasing in t_i since those who are more tolerant of risk believe that the population distribution of t is stochastically higher. Thus, $\hat{s}(t_i)$ is decreasing in t_i.

Proposition B.1. Consider the setup above. For any $\alpha > 0$, an uninformed trader’s expectation of ω conditional on p is increasing in her level of risk aversion (i.e., decreasing in her risk tolerance).

This mirrors the negative relationship between perceived quality and taste obtained in the main text (e.g., Propositions 1 and 8). Since an uninformed trader’s individual demand is linearly increasing in her expectation of ω, this result implies that those traders with relatively high risk aversion will overinvest in the risky asset while those with low risk aversion will underinvest.

The Effect of Projection on the Market Price. The equilibrium price equates the true aggregate demand with supply: from (B.5), p solves
\[
Q = \lambda \int_{T} x(p; s, t) f(t) dt + (1 - \lambda) \int_{T} x(p, \hat{s}(t), t) f(t) dt.
\]
(B.10)

Using the expressions above for the individual demand of informed and uninformed agents, we thus have
\[
Q = \left(\tau_0 \omega_0 + \lambda \tau_s s - (\tau_0 + \tau_s) p \right) \hat{E}[T] + (1 - \lambda) \tau_s \int_{T} t \hat{s}(t) f(t) dt,
\]
(B.11)

where $\hat{E}[:]$ is w.r.t. the true distribution, F. Notice that (B.9) implies that
\[
\tau_s \int_{T} t \hat{s}(t) f(t) dt = \left((\tau_s + \tau_0) p - \tau_0 \omega_0 \right) \hat{E}[T] + Q \int_{T} \left(\frac{t}{\hat{E}[T|t]} \right) f(t) dt.
\]
(B.12)

Let $B(\alpha) \equiv \int_{T} \left(\frac{t}{\hat{E}[T|t]} \right) f(t) dt$. Notice that $B(\alpha)$ is a constant that depends on the degree of projection. In the rational benchmark with $\alpha = 0$, we have $B(\alpha = 0) = 1$. By contrast, if $\alpha \in (0, 1)$, then $B(\alpha) < 1$. This follows from the fact that $z(t) = t/\hat{E}[T|t]$ is strictly concave, and thus Jensen’s inequality implies that $B(\alpha) = \hat{E}[z(T)] < z(\hat{E}[T]) = 1$.

54
Substituting (B.12) into the equilibrium condition in (B.11) yields

\[Q = \lambda \left(\tau_0 \omega_0 + \tau_s s - (\tau_0 + \tau_s) p \right) E[T] + (1 - \lambda) B(\alpha) Q. \]

(B.13)

As expected, in the rational benchmark we have \(\alpha = 0 \Rightarrow B(\alpha) = 1 \), and the previous condition reduces to the rational market-clearing condition

\[Q = \left(\frac{\tau_0 \omega_0 + \tau_s s}{\tau_s + \tau_0} - (\tau_0 + \tau_s) p \right) E[T], \]

(B.14)

which simply means that the aggregate demand of fully-informed agents equals the supply.

With projection, the market price is given by

\[p = \left(\frac{\tau_s}{\tau_s + \tau_0} \right) s + \left(\frac{\tau_0}{\tau_s + \tau_0} \right) \omega_0 - \frac{1 - (1 - \lambda) B(\alpha)}{\lambda} \frac{Q}{(\tau_s + \tau_0) E[T]}, \]

(B.15)

This pricing function is identical to the standard one except there is a price “distortion” factor equal to

\[\chi(\alpha) \equiv \left[\frac{1 - (1 - \lambda) B(\alpha)}{\lambda} \right]. \]

(B.16)

In the rational benchmark, we have \(\chi(0) = 1 \). But since \(B(\alpha) < 1 \) for \(\alpha \in (0, 1) \), we have \(\chi(\alpha) > 1 \) under projection. As evident from (B.15), the effect of projection on the equilibrium price is similar to the effect of an increased supply of the risky asset. Projection therefore puts downward pressure on the price.

The intuition from why projection dampens the price stems from the fact that more risk-tolerant traders are the ones who form more pessimistic beliefs. These traders’ individual demands are more sensitive to their expectations over the risky asset’s return. Thus, relative to traders who are less risk tolerant, the misperceptions of the risk-tolerant traders have a stronger effect on the aggregate demand. And since these misperceptions tend to be pessimistic, they reduce the equilibrium price.

This setting is one in which the price would efficiently transmit traders’ private information under rational inference. Projection clearly induces inefficient transmission. In turn, this leads to inefficient behavior among investors. The risk-tolerant investors hold too little of the risky asset, and the risk-averse hold too much. While this effect of projection harms uninformed traders, it helps the informed: they face a lower price for the risky asset. As discussed in Grossman (1976), models of competitive markets can sometimes be “over-informationally” efficient—when the price fully reveals private information, the traders who were initially informed earn no return on their information. In this example, we show that even though the price would fully reveal the signal to rational traders, projection generates a clear benefit to those who have private information.

B.2 Inference from a Monopolist’s Price

We now argue that our basic comparative statics emerge even in the simple case where an observer infers \(\omega \) from the price a monopolist offers to fully-informed consumers. Namely, an observer with a stronger taste infers a lower quality. Intuitively, high types overestimate the price a monopolist
would charge conditional on any level of quality; they consequently underestimate \(\omega \) conditional on the observed price. The opposite logic holds for low types.

Suppose a projecting observer with taste \(t \) thinks that \(p \) maximizes \(p[1 - \hat{F}(p - \hat{\omega}|t)] \) where \(\hat{\omega} \) is the expected quality among informed consumers. Hence, this agent thinks \(p \) is the solution to

\[
p = \frac{1 - \hat{F}(p - \hat{\omega}|t)}{\hat{f}(p - \hat{\omega}|t)} \equiv 1/\hat{h}(p - \hat{\omega}|t),
\]

where \(\hat{h}(x|t) \) denotes the perceived hazard rate of a projector with taste \(t \). From (2), we have

\[
\hat{h}(x|t) = \frac{1}{1 - \alpha} \frac{f\left(\frac{x - \alpha t}{1 - \alpha}\right)}{1 - \alpha \left[1 - F\left(\frac{x - \alpha t}{1 - \alpha}\right)\right]} = \frac{1}{1 - \alpha} h\left(\frac{x - \alpha t}{1 - \alpha}\right),
\]

where \(h \) is the hazard rate associated with \(F \). Since we assume \(h \) is increasing, \(\hat{h}(x|t) \) is also increasing on type \(t \)'s perceived support for all \(t \in T \). Furthermore, for a fixed \(x \), (B.18) reveals that \(\hat{h}(x|t) \) is decreasing in \(t \), and hence perceived distributions exhibit strict Hazard-Rate Dominance (HRD) with respect to \(t \); that is, for any \(t > t' \) and any \(x \) interior to both \(T(t) \) and \(T(t') \), we have \(\hat{h}(x|t) < \hat{h}(x|t') \).

Let \(\hat{\omega}(t) \) be a projector’s estimated value of \(\omega \). This is the value of \(\hat{\omega} \) that solves (B.17), and thus

\[
\hat{\omega}(t) = p - \hat{h}^{-1}(1/p|t).
\]

Given that the family of perceived distributions satisfies HRD, \(\hat{h}^{-1}(x|t) > \hat{h}^{-1}(x|t') \iff t > t' \), and hence \(\hat{\omega}(t) \) is decreasing in \(t \)—higher types form more pessimistic estimates of \(\omega \).

C Proofs

Proof of Proposition 1. We prove this result for a more general utility structure than assumed in the main text. Here, we assume that each agent’s valuation for the good is given by a utility function \(u(\omega, t) \) that is strictly increasing and differentiable with respect to both variables and satisfies \(\frac{\partial}{\partial \omega} u(\omega, t) > 0 \) for all \(t \in T \) and \(\omega \in \mathbb{R} \). For simplicity, we also assume \(u \) is linear in \(\omega \).\(^{46}\) Our model of projection easily accommodates such a generalization: An agent with private value \(t \) believes the utility of any agent with taste \(t' \) is \(\hat{u}(\omega, t'|t) = \alpha u(\omega, t) + (1 - \alpha) u(\omega, t') \). This misperceived utility function then pins down type \(t \)'s perceived distribution of valuations in each state \(\omega \). We begin by proving the following lemma.

Lemma C.1. Consider any \(u \) satisfying the assumptions above, and suppose that \((p, s) \) admits interior demand. For any \(\lambda > 0 \) and \(\alpha \in (0, 1) \), there exists a unique steady-state equilibrium; in

\(^{46}\)The intuitions from the proof generalize beyond this risk-neutral case. However, we assume risk neutrality so that, as in the main text, each agent’s mean belief, \(\hat{\omega} \), is a sufficient statistic for their behavior irrespective of further details on their posterior distribution over \(\omega \). Thus, as in the main text, uninformed agents here attempt to extract the mean belief of informed agents, \(\hat{\omega}(s) \). The proof below holds without the linearity assumption when informed agents are perfectly informed. And an analogous argument would hold beyond the linear case so long as we impose a similar structure on \(U(s, t) \)—an agent’s expected utility conditional on \(s \) and \(t \).
that equilibrium, the quantity demanded is equal to the quantity demanded in the full-information benchmark (i.e., \(\lambda = 1 \)).

Step 1: Inference rules. We first derive an uninformed agent’s inference from the observed quantity demanded, \(d \). Since we focus on symmetric strategies, it is sufficient to derive the inference rule of an arbitrary agent with taste \(t \). Let \(\hat{D}(p; \hat{\omega}|t) \) denote this agent’s conjectured demand among a population of agents who believe the expected value of \(\omega \) is \(\hat{\omega} \);

\[
\hat{D}(p; \hat{\omega}|t) = \Pr \left[\alpha u(\hat{\omega}; t) + (1 - \alpha)u(\hat{\omega}; T) \geq p \right] = \Pr \left[u(\hat{\omega}; T) \geq \frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha} \right] = \Pr \left[T \geq t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) \right] = 1 - F \left(t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) \right),
\]

where \(t^*(p; \hat{\omega}) \) is the inverse of \(u(\hat{\omega}; t) \) w.r.t. \(t \) evaluated at \(\hat{\omega} \) and \(p \). That is; \(t^*(p; \hat{\omega}) \) is such that \(u(\hat{\omega}; t^*(p; \hat{\omega})) = p \) for all \(p \geq 0 \) and \(\hat{\omega} \in \mathbb{R} \). Note that \(t^* \) is well defined given our assumptions on \(u \). Furthermore, let \(t^*_1(p; \hat{\omega}) \) and \(t^*_2(p; \hat{\omega}) \) denote the partial derivative of \(t^* \) w.r.t. the first and second argument, respectively; our assumptions on \(u \) also imply that for all \(p \geq 0 \) and \(\hat{\omega} \in \mathbb{R} \), we have \(t^*_1(p; \hat{\omega}) > 0 \) and \(t^*_2(p; \hat{\omega}) < 0 \).

An uninformed agent with taste \(t \)’s inference rule is then given by the function \(\hat{\omega}(-|t, p) : [0, 1] \rightarrow \mathbb{R} \) such that for all \(d \in (0, 1) \), \(\hat{\omega}(d|t, p) \) is equal to the unique value of \(\hat{\omega} \) that solves

\[
d = 1 - F \left(t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) \right),
\]

and \(\hat{\omega}(d|t, p) \) represents the agent’s perceived expected value of \(\omega \). An uninformed agent with taste \(t \) buys if \(d \) is such that \(u(\hat{\omega}(d|t, p), t) \geq p \). The steady-state condition for the static equilibrium is then:

\[
d = \lambda D^f(p; \hat{\omega}(s)) + (1 - \lambda) \Pr \left[u(\hat{\omega}(d|T, p), T) \geq p \right].
\]

Under our solution concept, a projecting agent with taste \(t \) believes that all agents (i) follow the same inference rule as him; (2) form an expectation of \(\omega \) equal to \(\hat{\omega}(d|t, p) \); and (3) take their expected-utility-maximizing action given this expectation. He therefore believes that, in equilibrium, his inference rule allows him to perfectly extract the signal of the informed agents. To see this, note that an agent with taste \(t \) thinks that demand among the informed is

\[
\hat{D}(p; \hat{\omega}(s)|t) = 1 - F \left(t^* \left(\frac{p - \alpha u(\hat{\omega}(s); t)}{1 - \alpha}; \hat{\omega}(s) \right) \right),
\]

and thinks that

\[
\Pr \left[u(\hat{\omega}(d|T, p), T) \geq p \right] = \Pr \left[u(\hat{\omega}(d|t, p), T) \geq p \right]
\]

\[
= 1 - F \left(t^* \left(\frac{p - \alpha u(\hat{\omega}(d|t, p); t)}{1 - \alpha}; \hat{\omega}(d|t, p) \right) \right) = d
\]

where the third equality follows from the fact that, by definition, \(\hat{\omega}(d|t, p) \) is the value of \(\hat{\omega} \) that solves (C.2). Thus, substituting (C.4) and (C.5) into (C.3) reveals that the agent believes that, in
equilibrium, the aggregate quantity demanded is such that

\[
d = \lambda \left(1 - F\left(t^* \left(\frac{p - \alpha u(\hat{\omega}(s); t_1)}{1 - \alpha}; \hat{\omega}(s)\right)\right)\right) + (1 - \lambda)d
\]

\[
\Rightarrow \quad d = 1 - F\left(t^* \left(\frac{p - \alpha u(\hat{\omega}(s); t_1)}{1 - \alpha}; \hat{\omega}(s)\right)\right).
\] (C.6)

Within this agent’s model, both (C.5) and (C.6) must hold, and hence the agent believes

\[
1 - F\left(t^* \left(\frac{p - \alpha u(\hat{\omega}(s); t)}{1 - \alpha}; \hat{\omega}(s)\right)\right) = 1 - F\left(t^* \left(\frac{p - \alpha u(\hat{\omega}(d|t, p); t_1)}{1 - \alpha}; \hat{\omega}(d|t, p)\right)\right),
\] (C.7)

which implies that \(\hat{\omega}(d|t, p) = \hat{\omega}(s)\) since \(\hat{\omega}(d|t, p)\) is the unique value of \(\hat{\omega}\) that solves (C.2).

By this logic, this inference rule does perfectly reveal the informed agents’ private information when all agents are rational (i.e., \(\alpha = 0\)), since in this case (C.7) reduces to \(t^*(p; \hat{\omega}(s)) = t^*(p; \hat{\omega}(d|t, p))\) and thus in reality we have \(\hat{\omega}(d|t, p) = \hat{\omega}(s)\) since \(t^*\) is strictly decreasing in \(\hat{\omega}\).

Step 2: \(\hat{\omega}(d|t, p)\) is strictly decreasing in \(t\). Next, we show that \(\hat{\omega}(d|t, p)\) is strictly decreasing in \(t\). Recall that for any fixed \(d \in (0, 1)\), Condition (C.2) implies that \(\hat{\omega}(d|t, p)\) solves

\[
L(\hat{\omega}|t, p) \equiv t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega}\right) - F^{-1}(1 - d) = 0.
\] (C.8)

By the implicit function theorem (IFT), we have

\[
\frac{\partial \hat{\omega}(d|t, p)}{\partial t} = - \left(\frac{\partial L(\hat{\omega}|t, p)}{\partial t}\right) \left(\frac{\partial L(\hat{\omega}|t, p)}{\partial \hat{\omega}}\right)^{-1} \bigg|_{\hat{\omega}=\hat{\omega}(d|t, p)}.
\] (C.9)

Notice that

\[
\frac{\partial L(\hat{\omega}|t, p)}{\partial t} = -t_1^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega}\right) \left(\frac{\alpha}{1 - \alpha}\right) \frac{\partial u(\hat{\omega}; t)}{\partial t} < 0,
\] (C.10)

and

\[
\frac{\partial L(\hat{\omega}|t, p)}{\partial \hat{\omega}} = -t_1^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega}\right) \left(\frac{\alpha}{1 - \alpha}\right) \frac{\partial u(\hat{\omega}; t)}{\partial t} + t_2^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega}\right) < 0,
\] (C.11)

and hence (C.9) implies that \(\frac{\partial \hat{\omega}(d|t, p)}{\partial t} < 0\).

Step 3: Total perceived valuations, \(u(\hat{\omega}(d|t, p), t)\), are increasing in \(t\). Although perceived quality is decreasing in \(t\) (Step 2), total perceived valuations remain increasing in \(t\). Notice that

\[
\frac{\partial u(\hat{\omega}(d|t, p), t)}{\partial t} = \frac{\partial u(\hat{\omega}(d|t, p); t)}{\partial \hat{\omega}} \frac{\partial \hat{\omega}(d|t, p)}{\partial t} + \frac{\partial u(\hat{\omega}(d|t, p); t)}{\partial t},
\] (C.12)

and thus \(\frac{\partial u(\hat{\omega}(d|t, p), t)}{\partial t} > 0\) iff

\[
\frac{\partial \hat{\omega}(d|t, p)}{\partial t} > - \left(\frac{\partial u(\hat{\omega}; t)}{\partial t}\right) \left(\frac{\partial u(\hat{\omega}; t)}{\partial \hat{\omega}}\right)^{-1} \bigg|_{\hat{\omega}=\hat{\omega}(d|t, p)}.
\] (C.13)
Substituting (C.10) and (C.11) into (C.9) implies that

\[
\frac{\partial \hat{\omega}(d|t, p)}{\partial t} = - \left(\frac{\partial u(\hat{\omega}; t)}{\partial t} \right) \left(\frac{\partial u(\hat{\omega}; t)}{\partial \hat{\omega}} + K \right)^{-1} \bigg|_{\hat{\omega}=\hat{\omega}(d|t, p)},
\]

where

\[
K = - \left(\frac{1 - \alpha}{\alpha} \right) t^*_2 \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) \left(\frac{1}{t^*_1 \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right)} \right)^{-1} \bigg|_{\hat{\omega}=\hat{\omega}(d|t, p)},
\]

and hence (C.13) holds given that \(K \geq 0 \). Note that \(K \) is strictly positive if \(\alpha > 0 \) and hence equilibrium total perceived valuations are strictly increasing in \(t \) under projection.

Step 4: The fraction of uninformed agents who buy follows a cutoff rule and is equal to fraction of informed agents who buy. The equilibrium condition in (C.3) depends on the fraction of uninformed agents who buy in the steady state, \(\Pr \left[u(\hat{\omega}(d|T, p), T) \geq p \right] \). Since Step 3 ensures that \(u(\hat{\omega}(d|t, p); t) \) is strictly increasing in \(t \), there must exist a threshold value \(\hat{t}(d) \) such that, in equilibrium, types with with \(t \geq \hat{t}(d) \) buy and those with \(t < \hat{t}(d) \) do not. That is, there is a well-defined “marginal uninformed type”, \(\hat{t}(d) \), that naturally separates the type space into buyers and non-buyers.

We now show that, for any value of \(d \in (0, 1) \), it must be that \(\hat{t}(d) = F^{-1}(1 - d) \). That is, the marginal uninformed type is such that the fraction of uninformed agents who buy is equal to \(d \). To see this, the inference of an agent of any type \(t \), \(\hat{\omega}(d|t, p) \), must satisfy

\[
u \left(\hat{\omega}(d|t, p); \frac{p - \alpha u(\hat{\omega}(d|t, p), t)}{1 - \alpha}; \hat{\omega}(d|t, p) \right) = \frac{p - \alpha u(\hat{\omega}(d|t, p), t)}{1 - \alpha};
\]

this follows from the fact that, by definition, \(t^*(\tilde{u}; \hat{\omega}(d|t, p)) \) is the value of \(t \) such that \(u(\hat{\omega}(d|t, p), t) = \tilde{u} \). Furthermore, recall that for all \(t \), the inference rule \(\hat{\omega}(d|t, p) \) is such that (C.8) holds as an identity; substituting this identity into (C.16) and rearranging implies that

\[
p = \alpha u(\hat{\omega}(d|\hat{t}(d), p); F^{-1}(1 - d)) + (1 - \alpha)u(\hat{\omega}(d|\hat{t}(d), p); F^{-1}(1 - d)).
\]

Given that the condition above must hold for all \(t \in T \), it must hold for type \(\hat{t}(d) \equiv F^{-1}(1 - d) \) whose private value lies at the \((1 - d) \)-percentile in the taste distribution. Condition (C.17) evaluated at \(\hat{t}(d) = F^{-1}(1 - d) \) implies

\[
p = \alpha u(\hat{\omega}(d|\hat{t}(d), p); F^{-1}(1 - d)) + (1 - \alpha)u(\hat{\omega}(d|\hat{t}(d), p); F^{-1}(1 - d))
\]

Thus, an agent with type \(\hat{t}(d) = F^{-1}(1 - d) \) forms an inference that leaves him indifferent between buying or not. By Step 3, above, we know that an agent with \(t > \hat{t}(d) \) must form an inference such that he has a strict preference to buy, while one with \(t < \hat{t}(d) \) must form an inference such that he has a strict preference to not buy. Thus \(\hat{t}(d) \) represents the marginal uninformed type, and the fraction of uninformed agents who buy is thus \(\Pr \left[u(\hat{\omega}(d|T, p), T) \geq p \right] = 1 - F \left(\hat{t}(d) \right) = 1 - F(F^{-1}(1 - d)) = d \).
Step 5: The total fraction of agents who buy in equilibrium is equal to the fraction of informed agents who buy. Recall from (C.3) that, in equilibrium, the aggregate quantity demanded must satisfy
\[d = \lambda D^I(p; \bar{\omega}(s)) + (1 - \lambda) \Pr[u(\bar{\omega}(d|T, p), T) \geq p]. \] (C.19)
From Step 4, we know that \(\Pr[u(\bar{\omega}(d|T, p), T) \geq p] = d \), and hence the equilibrium condition reduces to
\[d = \lambda D^I(p; \bar{\omega}(s)) + (1 - \lambda)d \Rightarrow d = D^I(p; \bar{\omega}(s)). \] (C.20)
This completes the proof of the lemma. We now establish each part of Proposition 1.

Part 1. Let \(\hat{\omega}(t) \) denote the steady-state inference of an uninformed agent who has taste \(t \); that is, \(\hat{\omega}(t) \equiv \bar{\omega}(d^*|t, p) \), where \(d^* \equiv D^I(p; \bar{\omega}(s)) \) is the quantity demanded in equilibrium. The fact that \(\hat{\omega}(t) \) is strictly decreasing in \(t \) is established in Step 2 in the proof of Lemma C.1.

Recall from Step 4 of Lemma C.1 that the marginal uninformed type is \(\hat{t}(d) = F^{-1}(1 - d) \). Since \(d = D^I(p; \bar{\omega}(s)) = [1 - F(t^*(p; \bar{\omega}(s)))] \) in equilibrium, we therefore have \(\hat{t}(d) = t^*(p; \bar{\omega}(s)) \) in equilibrium. That is, the marginal uninformed type is equal to the marginal informed type. This further implies that the uninformed agent with \(t = t^*(p; \bar{\omega}(s)) \) is the unique uninformed type who correctly estimates the state: substituting \(\hat{t}(d) = t^*(p; \bar{\omega}(s)) \) into (C.18) implies that this type forms an inference that leaves him indifferent between buying or not, which means that he must form the same expectation as the informed agent who is truly indifferent; hence, \(\bar{\omega}(d|t^*(p; \bar{\omega}(s)), p) = \bar{\omega}(s) \) at the equilibrium value of \(d \). Since \(\hat{\omega}(t) \) is strictly decreasing in \(t \), this implies that uninformed agents with \(t > t^*(p; \bar{\omega}(s)) \) underestimate the state, while those with \(t < t^*(p; \bar{\omega}(s)) \) overestimate the state.

Part 2. We know argue that \(\hat{\omega}(t) \) is increasing in \(p \) for each \(t \in T \). Condition (C.2) implies that \(\bar{\omega}(d|t, p) \) solves
\[L(\hat{\omega}|t, p) \equiv t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) - F^{-1}(1 - d) = 0. \] (C.21)
In the steady-state, \(d = D^I(p; \bar{\omega}(s)) = 1 - F(t^*(p; \bar{\omega}(s))) \) and hence \(F^{-1}(1 - d) = t^*(p; \bar{\omega}(s)) \); the preceding condition implies that \(\hat{\omega}(t) \) solves
\[L(\hat{\omega}|t, p) \equiv t^* \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) - t^*(p; \bar{\omega}(s)) = 0. \] (C.22)
The IFT then implies
\[\frac{\partial \hat{\omega}(t)}{\partial p} = - \left(\frac{\partial L(\hat{\omega}|t, p)}{\partial p} \right) \left(\frac{\partial L(\hat{\omega}|t, p)}{\partial \hat{\omega}} \right)^{-1} \bigg|_{\hat{\omega}=\hat{\omega}(t)}, \] (C.23)
and (C.11) shows that \(\frac{\partial L(\hat{\omega}|t, p)}{\partial \hat{\omega}} < 0 \). Hence, \(\frac{\partial \hat{\omega}(t)}{\partial p} > 0 \) iff \(\frac{\partial L(\hat{\omega}|t, p)}{\partial \hat{\omega}} \bigg|_{\hat{\omega}=\hat{\omega}(t)} > 0 \). Notice that
\[\frac{\partial L(\hat{\omega}|t, p)}{\partial p} = t^*_1 \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) \left(\frac{1}{1 - \alpha} \right) - t^*_1(p; \bar{\omega}(s)). \] (C.24)
We first show that (C.24) is positive at the margin; i.e., for type \(t = t^*(p; \bar{\omega}(s)) \). In this case, \(\hat{\omega}(t) = \bar{\omega}(s) \) and thus \(u(\hat{\omega}, t) = u(\bar{\omega}(s), t) = p \), implying that \(t^*_1 \left(\frac{p - \alpha u(\hat{\omega}; t)}{1 - \alpha}; \hat{\omega} \right) = t^*_1(p; \bar{\omega}(s)). \)
Hence, (C.24) is positive if and only if $\alpha > 0$. To see why this condition must hold more generally, let $\hat{\omega}(t|p)$ denote the equilibrium perception of an agent with taste t facing price p, and consider p_0 and $p_1 > p_0$. Let $t_0^* \equiv t^*(p_0; \hat{\omega}(s))$. The preceding argument establishes that $\hat{\omega}(t_0^*|p_1) > \hat{\omega}(t_0^*|p_0)$. Furthermore, from Part 1, we know that $\hat{\omega}(t|p)$ is strictly decreasing in t for each $p \in \{p_0, p_1\}$. Since $\hat{\omega}(t_0^*|p_1) > \hat{\omega}(t_0^*|p_0)$, we must have $\hat{\omega}(t|p_1) > \hat{\omega}(t|p_0)$ for all t if $\hat{\omega}(\cdot|p_0)$ and $\hat{\omega}(\cdot|p_1)$ do not cross; that is, if there exists no $\tilde{t} \in T$ such that $\hat{\omega}(\tilde{t}|p_1) = \hat{\omega}(\tilde{t}|p_0)$. Toward a contradiction, suppose such a t exists, and let $\tilde{\omega} = \hat{\omega}(\tilde{t}|p_1) = \hat{\omega}(\tilde{t}|p_0)$. By definition, $\tilde{\omega}$ must rationalize the observed levels of demand at prices p_0 and p_1. But this contradicts the fact that the agent must infer distinct estimates of ω from these different levels of demand. Moreover, it is immediate that (C.24) is strictly positive, as desired, for the functional form for u considered in the main text whenever $\alpha > 0$ since in this case t_1^* is a constant.

Proof of Proposition 2. We prove this result for the more general class of utility functions introduced at the beginning of the proof of Proposition 1 (i.e., $u(\omega, t)$ is strictly increasing and differentiable w.r.t. both variables, satisfies $\frac{\partial^2 u}{\partial \omega \partial t} > 0$, and is linear in ω). Thus, the results of the generalized version of Proposition 1 apply.

The random variable describing valuations of the uninformed agents in the rational steady-state equilibrium is $v(T) \equiv u(\hat{\omega}(s), T)$. Under projection, this random variable is $\hat{v}(T) \equiv u(\hat{\omega}(T), T)$. We argue that $\hat{v}(\cdot)$ is a clockwise rotation of $v(\cdot)$. First, note that $\hat{v}(t^*) = u(\hat{\omega}(t^*), t^*) = u(\hat{\omega}(s), t^*) = v(t^*)$, which follows from the proof of Part 1 where we show that $\hat{\omega}(t^*) = \hat{\omega}(s)$. Thus, v and \hat{v} intersect at t^*. Next, for $t > t^*$, $\hat{v}(t) = u(\hat{\omega}(t), t) < u(\hat{\omega}(s), t) = v(t)$ since $\hat{\omega}(t) < \hat{\omega}(s)$ for $t > t^*$ given that $\hat{\omega}(t)$ is strictly decreasing in t (as shown in Part 1 of Proposition 1). Similarly, for $t < t^*$, $\hat{v}(t) = u(\hat{\omega}(t), t) > u(\hat{\omega}(s), t) = v(t)$ since $\hat{\omega}(t) > \hat{\omega}(s)$ for $t < t^*$, which again follows from $\hat{\omega}(t)$ being strictly decreasing in t. Thus, $\hat{v}(\cdot)$ is clockwise rotation of v. Since v and \hat{v} are both strictly increasing functions, this rotation property implies that $\hat{v}(T)$ is less disperse than $v(T)$ in the sense of the dispersion order defined by Shaked and Shanthikumar (2007); i.e., $\hat{v}(T) \leq_{\text{disp}} v(T)$ (see the end of the proof of Proposition A.1 in Appendix A.1 for the definition of this order). Thus, by Theorem 3.B.16 of Shaked and Shanthikumar (2007), $\text{Var}(\hat{v}(T)) < \text{Var}(v(T))$.

Proof of Lemma 1. We will prove the claim by induction on $n = 2, \ldots, N$. As argued in the main text preceding Equation (11), $\hat{\omega}_2(t) = \hat{\omega}_2 - \alpha t$ for some $\hat{\omega}_2$ independent of t. This establishes the base case. Now suppose that in period n, $\hat{\omega}_n(t) = \hat{\omega}_n - \alpha t$. The marginal uninformed type in period n has taste $\hat{\omega}_n$ such that $\hat{\omega}_n = p_n \Rightarrow \hat{\omega}_n = (p_n - \hat{\omega}_n)/(1 - \alpha)$ and thus aggregate demand in period n is $d_n = \lambda [1 - F(p_n - \hat{\omega}(s))] + (1 - \lambda) \left[1 - F \left(\frac{p_n - \hat{\omega}(s)}{1 - \alpha}\right)\right]$. An observer in generation $n + 1$ then forms a perception of ω equal to $\hat{\omega}_{n+1}(t)$ such that $d_n = 1 - \tilde{F}(p_n - \hat{\omega}_{n+1}(t)) = 1 - F(p_n - \hat{\omega}_n/(1 - \alpha)) \Rightarrow \hat{\omega}_{n+1}(t) = [p_n - (1 - \alpha)F^{-1}(1 - d_n)] - \alpha t = \hat{\omega}_{n+1} - \alpha t$, where $\hat{\omega}_{n+1} = p_n - (1 - \alpha)F^{-1}(1 - d_n)$ is independent of t.

Proof of Proposition 3. Part 1: Initial Overreaction. We will focus on the case with $\hat{p} < p$; the case with $\hat{p} > p$ is analogous and thus omitted.

Step 1: Quantity demanded is constant prior to the price change. Suppose $n^* \geq 2$. For ease of exposition, let $d^I \equiv D^I(p; \hat{\omega}(s))$ and $d^I \equiv D^I(\hat{p}; \hat{\omega}(s))$ denote the fraction of informed agents who buy at p and \hat{p}, respectively. In period 1, $d_1 = D^I(p; \hat{\omega}(s)) = d^I$. The aggregate biased belief in period 2 is $\bar{\omega}_2 = (1 - \alpha)\hat{\omega}(s) + \alpha p$, and Equation (11) then implies that the fraction of uninformed agents who buy in period 2 is $D^U(p; \bar{\omega}_2) = d_t$. Thus, the overall fraction of agents who buy in
period 2 is \(d_2 = d' \). Equation (14) then implies that \(\tilde{\omega}_2 = \omega_2 \). Hence, if \(n^* \geq 3 \), then \(d_3 = d_2 = d' \). It is straightforward that this logic giving rise to a constant aggregate biased belief and quantity demanded will continue until the first period with the new price, \(\tilde{p} \).

Step 2: Quantity demanded increases beyond the rational benchmark when the price drops. Since the quantity demanded is constant prior to the price change, we can (without loss of generality) assume from now on that \(n^* = 1 \). That is, \(p_1 = p \) and \(p_n = \tilde{p} \) for all \(n \geq 2 \). In all periods \(n \geq 2 \), the fraction of informed agents who buy is \(\tilde{d}_n \). By contrast, in period 2, the fraction of uninformed agents who buy is \(\tilde{d}_2^U \equiv D^U(\tilde{p};\tilde{\omega}_2) = 1 - F(\frac{\tilde{p} - \omega_2}{1-\alpha}) \). Importantly, \(\tilde{d}_2 > d' \). To see this, note that \(\tilde{\omega}_2 = (1 - \alpha)\omega(s) + \alpha p \) and hence

\[
\tilde{d}_2 = 1 - F\left(\frac{\tilde{p} - (1 - \alpha)\omega(s) - \alpha p}{1 - \alpha}\right) = 1 - F\left(\tilde{p} - \omega(s) - \frac{\alpha}{1 - \alpha}(p - \tilde{p})\right) > 1 - F(\tilde{p} - \omega(s)) = d',
\]

where the inequality follows from \(p - \tilde{p} > 0 \). Thus, the total quantity demanded in period 2 is \(d_2 = \lambda d' + (1 - \lambda)d_2^U \), which exceeds the rational benchmark of \(d' \).

Step 3: Quantity demanded remains above the rational benchmark in all subsequent periods. We now consider the path of \(\tilde{d}_n^U \equiv D^U(\tilde{p};\tilde{\omega}_n) = 1 - F(\frac{\tilde{p} - \omega_n}{1-\alpha}) \) for \(n > 2 \) starting from the initial condition of \(\tilde{d}_2^U = 1 - F(\frac{\tilde{p} - \omega_2}{1-\alpha}) \). From the law of motion in Equation (14), we must have that for all \(n \geq 2 \),

\[
\tilde{d}_{n+1}^U = D^U(\tilde{p};\tilde{\omega}_{n+1}) = \lambda d_I + (1 - \lambda)d_n^U.
\]

Thus, if \(\tilde{d}_n^U > d' \), then \(\tilde{d}_{n+1}^U > d' \). Since we start from the base case of \(\tilde{d}_2^U > d' \), induction on \(n \) implies that \(\tilde{d}_n^U > d' \) for all \(n \geq 2 \). Thus, the aggregate quantity demanded in any period \(n \geq 2 \) is \(d_n = \lambda d' + (1 - \lambda)d_n^U > d' \), and \(d_n \) therefore exceeds the rational benchmark.

Part 2. We now show that the \(d_n \) converges to the rational benchmark level of \(d' \) as \(n \to \infty \). Toward this end, we first show that for all \(k \geq 1 \),

\[
d_{k+2}^U = \left[1 - (1 - \lambda)^k\right]d' + (1 - \lambda)^k \tilde{d}_2^U.
\]

We will show by induction that in each period \(k+2 \), we have \(\tilde{d}_{k+2}^U = a_{k+2}d' + b_{k+2}d_2^U \), and that the coefficients \(a_{k+2} \) and \(b_{k+2} \) satisfy \(a_{k+2} + b_{k+2} = 1 \) and \(b_{k+2} = (1 - \lambda)^k \). The base case \((k = 1) \) is immediate from (C.26), since \(\tilde{d}_3^U = \lambda d_I + (1 - \lambda)d_2^U \). For the induction step, suppose the claim is true for \(k > 1 \). Thus, \(\tilde{d}_{k+2}^U = a_{k+2}d' + b_{k+2}d_2^U \). From (C.26), this implies that

\[
\tilde{d}_{k+3}^U = \lambda d' + (1 - \lambda)[a_{k+2} D^I + b_{k+2} \tilde{d}_2^U] = \left[\underbrace{\lambda + (1 - \lambda)a_{k+2}}_{= a_{k+3}}\right]d' + (1 - \lambda)b_{k+2} \tilde{d}_2^U.
\]

It is then immediate that \(b_{k+3} = (1 - \lambda)^{k+1} \) as required given the induction assumption of \(b_{k+2} = (1 - \lambda)^k \). To show that \(a_{k+3} + b_{k+3} = 1 \), note that \(a_{k+2} + b_{k+2} = 1 \) implies

\[
a_{k+3} + b_{k+3} = \lambda + (1 - \lambda)a_{k+2} + (1 - \lambda)b_{k+2} = \lambda + (1 - \lambda)[a_{k+2} + b_{k+2}] = 1.
\]

The deviation between the quantity demanded in period \(n \) under projection and the rational
benchmark quantity is \(|d_n - \bar{d}^I| = |\lambda \bar{d}^I + (1 - \lambda)d_n^I - \bar{d}^I| = (1 - \lambda)|d_n^I - \bar{d}^I|\), and (C.27) implies that for \(n \geq 2\), \(|d_n^I - \bar{d}^I| = (1 - \lambda)^{n-2}|d_2^I - \bar{d}^I|\). Thus,

\[
|d_n - \bar{d}^I| = (1 - \lambda)^{n-1}|d_2^I - \bar{d}^I|.
\] (C.30)

This value is clearly decreasing in \(n\) and converges to 0 as \(n \to \infty\). Thus, \(d_n\) converges to the rational benchmark, \(\bar{d}^I\), as \(n \to \infty\).

Proof of Proposition 4. Part 1. The seller’s objective is

\[
\max_{p_1, p_2} \Pi(p_1, p_2; \alpha, \lambda),
\] (C.31)

subject to the dynamic constraint \(\omega_2 = \alpha p_1 + (1 - \alpha)\tilde{\omega}(s)\). Note that

\[
\Pi(p_1, p_2; \alpha, \lambda) = p_1 D_1(p_1; \tilde{\omega}(s)) + p_2 D_2(p_2; \omega_2, \tilde{\omega}(s)),
\] (C.32)

where, from Equation (12), we have

\[
\begin{align*}
D_1(p_1; \tilde{\omega}(s)) &= D_I^f(p; \tilde{\omega}(s)), \\
D_2(p_2; \omega_2, \tilde{\omega}(s)) &= \lambda D_I^f(p_2; \tilde{\omega}(s)) + (1 - \lambda) D_U^I(p_2; \omega_2),
\end{align*}
\] (C.33) \hspace{1cm} (C.34)

with \(D_I^f(p; \tilde{\omega}(s)) = 1 - F(p - \tilde{\omega}(s))\) and \(D_U^I(p; \omega_2) = 1 - F\left(\frac{p - \omega_2}{1 - \alpha}\right)\).

Potential Cases and Outline. We first describe the potential mix of interior and corner solutions and argue which of these are possible at the optimum. Then, for each possible case, we proceed to show that \(p_1^* > p_M\) and \(p_1^* > p_2^*\).

Fixing \(s\), let \(\underline{v} = \tilde{\omega}(s) + \bar{t}\) and \(\overline{v} = \tilde{\omega}(s) + \bar{t}\) denote the expected valuations of the lowest and highest informed types, respectively. The set of valuations among informed types is thus \(V = [\underline{v}, \overline{v}]\). As a function of \(p_1\), an uninformed consumer’s valuation in period 2 is \((1 - \alpha)(\tilde{\omega}(s) + \bar{t}) + \alpha p_1\). Notice that at any optimum, \(p_1 \in [\underline{v}, \bar{p}]\), where, recall, the price ceiling is \(\bar{p} = \overline{v} - \kappa\) for some \(\kappa > 0\) arbitrarily small such that \(\bar{p} > p_M\). Hence, given \(p_1\) and \(\alpha > 0\), the set of valuations of uninformed consumers in period 2, denoted \(\hat{V} \equiv [(1 - \alpha)\underline{v} + \alpha p_1, (1 - \alpha)\overline{v} + \alpha p_1]\), is a strict subset of \(V\).

First, notice that it is never optimal for the seller to serve all consumers in period 1. Since \((p_M, s)\) admits interior demand, it is not optimal to serve all consumers in the rational benchmark; moreover, doing so under projection leads to the least attractive distribution of perceived valuations in period 2. Hence, in period 1 we either have an interior solution or a price equal to the price ceiling: \(p_1^* \in [\underline{v}, \bar{p}]\).

Now consider possible corner cases in period 2. Since the valuations of uninformed types are a strict subset of the valuations of informed types, demand in period 2 is \(D_2(p; \omega_2; \tilde{\omega}(s)) = \)

\[
\begin{cases}
\lambda D_I^f(p; \tilde{\omega}(s)) + (1 - \lambda) & \text{if } p \in [\underline{v}, (1 - \alpha)\underline{v} + \alpha p_1], \\
\lambda D_I^f(p; \tilde{\omega}(s)) + (1 - \lambda) D_U^I(p; \omega_2) & \text{if } p \in [(1 - \alpha)\underline{v} + \alpha p_1, (1 - \alpha)\overline{v} + \alpha p_1], \\
\lambda D_I^f(p; \tilde{\omega}(s)) & \text{if } p \in ((1 - \alpha)\overline{v} + \alpha p_1, \bar{p}].
\end{cases}
\] (C.35)

We now argue that the seller will never operate strictly within the first or third region of the
demand function above, but may operate at the corner \(p^*_2 \equiv (1 - \alpha)\bar{w} + \alpha p_1 \) at which all uninformed types are served. First consider the third region. It is clearly sub-optimal to serve only informed types in period 2 since the strategy \(p_1 = p_2 = p^M \) yields the seller the rational static monopoly profit in each period. Thus, deviating from these prices would require the seller to strictly benefit by serving consumers with manipulated beliefs, which is not possible when serving only informed types. Now consider the interior of the first region, where the seller sets a price below the lowest by serving consumers with manipulated beliefs, which is not possible when serving only informed types. Thus, deviating from these prices would require the seller to strictly benefit in each period. Thus, \(p^*_2 \geq p^c_2 \) and in period 2 we either have an interior solution (in the middle region of C.35) or the corner solution such that \(p^*_2 = p^c_2 \).

We now show that \(p^*_1 > p^M \) and \(p^*_2 > p^*_2 \) in any of the possible cases noted above (i.e., interior or ceiling in period 1, and interior or corner in period 2).

Case 1: Interior Solutions. Substituting the dynamic constraint into \(D_2 \) in (C.33), the first-order conditions of C.31 are:

\[
\frac{\partial}{\partial p_1} p_1 D_1(p_1; \bar{\omega}(s)) + p_2 \frac{\partial}{\partial \bar{\omega}_2} D_2(p_2; \bar{\omega}_2, \bar{\omega}(s)) \frac{\partial \bar{\omega}_2}{\partial p_1} = 0, \tag{C.36}
\]

\[
\frac{\partial}{\partial p_2} p_2 D_2(p_2; \bar{\omega}_2, \bar{\omega}(s)) = 0. \tag{C.37}
\]

Define the following functions, which each correspond to the price derivatives of the seller’s profit in period \(n \) w.r.t. \(p_n \) for \(n = 1, 2 \):

\[
M_1(p; \bar{\omega}(s)) \equiv \frac{\partial}{\partial p} p D_1(p; \bar{\omega}(s)), \tag{C.38}
\]

\[
M_2(p; \bar{\omega}_2, \bar{\omega}(s)) \equiv \frac{\partial}{\partial p} p D_2(p; \bar{\omega}_2, \bar{\omega}(s)). \tag{C.39}
\]

Substituting these expressions along with the relevant derivatives into the FOCs above yields:

\[
M_1(p_1; \bar{\omega}(s)) + p_2 \left(\frac{\alpha(1 - \lambda)}{1 - \alpha} \right) f \left(\frac{p_2 - \bar{\omega}_2}{1 - \alpha} \right) = 0, \tag{C.40}
\]

\[
M_2(p_2; \bar{\omega}_2, \bar{\omega}(s)) = 0. \tag{C.41}
\]

Step 1: \(p^*_1 > p^M \). Since \((p^M, s) \) admits interior demand under rational inference and since \(F \) has an increasing hazard rate, \(M_1 \) is strictly decreasing in \(p \) and has exactly one root at \(p^M > 0 \). Note that FOC (C.40) implies that \(p^*_1 \) solves

\[
M_1(p^*_1; \bar{\omega}(s)) = -p^*_2 \left(\frac{\alpha(1 - \lambda)}{1 - \alpha} \right) f \left(\frac{p^*_2 - \bar{\omega}_2}{1 - \alpha} \right), \tag{C.42}
\]

where the right-hand side is strictly negative at an interior solution whenever \(\alpha > 0 \). Thus, since \(M_1 \) is decreasing in \(p \) and \(M_1(p^*_1; \bar{\omega}(s)) = 0 \), we must have \(p^*_1 > p^M \).

Step 2: \(p^*_2 < p^*_1 \). FOC (C.41) implies that \(p^*_2 \) solves \(M_2(p^*_2; \bar{\omega}_2, \bar{\omega}(s)) = 0 \). Toward a contradic-
tion, suppose that \(p^*_2 = p^*_1 \). We argue that \(M_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) < M_1(p^*_1; \bar{\omega}(s)) \). Note that

\[
M_2(p; \bar{\omega}_2, \bar{\omega}(s)) = D_2(p; \bar{\omega}_2, \bar{\omega}(s)) - p \left[\lambda f(p - \bar{\omega}(s)) + \left(\frac{1 - \lambda}{1 - \alpha} \right) f \left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right) \right].
\]

(C.43)

At \(p = p^*_1 \), we have \(\bar{\omega}_2 = (1 - \alpha) + \alpha p^*_1 \) and \((p - \bar{\omega}_2)/(1 - \alpha) = p^*_1 - \bar{\omega}(s) \), which further implies that \(D_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) = 1 - F(p^*_1 - \bar{\omega}(s)) = D_1(p^*_1; \bar{\omega}(s)) \). Thus, evaluating \(M_2 \) at \(p = p^*_1 \) yields

\[
M_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) = D_1(p^*_1; \bar{\omega}(s)) - p^*_1 f(p^*_1 - \bar{\omega}(s)) \left(\frac{1 - \alpha \lambda}{1 - \alpha} \right).
\]

(C.44)

However, note that \(M_1(p^*_1; \bar{\omega}(s)) = D_1(p^*_1; \bar{\omega}(s)) - p^*_1 f(p^*_1 - \bar{\omega}(s)) \), and thus \(M_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) < M_1(p^*_1; \bar{\omega}(s)) \iff -p^*_1 f(p^*_1 - \bar{\omega}(s)) \left(\frac{1 - \alpha \lambda}{1 - \alpha} \right) < -p^*_1 f(p^*_1 - \bar{\omega}(s)), \)

(C.45)

which holds for any \(\alpha > 0 \). However, this presents a contradiction: since \(M_1(p^*_1; \bar{\omega}(s)) < 0 \) by FOC (C.40), \(M_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) < M_1(p^*_1; \bar{\omega}(s)) \Rightarrow M_2(p^*_1; \bar{\omega}_2, \bar{\omega}(s)) < 0 \), which violates FOC (C.41). Thus, if \(M_2(p; \bar{\omega}_2, \bar{\omega}(s)) \) is decreasing in \(p \), we must have \(p^*_2 < p^*_1 \) in order for both FOCs to hold. To complete the proof, we only need to show that \(M_2(p; \bar{\omega}_2, \bar{\omega}(s)) \) is decreasing in \(p \).

Step 3: \(M_2 \) is decreasing in \(p \). Notice that

\[
M_2(p; \bar{\omega}_2, \bar{\omega}(s)) = \lambda \frac{\partial}{\partial p} \left. pD^I(p; \bar{\omega}(s)) \right|_{p \to M^I(p; \bar{\omega}(s))} + (1 - \lambda) \left. pD^U(p; \bar{\omega}_2) \right|_{p \to M^U(p; \bar{\omega}_2)}
\]

\[
= \lambda M^I(p; \bar{\omega}(s)) + (1 - \lambda) M^U(p; \bar{\omega}_2).
\]

(C.46)

It is immediate that \(M^I(p; \bar{\omega}(s)) = M_1(p; \bar{\omega}(s)) \) and is hence decreasing in \(p \). Moreover, we can show that \(M^U \) is also decreasing in \(p \) given our assumptions on \(F \). The following Lemma establishes this.

Lemma C.2. Suppose the family of distributions \(\{F(x - \bar{\omega})\}_{\bar{\omega} \in \mathbb{R}} \) is such that for any \(\bar{\omega}(s) \),

\[
M^I(p; \bar{\omega}(s)) \equiv \frac{\partial}{\partial p} [1 - F(p - \bar{\omega}(s))] \text{ is decreasing at all } p \text{ such that } F(p - \bar{\omega}(s)) \in (0, 1). \]

Then for any \(\alpha \in [0, 1] \) and \(\bar{\omega}_2 \in \mathbb{R} \), \(M^U(p; \bar{\omega}_2) \equiv \frac{\partial}{\partial p} [1 - F\left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right)] \text{ is decreasing at all } p \text{ such that } F\left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right) \in (0, 1). \)

We now prove Lemma C.2. Consider an arbitrary value of \(\bar{\omega}(s) \in \mathbb{R} \). Notice that \(M^I(p; \bar{\omega}(s)) = 1 - F(p - \bar{\omega}(s)) - pf(p - \bar{\omega}(s)) \), and hence the assumption of the lemma implies \(\frac{\partial}{\partial p} M^I(p; \bar{\omega}(s)) < 0 \iff -f(p - \bar{\omega}(s)) - f(p - \bar{\omega}(s)) - pf'(p - \bar{\omega}(s)) \) on the relevant domain, which is equivalent to

\[
-2f(p - \bar{\omega}(s)) - pf'(p - \bar{\omega}(s)) \leq 0
\]

(C.47)

for all \(\bar{\omega}(s) \) (and strictly so for \(p - \bar{\omega}(s) \) on the interior of the support of \(F \)). Now note that \(M^U(p; \bar{\omega}_2) \equiv \frac{\partial}{\partial p} [1 - F\left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right)] = 1 - F\left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right) - pf\left(\frac{p - \bar{\omega}_2}{1 - \alpha} \right) \frac{1}{1 - \alpha}. \) To show that \(M^U(p; \bar{\omega}(s)) \) is
decreasing in p, note that
\[
\frac{\partial}{\partial p} M^U(p; \tilde{\omega}) = -f\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) - f\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) - pf'\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) \frac{1}{(1 - \alpha)^2}
\]
\[
= -2f\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) - pf'\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) \frac{1}{(1 - \alpha)^2}.
\] (C.48)

The expression above is weakly negative iff
\[
-2f\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) - pf'\left(\frac{p - \bar{\omega}}{1 - \alpha}\right) \frac{1}{(1 - \alpha)^2} \leq 0.
\] (C.49)

Under a change of variables with $\tilde{p} = \frac{p}{1 - \alpha}$ and $\tilde{\omega} = \frac{\bar{\omega}}{1 - \alpha}$, the previous condition is then equivalent to
\[
-2\tilde{f}(\tilde{p} - \bar{\omega}) - \tilde{p}f'(\tilde{p} - \bar{\omega}) \leq 0.
\] (C.50)

This condition is equivalent to Condition (C.47), which holds by assumption. Furthermore, Condition (C.47) additionally implies that Condition (C.50) holds with a strict inequality when $\frac{p - \bar{\omega}}{1 - \alpha}$ is on the interior of the support of F. This completes the proof of Lemma C.2.

Since F satisfies the assumption of Lemma C.2 (because we assume F has an increasing hazard rate), M^U is decreasing and thus M_2 is decreasing since it is the convex combination of decreasing functions. This completes Case 1.

Case 2: $p^*_1 = \bar{p}$. Suppose the optimal price in period 1 is the price ceiling. Then $p^*_1 > p^M$ given that $p > p^M$. To show $p^*_1 > p^*_2$, suppose that $p^*_2 = \bar{p}$ for a contradiction. Recall that if $p^*_1 = p^*_2$, then $D^U(p^*_2; \bar{\omega}) = D^I(p^*_2; \bar{\omega}(s)) \Rightarrow D_2(p^*_2; \bar{\omega}, \bar{\omega}(s)) = D^I(p^*_2; \bar{\omega}(s))$. Thus, the seller’s total profit from $p^*_1 = p^*_2 = \bar{p}$ would be $2D^I(\bar{p}; \bar{\omega}(s)) < 2D^I(p^M; \bar{\omega}(s))$ since p^M uniquely maximizes $pD^I(p; \bar{\omega}(s))$. Thus, $p^*_1 = p^*_2 = \bar{p}$ is strictly preferred to $p^*_1 = p^*_2 = \bar{p}$, contradicting the presumption that the latter path is optimal. Thus, we must have $p^*_2 < p^*_1$.

Case 3: p^*_1 interior yet $p^*_2 = p^*_2$. In this case, $p^*_2 = p^*_2 = (1 - \alpha)\bar{\omega} + \alpha p^*_1$. Note that $p^*_1 > p^*_2 \Leftrightarrow p^*_1 > \bar{\omega}$, which is true given that is sub-optimal to serve all consumers in period 1. Thus, we need only show that $p^*_1 > p^M$ when p^*_1 is interior (the ceiling case is considered above). The seller chooses p^*_1 to maximize $p_1D^I(p_1; \bar{\omega}(s)) + p^*_2[\lambda D^I(p^*_2; \bar{\omega}(s)) + 1 - \lambda]$, yielding a FOC of
\[
M_1(p^*_1; \bar{\omega}(s)) + \alpha[\lambda D^I(p^*_2; \bar{\omega}(s)) + 1 - \lambda - \lambda p^*_2f(p^*_2 - \bar{\omega}(s))] = 0,
\] (C.51)
and thus
\[
M_1(p^*_1; \bar{\omega}(s)) + \alpha\lambda M_1(p^*_2; \bar{\omega}(s)) + \alpha[1 - \lambda] = 0.
\] (C.52)

Recall that $M_1(p^M; \bar{\omega}(s)) = 0$ and $M_1(p; \bar{\omega}(s)) > 0$ for all $p < p^M$. Thus, since $p^*_2 < p^*_1$, if $p^*_1 \leq p^M$, then $M_1(p^*_1; \bar{\omega}(s)) + \alpha\lambda M_1(p^*_2; \bar{\omega}(s)) > 0$, contradicting the FOC above. This completes the proof of Part 1.

Part 2: Effect of α. First consider the case in which p^*_1 and p^*_2 are interior solutions to the optimization program in (C.32). From the Envelope Theorem, $\frac{\partial \Pi}{\partial \alpha} = 0$ for $n = 1, 2$, and hence
\[
\frac{\partial}{\partial \alpha} \Pi(p_1, p_2; \alpha, \lambda) = -p^*_2 \left[\lambda f(t^*_2) \frac{\partial t^*_2}{\partial \alpha} + (1 - \lambda)f(t^*_2) \frac{\partial t^*_2}{\partial \alpha}\right],
\] (C.53)
where we’ve defined \(t_2^* \equiv p_2 - \bar{\omega}(s) \) and \(\hat{t}_2 \equiv \frac{p_2^* - (1 - \alpha)\bar{\omega}(s) - \alpha p_1^*}{1 - \alpha} \). Since \(t_2^* \) is the marginal informed type, \(\frac{\partial t_2^*}{\partial \alpha} = 0 \). Now note that

\[
\frac{\partial \hat{t}_2}{\partial \alpha} = \frac{(1 - \alpha)[\bar{\omega}(s) - p_1^*] + [p_2^* - (1 - \alpha)\bar{\omega}(s) - \alpha p_1^*]}{(1 - \alpha)^2} = -\frac{p_1^* - p_2^*}{(1 - \alpha)^2}. \tag{C.54}
\]

Substituting these values back into (C.53) yields

\[
\frac{\partial}{\partial \alpha} \Pi(p_1, p_2; \alpha, \lambda) = (1 - \lambda)p_2^* f \left(\frac{p_2^* - (1 - \alpha)\bar{\omega}_1 - \alpha p_1^*}{1 - \alpha} \right) \left[\frac{p_1^* - p_2^*}{(1 - \alpha)^2} \right]. \tag{C.55}
\]

Since we have assumed \(\lambda < 1 \), the expression above is positive whenever \(p_1^* > p_2^* \), which is true by Part 1 of this proposition. The case in which \(p_1^* = \bar{p} \) and \(p_2^* \) is interior yields \(\frac{\partial}{\partial \alpha} \Pi(p_1, p_2; \alpha, \lambda) \) that is identical to expression (C.55). Finally, consider the case in which \(p_2^* = p_\lambda^* = (1 - \alpha)\bar{\omega} + \alpha p_1^* \) (i.e., the corner case described in Part 1 in which all uninformed types are served in period 2). In period 1, the seller chooses \(p_1 \) to maximize

\[
\Pi^c(p_1; \alpha, \lambda) = p_1 [1 - F(p_1 - \bar{\omega}(s))] + [(1 - \alpha)\bar{\omega} + \alpha p_1^*][1 - \lambda F((1 - \alpha)\bar{\omega} + \alpha p_1 - \bar{\omega}(s))]. \tag{C.56}
\]

Note that this profit function accounts for the fact that all uninformed types buy in period 2. Let \(p_1^* \) be the value of \(p_1 \) that maximizes the expression above, and let \(p_\lambda^*(p_1^*) \equiv (1 - \alpha)\bar{\omega} + \alpha p_1^* \). For either an interior value \(p_1^* \) or \(p_1^* = \bar{p} \), we have

\[
\frac{\partial \Pi^c(p_1; \alpha, \lambda)}{\partial \alpha} = (p_1^* - \bar{\omega}) \left[1 - \lambda F(p_\lambda^*(p_1^*) - \bar{\omega}(s)) \right] - p_\lambda^*(p_1^*) \lambda f \left(p_\lambda^*(p_1^*) - \bar{\omega}(s) \right)(p_1^* - \bar{\omega}), \tag{C.57}
\]

and hence \(\frac{\partial}{\partial \alpha} \Pi^c(p_1; \alpha, \lambda) > 0 \) if and only if

\[
\left[1 - \lambda F(p_\lambda^*(p_1^*) - \bar{\omega}(s)) \right] - p_\lambda^*(p_1^*) \lambda f \left(p_\lambda^*(p_1^*) - \bar{\omega}(s) \right) > 0. \tag{C.58}
\]

The previous condition must hold given that we are focusing on the case in which all uninformed types are served: as argued above, it is optimal to set the highest possible price in the first region of \(D_2 \) in (C.35), and hence the previous inequality must hold for all \(p_2 \leq (1 - \alpha)\bar{\omega} + \alpha p_1^* \).

Effect of \(\lambda \) Similar to the approach above, if \(p_2^* \) is interior and either \(p_1^* \) is interior or \(p_1^* = \bar{p} \), then we have

\[
\frac{\partial}{\partial \lambda} \Pi(p_1, p_2; \alpha, \lambda) = p_2^* \left[-F(t_2^*) + F(\hat{t}_2) \right], \tag{C.59}
\]

where neither \(t_2^* \) nor \(\hat{t}_2 \) depend on \(\lambda \). This expression is negative whenever \(\hat{t}_2 < t_2^* \). Notice that

\[
\hat{t}_2 = \frac{p_2^* - (1 - \alpha)\bar{\omega}(s) - \alpha p_1^*}{1 - \alpha} = p_2^* - \bar{\omega}(s) - \frac{\alpha}{1 - \alpha}[p_1^* - p_2^*] = t_2^* - \frac{\alpha}{1 - \alpha}[p_1^* - p_2^*]. \tag{C.60}
\]

Since \(\alpha > 0 \), \(\hat{t}_2 < t_2^* \iff p_1^* - p_2^* > 0 \), which is again true by Part 1 of this proposition. If instead
we have a corner solution in period 2, then the profit function is as in (C.56) and

\[
\frac{\partial \Pi^c(p_2; \alpha, \lambda)}{\partial \lambda} = -p_c^\lambda (p_2^\lambda) F\left(p_2^\lambda(p_1) - \bar{\omega}(s)\right),
\]

(C.61)

which is clearly negative.

Proof of Proposition 5. Part 1. Consider the optimal price pair \((p_1^*, p_2^*)\). Let \(t_2^* \equiv p_2^* - \bar{\omega}(s)\) denote the marginal informed type in period 2, and let \(\hat{t}_2 \equiv \frac{p_2^\lambda - \bar{\omega}}{1 - \alpha}\) denote the marginal uninformed type. Note that if \(\hat{t}_2 < t_2^*\), then the interval of types who adopt the good in period 2 at a price above their true expected valuation is \([\hat{t}_2, t_2^*]\). From (C.60), we have \(t_2^* - \hat{t}_2 = \frac{\alpha}{1 - \alpha}[p_1^* - p_2^*]\). Since \(p_1^* - p_2^* > 0\) for all \(\alpha > 0\) (by Proposition 4 Part 1), we know that \(\hat{t}_2 < t_2^*\). Thus, the width of the interval of types who wrongly adopt is

\[
t_2^* - \hat{t}_2 = \frac{\alpha}{1 - \alpha}[p_1^* - p_2^*],
\]

which is strictly positive.

Part 2. Suppose that \(\bar{\omega}(s) + t < 0\). We show that \(\alpha\) sufficiently large will induce the seller to set the “corner” price in period 2 at which all uninformed types are served. Recall from the proof of Proposition 4 that this price is \(p_2^\lambda = (1 - \alpha)\bar{\omega} + \alpha p_1\), where \(\bar{\omega} = \bar{\omega}(s) + t\). We will show that the price derivative of the period-2 profit function is necessarily negative at \(p_2^\lambda\) for \(\alpha\) sufficiently large, implying that \(p_2^\lambda = p_2^\lambda\), and thus that all uninformed types are served. Toward this end, recall that the period-2 profit is

\[
\Pi_2(p_2; p_1) = p_2 \left(1 - \lambda F(p_2 - \bar{\omega}(s)) - (1 - \lambda) F\left(\frac{p_2 - (1 - \alpha)\bar{\omega}(s) - \alpha p_1}{1 - \alpha}\right)\right),
\]

(C.63)

and hence

\[
\frac{\partial \Pi_2(p_2; p_1)}{\partial p_2} = \left(1 - \lambda F(p_2 - \bar{\omega}(s)) - (1 - \lambda) F\left(\frac{p_2 - (1 - \alpha)\bar{\omega}(s) - \alpha p_1}{1 - \alpha}\right)\right)
\]

\[
- p_2 \left(\lambda F(p_2 - \bar{\omega}(s)) + \frac{1 - \lambda}{1 - \alpha} f\left(\frac{p_2 - (1 - \alpha)\bar{\omega}(s) - \alpha p_1}{1 - \alpha}\right)\right).
\]

(C.64)

To evaluate \(\frac{\partial \Pi_2(p_2; p_1)}{\partial p_2}\mid_{p_2 = p_2^\lambda}\), notice that \(\frac{p_2^\lambda - (1 - \alpha)\bar{\omega}(s) - \alpha p_1}{1 - \alpha} = t\). Since \(F(t) = 0\), we have

\[
\left.\frac{\partial \Pi_2(p_2; p_1)}{\partial p_2}\right|_{p_2 = p_2^\lambda} = 1 - \lambda \left(F(p_2^\lambda - \bar{\omega}(s)) - p_2^\lambda f(p_2^\lambda - \bar{\omega}(s))\right) - p_2^\lambda \frac{1 - \lambda}{1 - \alpha} f(t),
\]

(C.65)

and thus a sufficient condition for \(\frac{\partial \Pi_2(p_2; p_1)}{\partial p_2}\mid_{p_2 = p_2^\lambda} < 0\) is

\[
p_2^\lambda \frac{1 - \lambda}{1 - \alpha} f(t) > 1.
\]

(C.66)
Since \(p^*_2 = (1 - \alpha) \bar{v} + \alpha p_1 \), the previous condition is equivalent to

\[
u + \frac{\alpha}{(1 - \alpha)} p_1 > \frac{1}{(1 - \lambda)f(t)}.
\]

(C.67)

From Proposition 4 Part 1, we know that along the optimal price path, \(p_1 > p^M \) for all \(\alpha > 0 \). Hence, a sufficient condition for (C.67) is

\[
u + \frac{\alpha}{(1 - \alpha)} p^M > \frac{1}{(1 - \lambda)f(t)}.
\]

(C.68)

The right-hand side of (C.68) is positive and finite given that \(f \) is positive on \(T \). Thus, since \(p^M > 0 \), there exists \(\tilde{\alpha} \in (0, 1) \) such that \(\nu + \frac{\tilde{\alpha}}{(1 - \tilde{\alpha})} p^M = \frac{1}{(1 - \lambda)f(t)} \). Then \(\alpha > \tilde{\alpha} \) implies that Condition (C.68) holds, and hence the seller chooses \(p^*_2 \) such that all uninformed types are served in period 2.

Proof of Proposition 6. As noted in the text, we restrict attention to the case in which it is never optimal to serve the lowest type. In this case, Equation (13) implies that the true demand function specified in Equation (16). Hence,

\[D(p_n; \bar{\omega}_n, \bar{\omega}(s)) = \lambda D^I(p_n; \bar{\omega}(s)) + (1 - \lambda) D^U(p_n; \bar{\omega}_n), \]

where \(D^I \) and \(D^U \) are specified in Equation (16). Hence,

\[D(p_n; \bar{\omega}_n, \bar{\omega}(s)) = \frac{(1 - \alpha) \bar{t} + \lambda (1 - \alpha) \bar{\omega}(s) + (1 - \lambda) \bar{\omega}_n - (1 - \lambda \alpha)p_n}{(1 - \alpha)(\bar{t} - t)}. \]

(C.69)

In period \(n + 1 \), an uninformed observer with taste \(t \) thinks that when the preceding generation holds a common expectation of \(\omega \) equal to \(\bar{\omega} \), then their demand is given by

\[\tilde{D}(p_n; \bar{\omega}|t) = \frac{(1 - \alpha) \bar{t} + \bar{\omega} - p_n + \alpha t}{(1 - \alpha)(\bar{t} - t)}. \]

(C.70)

The inferred value of this observer, denoted \(\bar{\omega}_{n+1}(t) \), is the value of \(\bar{\omega} \) that solves \(\tilde{D}(p_n; \bar{\omega}|t) = D(p_n; \bar{\omega}_n, \bar{\omega}(s)) \). By Lemma 1, \(\bar{\omega}_{n+1}(t) = \bar{\omega}_{n+1} - \alpha t \). Substituting this into the previous equality and solving for \(\bar{\omega}_{n+1} \) in terms of \(\bar{\omega}_n \) yields the following law of motion:

\[\bar{\omega}_{n+1} = \lambda[(1 - \alpha) \bar{\omega}(s) + \alpha p_n] + (1 - \lambda) \bar{\omega}_n, \]

starting from \(\bar{\omega}_2 = (1 - \alpha) \bar{\omega}(s) + \alpha p_1 \). We complete the proof using induction on \(n \geq 2 \). Define

\[\bar{p}^{n-1} = (1 - \lambda)^{n-2} p_1 + \sum_{k=2}^{n-1} \lambda(1 - \lambda)^{n-1-k} p_k. \]

(C.72)

For the base case, note that (C.71) implies that \(\bar{\omega}_3 = \lambda[(1 - \alpha) \bar{\omega}(s) + \alpha p_2] + (1 - \lambda)[(1 - \alpha) \bar{\omega}(s) + \alpha p_1] = (1 - \alpha) \bar{\omega}(s) + \alpha((1 - \lambda)p_1 + \lambda p_2) = (1 - \alpha) \bar{\omega}(s) + \alpha \bar{p}^2 \). Now suppose that for any \(n > 2 \), we have \(\bar{\omega}_n = (1 - \alpha) \bar{\omega}(s) + \alpha \bar{p}^{n-1} \). Again, (C.71) implies that \(\bar{\omega}_{n+1} = \lambda[(1 - \alpha) \bar{\omega}(s) + \alpha p_n] + (1 - \lambda)[(1 - \alpha) \bar{\omega}(s) + \alpha \bar{p}^{n-1}] = (1 - \alpha) \bar{\omega}(s) + \alpha((1 - \lambda) \bar{p}^{n-1} + \lambda p_n) = (1 - \alpha) \bar{\omega}(s) + \alpha \bar{p}^n \).
optimal to serve the lowest type. Thus, the optimal price path is characterized by the first-order conditions, aside from the possibility of pricing at the ceiling. We discuss the price-ceiling case at the end of the proof and focus on the interior case first. In the interior case, profit in period \(n \geq 2 \) is

\[
\Pi(p_n; \bar{\omega}, \bar{\omega}(s)) = p_n D(p_n; \bar{\omega}, \bar{\omega}(s)) = p_n \left(\frac{(1 - \alpha)t + \lambda(1 - \alpha)\bar{\omega}(s) + (1 - \lambda)\bar{\omega}_n - (1 - \lambda \alpha)p_n}{(1 - \alpha)(\bar{t} - \bar{t})} \right);
\]

in period \(n = 1 \), profit is \(\bar{\Pi}(p_1; \bar{\omega}(s)) = p_1 \left(\frac{t + \bar{\omega}(s) - p_1}{t - \bar{t}} \right) \). The seller’s maximization problem is thus

\[
\max_{(p_n)_{n=1}^N} \left(\bar{\Pi}(p_1; \bar{\omega}(s)) + \sum_{n=2}^N \Pi(p_n; \bar{\omega}_n) \right) \quad \text{s.t.} \quad \bar{\omega}_{n+1} = \varphi(\bar{\omega}_n, p_n) \forall n = 2, \ldots, N, \quad (C.73)
\]

where \(\varphi(\bar{\omega}_n; p_n) \equiv \lambda [1 - \alpha] \bar{\omega}(s) + \alpha p_n + (1 - \lambda) \bar{\omega}_n \) is the transition function derived in Lemma 2. The Lagrangian is then

\[
\mathcal{L} = \bar{\Pi}(p_1; \bar{\omega}_1) + \sum_{n=2}^N \Pi(p_n; \bar{\omega}_n) + \sum_{n=1}^N \gamma_n (\bar{\omega}_{n+1} - \varphi(\bar{\omega}_n, p_n)), \quad (C.74)
\]

where \(\{\gamma_n\}_{n=1}^N \) are Lagrange multipliers.

The plan for the proof is to first develop a set of equations (first-order conditions and Euler equations) that characterize the optimal price path. We will then argue that the price in the final period, \(p_N \), must be lower than \(p_{N-1} \) by the same logic underlying the two-period case (Proposition 4). We then argue by induction that if for any \(n \) we have \(p_n > p_{n+1} > \cdots > p_N \), then \(p_{n-1} > p_n \), which establishes the declining price path (i.e. Part 2 of the proposition). Finally, we will note that \(p_1 > p_M \) (i.e., Part 1).

We begin by deriving a set of first-order conditions that characterize the system of prices. Given the functional forms of \(\Pi, \bar{\Pi}, \) and \(\varphi \), we have the following collection of first-order conditions: (i) the FOC w.r.t. \(p_1 \) is

\[
\frac{\bar{t} + \bar{\omega}(s) - 2p_1}{\bar{t} - \bar{t}} = \gamma_1 \alpha; \quad (C.75)
\]

(ii) the FOC w.r.t. \(p_n \) for \(n = 2, \ldots, N - 1 \) is

\[
\left(\frac{(1 - \alpha)\bar{t} + \lambda(1 - \alpha)\bar{\omega}(s) + (1 - \lambda)\bar{\omega}_n - 2(1 - \lambda \alpha)p_n}{(1 - \alpha)(\bar{t} - \bar{t})} \right) = \gamma_n \lambda \alpha; \quad (C.76)
\]

(iii) the FOC w.r.t. \(p_N \) is

\[
\left(\frac{(1 - \alpha)\bar{t} + \lambda(1 - \alpha)\bar{\omega}(s) + (1 - \lambda)\bar{\omega}_N - 2(1 - \lambda \alpha)p_N}{(1 - \alpha)(\bar{t} - \bar{t})} \right) = 0, \quad (C.77)
\]

which follows from the fact that \(\gamma_N = 0 \) given the FOC w.r.t. to \(\bar{\omega}_{N+1} \); and (iv) the FOC w.r.t. \(\bar{\omega}_n \) for \(n = 2, \ldots, N \) is

\[
p_n \left(\frac{1 - \lambda}{(1 - \alpha)(\bar{t} - \bar{t})} \right) + \gamma_{n-1} = \gamma_n (1 - \lambda). \quad (C.78)
\]
From these FOCs, we can derive an “Euler equation” by using the FOC for \(p_{n-1} \) in (C.76) to solve for \(\gamma_{n-1} \) and then substituting this value into (C.78). The result provides a link between \(p_{n-1} \) and \(p_n \) in terms of the current beliefs. Equations (C.75) and (C.78) imply that the Euler equation linking periods 1 and 2 is

\[
p_2 = \left(\frac{2\lambda(1-\alpha) + \alpha(1-\lambda)^2}{(1-\lambda)(2-\lambda\alpha)} \right) p_1 - \frac{2(2\lambda - 1)(1-\alpha)}{(1-\lambda)(2-\lambda\alpha)} p_M. \tag{C.79}
\]

For \(n > 2 \), equations (C.76) and (C.78) along with the expression for \(\bar{\omega}_n \) in terms of past prices (from Lemma 2) imply that the Euler equation linking periods \(n-1 \) and \(n \) is:

\[
p_n = \phi_{-1} p_{n-1} - \phi_M p_M - \bar{\phi} p^{n-2} \tag{C.80}
\]

where we’ve introduced the following positive constants:

\[
\phi_{-1} = \frac{(2-\alpha\lambda) - \alpha\lambda^2(2-\lambda)}{(1-\lambda)(2-\lambda\alpha)}, \tag{C.81}
\]

\[
\phi_M = \frac{2\lambda(1-\alpha)}{(1-\lambda)(2-\lambda\alpha)}, \tag{C.82}
\]

\[
\bar{\phi} = \frac{\alpha\lambda(2-\lambda)}{(2-\lambda\alpha)}. \tag{C.83}
\]

To characterize the solution, we will combine these Euler equations with the FOCs for each \(p_n \). Using the our expression for \(\bar{\omega}_n \) in terms of past prices (from Lemma 2), the FOCs w.r.t. \(p_n \) for \(n \geq 2 \) from above can be equivalently written as

\[
0 = (1-\alpha)(\bar{t} + \bar{\omega}(s)) + \alpha(1-\lambda)p^{n-1} - 2(1-\lambda\alpha)p_n + \alpha(1-\lambda) \sum_{k=n+1}^{N} p_k \frac{\partial p_k}{\partial p_n} \]

\[
= 2(1-\alpha)p_M + \alpha(1-\lambda)p^{n-1} - 2(1-\lambda\alpha)p_n + \alpha \lambda \sum_{k=n+1}^{N} (1-\lambda)^{k-n} p_k, \tag{C.84}
\]

where we’ve used the fact that \(\frac{\partial p_{k-1}}{\partial p_n} = \lambda(1-\lambda)^{k-n-1} \) and \(p_M = (\bar{t} + \bar{\omega}(s))/2 \) in the uniform case. Given that the demand function in period 1 is different from the one in \(n \geq 2 \), the FOC w.r.t. \(p_1 \) is

\[
0 = (1-\alpha)p_M - 2(1-\alpha)p_1 + \alpha \sum_{k=2}^{N} (1-\lambda)^{k-1} p_k \tag{C.85}
\]

since \(\frac{\partial p_{k-1}}{\partial p_1} = (1-\lambda)^{k-2} \). To summarize, the \(N \) prices must solve the following system of \(N \)
\[p_1 = p^M + \frac{\alpha}{2(1-\alpha)} \left(\sum_{k=2}^{N} (1-\lambda)^{k-1} p_k \right) \]
\[: \]
\[p_n = \left(\frac{1-\alpha}{1-\lambda \alpha} \right) p^M + \left(\frac{\alpha}{2(1-\lambda \alpha)} \right) \left((1-\lambda) \bar{p}^{n-1} + \lambda \sum_{k=n+1}^{N} (1-\lambda)^{k-n} p_k \right) \]
\[: \]
\[p_N = \left(\frac{1-\alpha}{1-\lambda \alpha} \right) p^M + \left(\frac{\alpha}{2(1-\lambda \alpha)} \right) \left((1-\lambda) \bar{p}^{N-1} \right). \quad \text{(C.86)} \]

Going forward, we will streamline notation by letting \(c_n \equiv p_n/p^M \) denote the “normalized” price in each period \(n \). This allows us to characterize the system for \((c_1, \ldots, c_N) \) without any explicit dependence on the value of \(p^M \). Similarly, for all \(n \), let \(\bar{c}^{n-1} = \bar{p}^{n-1}/p^M = (1-\lambda)^{n-2}c_1 + \sum_{k=2}^{n-1} \lambda(1-\lambda)^{n-1-k}c_k \). Additionally, let \(\bar{c}^{n+1} = \sum_{k=n+1}^{N} (1-\lambda)^{k-n} p_k/p^M = \sum_{k=n+1}^{N} (1-\lambda)^{k-n} c_k \).

We now prove the following via induction: for \(n > 2 \), if \(c_n > c_{n+1} \) \(\cdots > c_N \), then \(c_{n-1} > c_n \).

Base Case: \(c_{N-1} > c_N \). We prove the base case by showing \(c_{N-1} > c_N \). From (C.84), the FOC w.r.t. \(c_{N-1} \) is \(2(1-\alpha) + \alpha(1-\lambda)\bar{c}^{N-2} - 2(1-\lambda\alpha)c_{N-1} + \alpha\lambda(1-\lambda)c_N = 0 \), and the FOC w.r.t. \(c_N \) is \(2(1-\alpha) + \alpha(1-\lambda)\bar{c}^{N-1} - 2(1-\lambda\alpha)c_N = 0 \). The definition of \(\bar{c}^{N-1} = (1-\lambda)\bar{c}^{N-2} + \lambda c_{N-1} \). Substituting this value into the latter FOC and equating the two FOCs yields the following necessary condition:

\[\alpha\lambda(1-\lambda)\bar{c}^{N-2} = \left(2(1-\lambda\alpha) + \alpha\lambda(1-\lambda) \right) [c_{N-1} - c_N]. \quad \text{(C.87)} \]

It is straightforward to verify that \(2(1-\lambda\alpha) + \alpha\lambda(1-\lambda) = 2 - \alpha\lambda[1+\lambda] > 0 \) for any \(\alpha \in (0,1) \) and any \(\lambda \in (0,1) \). Thus, since the left-hand side of (C.87) is strictly positive (it is a weighted sum of normalized prices), we have \(c_{N-1} > c_N \).

Induction step: \(c_n > c_{n+1} \) for \(n \geq 2 \). Consider \(n \in \{3, \ldots, N-1\} \) and suppose that \(c_n > c_{n+1} > \cdots > c_N \). We will show that \(c_{n-1} > c_n \). To do so, we first derive an expression for \(c_{n-1} \) purely in terms of \((c_n, \ldots, c_N) \). Note that neither the Euler equation for \(c_{n-1} \) nor the FOC w.r.t. \(c_{n-1} \) provides this: the former characterizes \(c_{n-1} \) as a function of previous prices, \((c_1, \ldots, c_{n-1}) \) and the latter characterizes \(c_{n-1} \) as a function of previous and future prices. To obtain this expression, note that (C.80) implies \(\bar{c}^{n-2} = (\phi_{-1}c_{n-1} - c_n - \phi_M)/\hat{\phi} \). Substituting this value into the FOC w.r.t. \(c_{n-1} \) (Equation C.84) yields

\[2(1-\lambda\alpha)c_{n-1} = 2(1-\alpha) + \alpha(1-\lambda)\frac{1}{\hat{\phi}} \left(\phi_{-1}c_{n-1} - c_n - \phi_M \right) + \alpha\lambda\bar{c}^n. \quad \text{(C.88)} \]

From the definition of \(\bar{c}^n \), note that \(\bar{c}^n = (1-\lambda)c_n + (1-\lambda)\bar{c}^{n+1} \). Substituting this expression into (C.88) and substituting the values of constants \(\phi_{-1}, \phi_M, \) and \(\hat{\phi} \) from above (Equations C.81 to
C.83) and simplifying reveals that
\[c_{n-1} = \phi_{-1}c_n + \phi_M - \left(\frac{\lambda}{1 - \lambda} \right) \bar{c}^{n+1}. \]
(C.89)

Recall that, by assumption, \(c_n > c_{n+1} > \cdots > c_N \), and we want to show \(c_{n-1} > c_n \). From (C.89), this condition is equivalent to \(\phi_{-1}c_n + \phi_M - \left(\frac{\lambda}{1 - \lambda} \right) \bar{c}^{n+1} > c_n \), and hence equivalent to
\[[\phi_{-1} - 1]c_n > \left(\frac{\lambda}{1 - \lambda} \right) \bar{c}^{n+1} - \phi_M. \]
(C.90)

From the definition of \(\phi_{-1} \), we have \(\phi_{-1} - 1 > 0 \). Notice that (C.89) must hold for all \(n \in \{3, \ldots, N - 1\} \), and hence \(c_n = \phi_{-1}c_{n+1} + \phi_M - \left(\frac{\lambda}{1 - \lambda} \right) \bar{c}^{n+2} \). Moreover, note that the definitions of \(\phi_{-1} \) and \(\bar{c} \) are such that \(\phi_{-1} = (1 - \lambda \bar{c})/(1 - \lambda) \); substituting this into the previous equality along with the fact that \(\bar{c}^{n+1} = (1 - \lambda)c_{n+1} + (1 - \lambda)\bar{c}^{n+1} \) implies that \(\left(\frac{\lambda}{1 - \lambda} \right) \bar{c}^{n+1} = -(1 - \lambda)c_n + (1 - \lambda)\phi_M + c_{n+1} \). Substituting this into the inequality of interest (Condition C.90) yields the equivalent condition of \([\phi_{-1} - 1]c_n > c_{n+1} - \lambda\phi_M \). Since we know \(c_n > c_{n+1} \) and since \(\phi_{-1} - 1 > 0 \) (because \(\phi_{-1} > 1 \), as noted above), the previous condition will hold at \(c_n > c_{n+1} \) if it holds at \(c_n = c_{n+1} \). Thus, it suffices to show that \([\phi_{-1} - 1]c_n > c_{n+1} - \lambda\phi_M \iff [\phi_{-1} - 1 - 1]c_n > -\lambda\phi_M \). The previous condition holds so long as \(\phi_{-1} - 1 - 1 > 0 \), which can be directly confirmed from the definition of \(\phi_{-1} \) in (C.81). This completes the induction step.

So far, we have verified that \(c_{N-1} > c_N \) implies \(c_n > c_{n+1} \) for all \(n \geq 2 \). To complete the proof, we must show that \(c_2 > c_3 > \cdots > c_N \) implies that \(c_1 > c_2 \). Since the Euler equation linking periods 1 and 2 is different from one in all other periods, we cannot rely on (C.89) as above. Instead, consider the FOCs in periods 1 and 2 (Equations C.85 and C.84), which are \(2(1 - \alpha) - 2(1 - \alpha)c_1 + \alpha c_2^2 = 0 \) and \(2(1 - \alpha) + \alpha(1 - \lambda)c_2^2 - 2(1 - \lambda\alpha)c_2 + \alpha\lambda c_3 = 0 \), respectively. Using the fact that \(c_2^2 = (1 - \lambda)c_2 + (1 - \lambda)c_3 \), equating two FOCs and simplifying yields the condition
\[\alpha[(1 - 2\lambda)c_2^2 = 2(1 - \lambda)c_2] = \zeta[c_1 - c_2], \]
(C.91)
where \(\zeta = [2(1 - \alpha) + \alpha(1 - \lambda)] = 2 - \alpha(1 + \lambda) \); note that \(\zeta \in (0, 2) \) for all \(\alpha \in (0, 1) \). Thus, we have \(c_1 > c_2 \) so long as \((1 - 2\lambda)c_2^2 + 2(1 - \lambda)c_2 > 0 \iff 2(1 - \lambda)c_2 > (2\lambda - 1)c_2^3 \). While this holds immediately whenever \(\lambda < 1/2 \), we must show it holds more generally. Recall that \(c_3^2 = \sum_{k=3}^N (1 - \lambda)^{k-2}c_k \). Substituting this into the previous inequality yields the equivalent condition of \(2(1 - \lambda)c_2 > (2\lambda - 1) \sum_{k=3}^N (1 - \lambda)^{k-2}c_k \iff 2c_2 > (2\lambda - 1) \sum_{k=3}^N (1 - \lambda)^{k-3}c_k \). Since we’ve assumed \(c_2 > c_3 > \cdots > c_N \), a sufficient condition for the previous inequality is
\[2c_2 > (2\lambda - 1)c_2 \sum_{k=3}^N (1 - \lambda)^{k-3} \iff 2 > (2\lambda - 1) \sum_{k=0}^{N-3} (1 - \lambda)^k. \]
(C.92)

Recall that the partial sum of the geometric series is \(\sum_{k=0}^{N-3} (1 - \lambda)^k \) is strictly less than \(\frac{1}{1 - (1 - \lambda)} = \frac{1}{\lambda} \). Thus, a sufficient condition for Condition (C.92) is \(2 > (2\lambda - 1) \frac{1}{\lambda} \), which necessarily holds.

Finally, it is immediate from the FOC for \(p_1 \) in (C.84) that \(p_1 > p^M \). Similarly, if the FOC in period 1 does not hold because the seller prefers setting \(p_1 \) equal to the price ceiling, \(\bar{p} \), then the logic of this proof remains unchanged. If \(p_1 = \bar{p} \), then clearly we have \(p_1 > p^M \); moreover, the
seller would never charge \(p_2 = \bar{p} \) if \(p_1 = \bar{p} \) since she strictly profits from a price decrease in period 2. Thus, it is immediate that we still have \(p_2 = p_1 = \bar{p} \) in this case, and hence prices will follow the interior path described above from period 2 onward.

Proof of Proposition 7. In period 1, the quantity demanded is

\[
D_1(p; \bar{\omega}(s)) = \lambda [1 - F(p - \bar{\omega}(s))] + (1 - \lambda) [1 - F(p - \omega_0)].
\]

(C.93)

Now consider what an agent who delays with taste \(t \) will infer from observing this quantity. They think that if informed agents expect a quality of \(\hat{\bar{\omega}}_2(t) \); then the demand in period 1 is

\[
\hat{D}_1(p; \hat{\bar{\omega}}) = \lambda \left[1 - F \left(\frac{p - \hat{\bar{\omega}} - \alpha t}{1 - \alpha} \right) \right] + (1 - \lambda) \left[1 - F \left(\frac{p - \omega_0 - \alpha t}{1 - \alpha} \right) \right].
\]

(C.94)

Equating the two equations above allows us to solve for \(\hat{\bar{\omega}}_2(t) \), which denotes the perceived quality of an agent with taste \(t \) who has not bought in period 1. Assuming \(T \sim U(t, \tilde{t}) \), this solution is

\[
\hat{\bar{\omega}}_2(t) = \frac{\alpha}{\lambda} \left(p - (1 - \lambda) \omega_0 - t \right) + (1 - \alpha) \bar{\omega}(s).
\]

(C.95)

The marginal type in period 2 under projection is the \(\hat{t}_2 \) that solves \(\hat{\bar{\omega}}_2(\hat{t}_2) + \hat{t}_2 = p \), and hence

\[
\hat{t}_2 = p - \left[\frac{\lambda (1 - \alpha)}{\lambda - \alpha} \right] \bar{\omega}(s) + \left[\frac{\alpha (1 - \lambda)}{\lambda - \alpha} \right] \omega_0.
\]

(C.96)

The marginal type in period 2 under rational inference is \(t^*_2 = p - \bar{\omega}(s) \). Note that \(\hat{t}_2 < t^*_2 \iff p - \left[\frac{\lambda (1 - \alpha)}{\lambda - \alpha} \right] \bar{\omega}(s) + \left[\frac{\alpha (1 - \lambda)}{\lambda - \alpha} \right] \omega_0 < p - \bar{\omega}(s) \iff \bar{\omega}(s) > \omega_0. \]

(C.97)

Recall that the only types present in period 2 are those who did not buy in period 1; i.e., only those with \(t \leq t^*_1 \equiv p - \bar{\omega}_0 \). Note that rational consumers in period 2 buy if and only if \(t^*_2 < t^*_1 \iff \bar{\omega}(s) > \omega_0 \). Condition (C.97) thus implies that the same is true under projection: \(\hat{t}_2 < t^*_1 \iff \bar{\omega}(s) > \omega_0 \); hence, projectors in period 2 only buy when the quality is higher than expected.

Part 1. Suppose \(\bar{\omega}(s) > \omega_0 \). Under rational inference, the interval of types who buy in period 2 is \([t^*_2, t^*_1]\). Under projection, this interval is \([\hat{t}_2, t^*_1]\), where \(\hat{t}_2 < t^*_2 \) by (C.97). Hence, the quantity demanded in period 2 under projection exceeds the rational benchmark. Moreover, using the expressions above for \(\hat{t}_2 \) and \(t^*_2 \), the interval of types who wrongly adopt the good is

\[
t^*_2 - \hat{t}_2 = \frac{\alpha (1 - \lambda)}{\lambda - \alpha} [\bar{\omega}(s) - \omega_0].
\]

(C.98)

The measure of this interval is clearly increasing in \(\alpha \) and in \(\bar{\omega}(s) - \omega_0 \).

Now consider the range of types who buy in period 2 yet hold a quality expectation that exceeds the rational expectation, \(T_O \equiv \{ t \in [\hat{t}, t^*_1] \mid \hat{\bar{\omega}}_2(t) > \bar{\omega}(s) \} \). This set represents the buyers who overestimate quality and will, on average, be disappointed by adoption ex post; that is, \(t \in T_O \Rightarrow \mathbb{E}[\omega - \hat{\bar{\omega}}(t)\mid s] < 0 \). Let \(\hat{t} \) be the type in period 2 who infers correctly; i.e., \(\hat{\bar{\omega}}_2(\hat{t}) = \bar{\omega}(s) \). From
where
\[\bar{\omega}_2(t) \] is decreasing in \(t \), all types \(t < \bar{t} \) in period 2 will overestimate quality and hence \(\mathcal{T}_O = [\bar{t}, t] \). Since \(\bar{\omega}(s) > \omega_0 \), we have \(\bar{t} \in (t_2^*, t_1^*) \) given that \(\lambda \in (0, 1) \). In contrast to rational learning, \(\bar{t} > t_2^* \) implies that some projecting buyers who correctly adopt the good (i.e., their expected valuation exceeds the price) will systematically experience disappointment, on average.

Part 2. Suppose \(\bar{\omega}(s) < \bar{\omega}_0 \). As discussed prior to Part 1, \(\bar{\omega}(s) < \bar{\omega}_0 \) implies that no consumers buy in period 2 under rational inference or under projection. Hence, outcomes in this case match the rational benchmark.

Proof of Proposition 8. We first derive some preliminary results on the nature of uninformed agents’ biased inference rules and the equilibrium quantity demanded before proving each part of the proposition.

Let \(t^* \equiv p - \hat{\omega}(s) \) be the marginal informed type (i.e., an informed type strictly prefers to buy a positive quantity iff \(t > t^* \)). The aggregate demand of informed agents is then

\[
D^I(p; \hat{\omega}(s)) = \int_T x^*(p; \hat{\omega}(s), t) dF(t) = \int_{t^*}^\bar{t} (\hat{\omega}(s) - p + t) dF(t) = -[1 - F(t^*)]t^* + \int_{t^*}^\bar{t} \hat{t} f(\hat{t}) d\hat{t}. \tag{C.100}
\]

Let \(\bar{H}(t) \equiv -[1 - F(t)]t + \int_{t \geq t} \hat{t} f(d\hat{t}) \). Now consider the demand function among agents with a quality expectation of \(\hat{\omega} \) from the perspective of an uninformed agent with taste \(t \). This agent believes the marginal type is \(\bar{t} = p - \hat{\omega} \), and hence he perceives

\[
\hat{D}^I(p; \hat{\omega}|t) = -[1 - \bar{F}(\bar{t}|t)]\bar{t} + \int_{\bar{t}}^{\bar{t}(t)} \hat{\bar{t}} f(\bar{t}|t) d\bar{t} = -\left[1 - F\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right)\right] \bar{t} + \int_{\hat{t}}^{\bar{t}(t)} \bar{t} f\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right) d\bar{t}. \tag{C.101}
\]

Consider a change of variables with \(x = \frac{\hat{t} - \alpha t}{1 - \alpha} \). Recalling that \(\bar{t}(t) = \alpha t + (1 - \alpha)\bar{t} \), the expression above can be written as

\[
\hat{D}^I(p; \hat{\omega}|t) = -\left[1 - F\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right)\right] \bar{t} + \int_{\frac{\hat{t} - \alpha t}{1 - \alpha}}^{\bar{t}} [\alpha t + (1 - \alpha)x] f(x) dx
\]

\[
= -\left[1 - F\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right)\right] \bar{t} + (1 - \alpha) \int_{\frac{\hat{t} - \alpha t}{1 - \alpha}}^{\bar{t}} x f(x) dx
\]

\[
= (1 - \alpha) \left(-\left[1 - F\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right)\right] \bar{t} + (1 - \alpha) \int_{\frac{\hat{t} - \alpha t}{1 - \alpha}}^{\bar{t}} x f(x) dx \right)
\]

\[
= (1 - \alpha) H\left(\frac{\hat{t} - \alpha t}{1 - \alpha}\right), \tag{C.102}
\]

where \(H \) is defined in (C.100).
An uninformed projecting agent’s inference rule, \(\hat{\omega}(d|t) \), is obtained by solving for the perceived marginal type \(\hat{t}(d|t) \) that solves \(\hat{D}_t(p; \hat{\omega}|t) = (1 - \alpha)H \left(\frac{\hat{t} - \alpha t}{1 - \alpha} \right) - d \), and then setting \(\hat{\omega}(d|t) = p - \hat{t} \). We now use the Implicit Function Theorem (IFT) to show that a projector’s biased inference rule is linearly decreasing in \(t \) with slope \(\alpha \).

Let \(L(x; d) = (1 - \alpha)H(x) - d \). Note that an agent infers a marginal type \(\hat{t}(d|t) \) equal to the value of \(\hat{t} \) that solves \(L \left(\frac{\hat{t} - \alpha t}{1 - \alpha}; d \right) = 0 \). Thus,

\[
\frac{\partial \hat{t}(d|t)}{\partial t} = - \left(\frac{\partial}{\partial \hat{t}} L \left(\frac{\hat{t} - \alpha t}{1 - \alpha}; d \right) \right) \left(\frac{\partial}{\partial \hat{t}} L \left(\frac{\hat{t} - \alpha t}{1 - \alpha}; d \right) \right)^{-1} \bigg|_{\hat{t}=\hat{t}(d|t)} = \alpha. \tag{C.103}
\]

Since \(\hat{\omega}(d|t) = p - \hat{t}(d|t) \), \(\frac{\partial}{\partial \hat{t}} \hat{\omega}(d|t) = -\alpha \). Thus, we can write any uninformed type’s inferred value of \(\hat{\omega}(s) \) upon observing aggregate demand as

\[
\hat{\omega}(d|t) = \hat{\omega}(d) - \alpha t, \tag{C.104}
\]

where \(\hat{\omega}(d) \) is independent of \(t \). While we will not explicitly solve for \(\hat{\omega}(d) \) (which will depend on \(F \) and \(\alpha \)), we now argue that, in equilibrium, the aggregate quantity demanded by uninformed agents is equal to the aggregate quantity demanded by informed agents. To see this, we first derive the aggregate quantity demanded by uninformed agents. Since \(\hat{\omega}(d|t) = \hat{\omega}(d) - \alpha t \), an uninformed type \(t \) will demand \(\hat{\omega}(d) - p + (1 - \alpha) t \) units. Thus, the truly marginal type among uninformed agents is \(t = (p - \hat{\omega}(d))/(1 - \alpha) \), and the aggregate demand among uninformed types is

\[
D^U(p; \hat{\omega}(d)) = \int_{\hat{t} = \frac{p - \hat{\omega}(d)}{1 - \alpha}}^{\hat{t}} (\hat{\omega}(d) - p + (1 - \alpha) t) dF(t) \]

\[
= (1 - \alpha) \int_{\hat{t} = \frac{p - \hat{\omega}(d)}{1 - \alpha}}^{\hat{t}} \left[-\frac{p - \hat{\omega}(d)}{1 - \alpha} + t \right] dF(t) \]

\[
= (1 - \alpha)H \left(\frac{p - \hat{\omega}(d)}{1 - \alpha} \right). \tag{C.105}
\]

Note that \(\frac{\partial}{\partial d} D^U(p; \hat{\omega}(d)) = -H \left(\frac{p - \hat{\omega}(d)}{1 - \alpha} \right) \frac{\partial \hat{\omega}(d)}{\partial d} \), and that \(\frac{\partial \hat{\omega}(d)}{\partial d} = \frac{\partial \hat{\omega}(d|t)}{\partial d} \) and \(\hat{t}(d|t) = p - \hat{\omega}(d|t) \)
then implies \(\frac{\partial \hat{\omega}(d)}{\partial d} = -\frac{\partial \hat{\lambda}(d)}{\partial d} \). Since \(\hat{t}(d|t) \) solves \(L\left(\frac{t-\alpha t}{1-\alpha} ; d\right) = 0 \), we have

\[
\frac{\partial \hat{t}(d|t)}{\partial d} = -\left(\frac{\partial}{\partial d} L\left(\frac{t-\alpha t}{1-\alpha} ; d\right) \right) \left(\frac{\partial}{\partial t} L\left(\frac{t-\alpha t}{1-\alpha} ; d\right) \right)^{-1} \bigg|_{i=\hat{t}(d|t)} \]

\[
= -(-1) \left((1-\alpha) H\left(\frac{t-\alpha t}{1-\alpha}\right) \right)^{-1} \bigg|_{i=\hat{t}(d|t)} \]

\[
= \left(H\left(\frac{p-\bar{\omega}(d|t)-\alpha t}{1-\alpha}\right) \right)^{-1} \bigg|_{i=\hat{t}(d|t)} = \left(H\left(\frac{p-\bar{\omega}(d)}{1-\alpha}\right) \right)^{-1}, \tag{C.106}
\]

and thus

\[
\frac{\partial \bar{\omega}(d)}{\partial d} = -\frac{\partial \hat{t}(d|t)}{\partial d} \Rightarrow \frac{\partial \bar{\omega}(d)}{\partial d} = -\left(H\left(\frac{p-\bar{\omega}(d)}{1-\alpha}\right) \right)^{-1}, \tag{C.107}
\]

which implies

\[
\frac{\partial}{\partial d} D^U(p; \bar{\omega}(d)) = -H\left(\frac{p-\bar{\omega}(d)}{1-\alpha}\right) \frac{\partial \bar{\omega}(d)}{\partial d}
\]

\[
\Rightarrow \frac{\partial}{\partial d} D^U(p; \bar{\omega}(d)) = H\left(\frac{p-\bar{\omega}(d)}{1-\alpha}\right) \left(H\left(\frac{p-\bar{\omega}(d)}{1-\alpha}\right) \right)^{-1} = 1. \tag{C.108}
\]

Thus, \(D^U \) as a function of the observed equilibrium quantity must vary identically with \(d \); that is, \(D^U(p; \bar{\omega}(d)) = d + c \) for some constant \(c \). But the only constant generically consistent with the required equilibrium condition of \(d = \lambda D^I(p; \bar{\omega}(s)) + (1-\lambda)D^U(p; \bar{\omega}(d)) \) is \(c = 0 \). Thus, in equilibrium, \(\bar{\omega}(d) \) must be such that \(D^U(p; \bar{\omega}(d)) = D^I(p; \bar{\omega}(s)) \). And thus, in equilibrium, \(d = D^I(p; \bar{\omega}(s)) \). For shorthand, let \(\hat{\omega}(t) = \bar{\omega}(d|t) \) evaluated at \(d = D^I(p; \bar{\omega}(s)) \).

Part 1. As established above in (C.104), an uninformed agent with taste \(t \) forms an estimate of \(\omega \) equal to \(\hat{\omega}(t) = \bar{\omega}(d) - \alpha t \), where \(\bar{\omega}(d) \) is independent of \(t \). Thus, \(\hat{\omega}(t) \) is clearly decreasing in \(t \) whenever \(\alpha > 0 \).

Part 2. As argued above, in equilibrium we must have \(D^U(p; \bar{\omega}(d)) = D^I(p; \bar{\omega}(s)) \). Recall that \(t^* = p - \bar{\omega}(s) \) and \(\hat{t} = (p - \bar{\omega}(d))/(1-\alpha) \) are the marginal informed and uninformed types, respectively. From (C.100) and (C.105), we have \(D^I(p; \bar{\omega}(s)) = H(t^*) \) and \(D^U(p; \bar{\omega}(d)) = (1-\alpha)H(\hat{t}) \). Hence, in equilibrium, we must have \(H(t^*) = (1-\alpha)H(\hat{t}) \). Since \(H \) is strictly decreasing, \(\hat{t} < t^* \) whenever \(\alpha > 0 \).

Part 3. Next, we argue that the uninformed marginal type overestimates \(\omega \): \(\hat{t} < t^* \Leftrightarrow (p - \bar{\omega}(d))/(1-\alpha) < p - \bar{\omega}(s) \Leftrightarrow \bar{\omega}(d) > (1-\alpha)\bar{\omega}(s) + \alpha p. \tag{C.109} \)

Notice that \(\hat{\omega}(\hat{t}) = \bar{\omega}(d) - \alpha \hat{t} = \bar{\omega}(d) - \alpha (p - \bar{\omega}(d))/(1-\alpha) \) and thus \(\hat{\omega}(\hat{t}) > \bar{\omega}(s) \Leftrightarrow \bar{\omega}(d) - \alpha p > (1-\alpha)\bar{\omega}(s), \) which holds given (C.109). Thus, \(\hat{\omega}(\hat{t}) > \bar{\omega}(s) \). Furthermore, there must exist \(\hat{t} \in (\hat{t}, \bar{t}) \) such that \(\hat{\omega}(\hat{t}) = \bar{\omega}(s) \). If such a type did not exist, then the fact that \(\hat{\omega}(t) = \bar{\omega}(d) - \alpha t \) implies that all uninformed types who buy in equilibrium overestimate \(\bar{\omega}(s) \). But this, together
with the fact that $\hat{t} < t^*$, would imply that $D^U(p; \hat{\omega}(d)) > D^I(p; \hat{\omega}(s))$ since, relative to informed types, a wider interval of uninformed types buy and they all overestimate $\hat{\omega}(s)$. Yet this contradicts the requirement that $D^U(p; \hat{\omega}(d)) = D^I(p; \hat{\omega}(s))$, and hence $\hat{t} \in (\bar{t}, \bar{t})$ exists such that $\hat{\omega}(\hat{t}) = \hat{\omega}(s)$; moreover, $\hat{\omega}(t) = \hat{\omega}(d) - \alpha t$ implies that $\hat{\omega}(t) > \hat{\omega}(s)$ for $t < \bar{t}$ and $\hat{\omega}(t) < \hat{\omega}(s)$ for $t > \bar{t}$. Since an uninformed type demands $x^*(p; \hat{\omega}(t), t) = \hat{\omega}(t) + t - p$, we additionally have $x^*(p; \hat{\omega}(t), t) > x^*(p; \hat{\omega}(s), t)$ for $t < \bar{t}$ and $x^*(p; \hat{\omega}(t), t) < x^*(p; \hat{\omega}(s), t)$ for $t > \bar{t}$.

Part 4. Note that $|x^*(p; \hat{\omega}(t), t) - x^*(p; \hat{\omega}(s), t)| = |\hat{\omega}(t) - \hat{\omega}(s)| = |\hat{\omega}(d) - \hat{\omega}(s) - \alpha t|$. By definition of \bar{t}, $\hat{\omega}(\bar{t}) = \hat{\omega}(d) - \alpha \bar{t} = \hat{\omega}(s)$. Thus, $|\hat{\omega}(d) - \hat{\omega}(s) - \alpha t| = |\hat{\omega}(d) - [\hat{\omega}(d) - \alpha \bar{t}] - \alpha t| = |\alpha \bar{t} - \alpha t|$, and hence $|x^*(p; \hat{\omega}(t), t) - x^*(p; \hat{\omega}(s), t)| = \alpha |t - \bar{t}|$. ■