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The traditional economic analysis of dis- 
crimination is based on Gary Becker's study 
of taste discrimination by employers, em- 
ployees, and consumers. More recent work 
by Kenneth Arrow (1972, 1973) has at- 
tempted to interpret intergroup wage dif- 
ferences in an alternative framework as a 
rational reaction to uncertainty in labor 
markets. His model of "statistical discrim- 
ination" demonstrates that when the screen- 
ing process used to determine a worker's 
qualifications is costly, and prior expecta- 
tions of productivity differ across race or 
sex groups, then wage differentials may 
arise between workers of identical pro- 
ductivity. 

By implicitly assuming a perfect screen- 
ing process, Arrow ignores a potentially im- 
portant source of wage differentials, namely 
the fact that the screening process might be 
a more reliable predictor of productivity for 
one group than for another.' Our paper 
generalizes the Arrow model in two ways. 
First, in contrast to Arrow, we assume that 
all groups have identical distributions of 
productivity. Secondly, the screening pro- 
cess used by the firm to determine an ap- 
plicant's productivity is "biased" in the 
sense that: a) members of various groups 
may "pass" the test in different proportions 

despite their identical productivity distribu- 
tions; and b) the predictive power of the 
test might vary across groups. Our objective 
is to analyze the effects of these types of 
biases in the screening process on the wage 
differentials between different population 
groups. 

I. The Model 

Consider a perfectly competitive in- 
dustry consisting of homogeneous firms. To 
help any particular firm determine the 
productivity of any given applicant, a 
screening process costing C dollars is 

2 undertaken.2 As a result of the screening 
each worker is assigned a score: passing 
(Q) or failing (U). The firm is assumed to 
hire all those (and only those) individuals 
who pass the test, i.e., the Q applicants. 
Moreover, the population can be par- 
titioned into two mutually exclusive pro- 
ductivity groups in terms of the qualifica- 
tions necessary to perform the job in 
question: qualified individuals (Q) and un- 
qualified individuals (U). Finally, the firm 
is assumed to know the distribution of 
productivity in each group. That is, the firm 
knows the probability, Pi(Q), that an in- 
dividual from group i is qualified for the 
job. For expositional simplicity we consider 
two race groups, whites (i = w) and blacks 
(i = b). 

Within this framework, Arrow's model is 
obtained by making two specific assump- 
tions. First, the test is a perfect predictor of 
productivity, hence Pi(Q) = Pi(Q).3 Sec- 

*University of California-Santa Barbara and Uni- 
versity of Chicago, respectively. We are indebted to 
Ann P. Bartel, Barry R. Chiswick, Linda N. Edwards, 
Ira M. Goldberg, Samuel Schwarz, the managing 
editor of this Review, and an anonymous referee for 
useful comments and suggestions on previous drafts of 
this paper. 

I1n a rather different framework, Edmund Phelps 
has allowed for the reliability of the screening process 
to differ across groups. However, as Dennis Aigner 
and Glen Cain have shown, Phelps' assumption that 
all applicants are hired by the firm leads to the con- 
clusion that expected wages are identical across 
groups, as long as the groups under consideration 
have the same expected productivity. Thus they 
argue that Phelps' model is inadequate as an ex- 
planation of discrimination in the labor market. 

2Note that due to our assumptions of homogene- 
ous firms the testing procedure must be identical 
across firms. See A. Michael Spence and Joseph 
Stiglitz for a more extensive discussion of the role of 
screening in the labor market. 

3The assumption that the applicant's productivity 
is known with certainty upon testing is similar to the 
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ondly, the proportion of qualified whites is 
higher than the proportion of qualified 
blacks, Pw(Q) > Pb(Q).4 Given these as- 
sumptions, the following conditions must 
hold in equilibrium for a risk-neutral firm: 

(1) Pi(Q)[MPi - wi] = C (i = w, b) 
where wi is the competitive wage for group 
i, and MPi is the value of marginal product 
of qualified group i workers. Ihese condi- 
tions have a straightforward economic 
interpretation. Applicants who score U are 
not hired, and hence do not contribute to 
the gains of the firm. If, on the other hand, 
an applicant is predicted (correctly) to be 
qualified, the gain to the firm is given by the 
difference between the marginal product of 
a qualified worker and the wage. Weighting 
this difference by the probability of being 
qualified yields the expected return from 
screening one more applicant and, in equi- 
librium, this return must equal the marginal 
cost of screening. Assuming that qualified 
white workers and qualified black workers 
are perfect substitutes in production, 
MP, = MPb, the equilibrium wage differ- 
ential is given by 
(2) 
Ww - Wb P ([Pw(Q) - Pb(Q)] 

Pw(Q)Pb(Q) 
If the proportion of qualified workers is 
larger in the white population than in the 
black population, qualified whites will re- 
ceive higher wages than their equally quali- 
fied black counterparts. That is, the exis- 
tence of uncertainty about productivity 
coupled with the costs incurred in de- 

termining that productivity will lead to firm 
behavior, which in effect makes qualified 
blacks ;'pay" for their group's smaller 
expected productivity. 

Note that the wage differential vanishes 
when the two groups under consideration 
have the same productivity distribution. 
Our model (to be presented below) differs 
in that even abstracting from group pro- 
ductivity differences and setting Pw(Q) = 
Pb(Q), we are able to generate wage 
differentials. This is accomplished by al- 
lowing for imperfect testing. In particular, 
we assume that screening processes are 
biased against blacks so that blacks having 
the same productivity as whites tend to per- 
form worse on the test and/or the test is of 
a lower predictive power for blacks than for 
whites. This hypothesis has received exten- 
sive study in the psychological literature 
with respect to differences in IQ scores be- 
tween whites and blacks. Two explanations 
have been advanced to explain this phe- 
nomenon. The first states that the score 
differential can be attributed to real dif- 
ferences in ability which might be due to 
genetic and/or environmental differences 
across races. The second argument states 
that the score differential is due to a "cul- 
tural bias" in the test: since intelligence 
tests are prepared by members of the "rul- 
ing" white middle class, it is inevitable that 
the test questions will be loaded in favor of 
experiences familiar to this group.5 Because 
of our assumption of identical productivity 
distributions across races, it is this latter 
type of effect which we are considering. 

The introduction of imperfect testing af- 
fects the equilibrium conditions described 
earlier since the firm must take account of 
the possibility that some individuals who 
pass the test will in fact be unqualified. Let 
MPq (MP,) denote the marginal product of 
a qualified (unqualified) worker. Due to our 
assumption that qualified (or unqualified) 
whites and blacks are perfect substitutes in 
production, both MPq and MP, are in- 
variant to race. From the point of view of 

common assumption in job search models that all job 
characteristics are known to the applicant upon 
searching the firm. See the authors for a relaxation 
of this assumption in job search models. 

4Arrow introduced this model in terms of em- 
ployer beliefs concerning the joint distribution of pro- 
ductivity and test scores in each racial group. Note, 
however, that it is inconsistent to have both perfect 
testing and beliefs which are erroneous; that is, beliefs 
that will not be confirmed by a perfect screening 
process. In order to be internally consistent, it must be 
assumed that employer beliefs concerning the pro- 
ductivity distribution in each race group are indeed 
justified. 

5For a more extended discussion of these hypoth- 
eses, see Anne Anastasi and Arthur Jensen. 
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the firm, therefore, the expected marginal 
product of an employee from race group i 
is MPj = Pi(Q Q)MPq + Pi (UI )MPU. 
This expected marginal product is a 
weighted average of the marginal products 
of qualified and unqualified workers. The 
weights sum to unity and consist of the 
probabilities that a worker is qualified 
(unqualified) given that he has passed the 
test. Thus the equilibrium conditions must 
be modified to 

(3) Pi(Q)[Pi(Q Q)MPq 
+ Pi(U IQ)MPU - wi] = C (i = w,b) 

From equation (3) we obtain the market 
wage differential: 

(4) ww - Wb [PW(QQ) -Pb(Q IQ)] 

(MPq - MPU)+ qS 
PW ( Q ) Pb ( Q) 

[PW(Q) - Pb(Q)] 

If the bias is such that a black applicant 
has a smaller probability of passing the test, 
despite the absence of group productivity 
differences, then the second term in (4) will 
be positive. This term represents the "cost 
effect" of biased testing, and it will favor 
whites. It is important to note the similarity 
between the cost term here and the wage 
differential in the Arrow model as given by 
equation (2). Either imperfect testing or 
true differences in the productivity distribu- 
tions will generate a term of this form, and 
thus the two models yield identical predic- 
tions with respect to the cost effect of 
discrimination. 

Only imperfect testing, however, creates 
the additional "productivity effect" given 
by the first term in equation (4). The sign of 
this term will depend upon how Pi(Q Q) 
differs across races and, of course, these 
conditional probabilities are related to the 
joint distribution of productivity and test 
scores. To examine how the screening bias 
affects this joint distribution, a change of 
variables is useful. In particular, define a 
random variable Yi which is set equal to 
unity if the individual is truly qualified and 
zero otherwise. Similarly, let Zi equal unity 
if the individual passes the test and zero 

otherwise. Given these definitions, we can 
then measure the predictive power of the 
test by computing the correlation coef- 
ficient between the random variables Y, 
and Zi yielding:6 

(Pi(Q))12 (Pi(Ql Q) - P(Q)) 
(P1(U))'12 (P(Q)P(U))'/2 

(i= w,b) 

Given equation (5) we can solve for 
Pi(Q Q) and substitute into the wage dif- 
ferential in (4) yielding: 

(6) ww - Wb = (P(Q) P(U))'I2 
A 

1/2 
A 

1/21 
Sr (PW(U))112 (Pb(U))12J 

rw A__ - rb 

(MPq - MP,) + C 
PW( Q) Pb(Q) 
[PW(Q) - Pb(Q)] 

Therefore the productivity effect of biased 
screening is seen to depend upon the racial 
differences in ri and Pi(Q). To isolate the 
separate effects of these two variables it is 
illuminating to first consider two special 
cases. 

CASE 1: Suppose that the screening process 
has the property that rw > rb and Pw (Q) = 
Pb(Q). Thus while whites and blacks pass the 
screening process with equal probability, the 
test performs its task of "matching" quali- 
fied applicants [ Yi = 1] with passing scores 
[Zi = 1] more reliably for whites than for 
blacks. 

A simple example will illustrate this 
point. Consider a firm which screens four 
applicants from each race group, and sup- 
pose that the distributions of Yi (productiv- 
ity) and Zi (test scores) are as given in 
Table 1. It is clear that although Pw(Q) = 

Pb(Q) = .5, the test does a much better job 

61t can easily be shown that Yi and Zi are char- 
acterized by the following properties: E(Yi) = P(Q), 
E(Zi) = P1i(Q), var(Yi) = P(Q)P(U), var(Zi) = 

Pi(Q) Pi(U), cov(yi,Zi) = Pi(Q n Q) - P(Q). 
Pi(Q). Note that we omit the subscript i from the 
probabilities P(Q) and P(U) since the productivity 
distribution is invariant to race. 
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TABLE 1 

Whites Blacks 
YW Zw Yb Zb 

1 1 1 1 
1 1 1 0 
O O 0 1 
o o 0 0 

of predicting the productivity of white ap- 
plicants. In fact, the test predicts perfectly 
for whites [rw = 1], yet the predictions for 
blacks are totally random [rb = 0]. If the 
screening process has these properties, it 
can be seen from (6) that the productivity 
effect is positive and the cost effect vanishes. 
Since the white applicants hired are likely to 
be of better quality, white workers in the 
firm will have a higher expected marginal 
product, MPw > MPb, and hence a higher 
wage. 

CASE 2: Suppose the screening process is 
such that Pw(Q) > Pb(Q) and rw = rb. Thus 
although a greater proportion of white ap- 
plicants receive passing scores, the ability of 
the test to predict qualifications is equal for 
both groups. 

The plausibility of this case is illustrated 
by the example in Table 2. We find that al- 
though Pw(Q) > Pb(Q), the correlation co- 
efficients are equal, rw = rb = .58. Since 
two of the four applicants from each race 
are truly qualified [ Yi = 1], a perfect testing 
procedure would grant passing scores to 
precisely these individuals. Due to the bias, 
however, one of the two qualified blacks is 
erroneously assigned a failing score, while 
one of the two unqualified whites is assigned 
a passing score. Thus the test is too selec- 

TABLE 2 

Whites Blacks 
YW zw Yb Zb 

1 1 1 1 
1 1 1 0 
0 1 0 0 
0 0 0 0 

tive for blacks, dilutes the quality of the 
white labor force, and these errors (al- 
though opposite in nature) have identical 
effects on the correlation coefficients. 

Given these properties, we see from equa- 
tion (6) that the first term is negative, thus 
this type of biased testing produces a pro- 
ductivity effect which favors blacks. The 
reason is that by being more selective for 
black applicants, those blacks who do pass 
the test are more likely to be qualified than 
their white counterparts in the firm, hence 
MPb > MPW. Therefore, abstracting from 
the cost effect, we find that a testing bias 
in which firms are much more selective in 
screening blacks actually improves the rela- 
tive position of black workers hired.7 

CASE 3: In general, a biased test will, of 
course, create a cost effect favoring whites, 
as well as a productivity effect ambiguous in 
sign. In fact, the productivity effect will be 
positive, zero, or negative depending on 

r2, Pw (Q ) Pb (U ) 

rb Pb (Q P 

We have seen that there are two opposing 
influences on the relative productivity of 
black workers. First, by being more selec- 
tive in the hiring of blacks, those blacks 
who are hired are likely to be of better 
average quality. However, this effect is 
counterbalanced by the fact that the scores 
of black applicants may be less informative 
than those of whites, so that being selective 
and hiring only the highest ranked blacks 
need not necessarily improve the expected 
productivity of black workers. 

7It can be shown that the productivity effect will 
exist only if 0 < r < 1, where r is the common level of 
the correlation coefficient. If the screening process pro- 
vides no useful information on the applicant's pro- 
ductivity, then the random variables Q and Q are 
statistically independent and Pw(Q I Q) = Pb(Q IQ) = 

P(Q). No productivity effect exists since all workers 
hired, whether white or black, are randomly chosen 
by the firm. Hence biased screening must worsen the 
relative position of blacks through the cost effect. 
Similarly, if the test were of perfect quality all those 
individuals who passed, white or black, would be 
qualified with certainty. Again, the productivity ef- 
fect would vanish. 
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It is important to emphasize that the 
screening biases discussed in this paper 
change the expected productivity of work- 
ers from each race group within the firm 
despite the fact that the population dis- 
tributions of productivity are identical. 
These differences in productivity will in 
turn affect the interpretations of observed 
wage differences between black and white 
workers. In particular, suppose that the net 
effect of biased screening is that MPb > 

MP, (as in Case 2 above). An important 
empirical implication of this result is that 
the observed market wage differential 
underestimates the true extent of discrimina- 
tion. That is, since biased screening leads 
to the hiring of superior blacks, in order to 
compute the true magnitude of discrimina- 
tion we must take the observed wage dif- 
ferential and add onto it the difference in 
expected productivity between races. Al- 
ternatively, if MPb < MP,, the market 
wage differential would overestimate the 
true extent of discrimination. 

II. Summary 

Statistical discrimination models have 
provided an explanation of why informa- 
tion on race is rationally taken into account 
by profit-maximizing employers. We have 
expanded the analysis by considering the 
case in which the firm uses a screening 
process which does not provide perfect in- 
formation on an applicant's productivity 
and which is biased against members of a 
particular race group. We considered the 
two consequences of this bias on the screen- 
ing process: First, the bias might result in 
one race group (for concreteness, blacks) 
obtaining lower scores despite the fact that 
the productivity distribution is invariant to 
race. Secondly, the bias might also affect 

the quality of the test in the sense that black 
scores would be less reliable measures of 
productivity. It was shown that by intro- 
ducing the realistic concept of screening 
bias, wage differentials between black and 
white workers could be explained without 
recourse to assumptions of differential abil- 
ity distributions across groups. 
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