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Abstract 

This paper outlines a two-stage technique for estimation and inference in probit 
models with structural group effects. The structural group specification belongs to 
a broader class of random components models. In particular, individuals in a given group 
share a common component in the specification of the conditional mean of a latent 
variable. For a number of computational reasons, existing random effects models are 
impractical for estimation and inference in this type of problem. Our two-stage estimator 
provides an easily estimable alternative to the random effects specification. In addition, 
we conduct a Monte Carlo simulation comparing the performance of alternative es- 
timators, and find that the two-stage estimator is superior ~ both in terms of estimation 
and inference ~- to traditional estimators. 

Key words: Random effects; Fixed effects; Panel data; Probit; Nonlinear regression 
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1. Introduction 

This paper outlines a two-stage technique for estimation and inference in 
probit models with structural group effects. The group effects, linear regression 
model has become increasingly popular in applied research. In this class of 
models, individuals belonging to a given group - for example, a given ethnic 
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classification or regional location - share a common component in the specifica- 
tion of a conditional mean. Often, researchers are interested in the determinants 
of the group components, and relate them to variables shared by the individuals 
in a group.’ 

The structural group effects specification may be viewed as a member of 
a broader class of random components models (Moulton, 1986). Consequently, 
the theory of estimation and inference for the linear regression, group effects 
model is well established; in particular, Hsiao (1986) and Judge et al. (1988), 
among others, provide surveys of the relevant literature outlining efficient GLS 
estimation techniques for linear random effects models. 

There do not exist, to our knowledge, comparable analyses for latent vari- 
ables models which are readily applicable to structural group effects specifica- 
tions. In this paper, we extend the existing analysis of the linear regression 
model to the latent variable probit specification.’ We develop and analyze 
a computationally tractable, two-stage estimator for individual and group 
level parameters which parallels Amemiya’s (1978) two-stage estimator for 
the linear specification. In the first stage, we estimate a probit model which 
pools the observations across groups, but accounts for common effects by 
including dummy variables to allow for group-specific intercepts. Under 
reasonable regularity conditions, we avoid the Neyman and Scott (1948) 
incidental parameters problem and are able to estimate consistently the coefi- 
cients of dummy variables which represent the group effects. In the second 
stage, we fit the estimated group-specific intercepts to group level variables, 
employing GLS techniques to correct for nonspherical errors. We analyze the 
asymptotic behavior of the second-stage estimator for both the case where the 
number of groups is fixed and the case where the number of groups tends to 
infinity. 

In Section 2, we outline the latent variable group effects regression specifica- 
tion and discuss existing estimation techniques for these models. Section 3 pro- 
vides a small simulation comparing the performance of alternative estimators 
under both normal and alternative distributional assumptions for the group 
error and for various sample sizes. Section 4 provides some concluding com- 

ments. 

1 Recent empirical examples of this framework are provided by such diverse studies as Blanchflower 
and Oswald (1990), which analyzes the impact of SMSA-specific unemployment rates on the 

earnings of workers; Borjas (1992), which analyzes the factors underlying earnings differentials 

across ethnic groups; Case and Katz (1991), which analyzes the impact of neighborhood effects on 
socioeconomic outcomes; and Rauch (1992), which analyzes the impact of the average SMSA level of 

the human capital stock on the earnings of workers. 

‘While we focus our analysis on the probit model, the techniques for applying our results to other 

nonlinear models are obvious. 
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2. Probit models with group effects 

2.1. Model spec$cation 

Consider a latent variables regression specification with random effects result- 
ing from a group-specific error term, 

r; = x:,/l + z;y + Eij + uj (1) 

for groups j = 1, . . . , J and individuals i = 1, . . . , N,, for a total of CjNj = N 
observations. Xij is a K vector of explanatory variables, Zj is an M-dimensional 
vector of explanatory variables common to members of group j, fi and 7 are 
conformable vectors of parameters. The c are i.i.d. normal errors which are 
independent of the i.i.d. group errors U; both the E and the u are assumed to be 
orthogonal to the Z and X. We begin with the assumption that Uj is distributed 
normally; this assumption will be relaxed subsequently.3 In the case where Yc is 
fully observable, this specification is analogous to Amemiya’s (1978) specifica- 
tion of the random effects model. The primary assumption that we make about 
the sample design is that the number of individuals per group (Nj) approaches 
infinity along with the total sample N. 

Economic theory often generates models which describe how Y$ should vary 
among groups as a function of variables Z characterizing the background or the 
opportunity set facing each group. Given our specification above, we may define 
a ‘group effect’ dummy variable, dj = Z> y + uj, which represents the total effect 
of membership in group j on the latent Y$. Note that our specification of the 
group effect as a linear function of group-specific variables Z and an error term 
u provides a structural interpretation of the dummy variable d in terms of 
group-specific characteristics. 

We do not observe Yi”, directly, but instead observe the indicator variable 
Yij = 1 (Y$ > 0) The observable data consist of sets of observations on 
(Yi, X:j, Zi) for individuals i and groupsj. In a slightly different context, data of 
this form have been termed a random effects probit model by Heckman and 
Willis (1975). Given the usual normality assumptions for u and E, the errors 
\V = u + c are multivariate normal with mean 0 and block-diagonal covariance 
matrix C. 

There are three primary techniques for estimation of random effects probit 
models: pooled probit (Maddala, 1986, p. 317; Robinson, 1982), random effects 
(Heckman and Willis, 1975; Butler and Moffitt, 1982), and minimum distance 

3 In this formulation of the group effects model, correlation between the group effects and the 
explanatory variables X results from correlation between the X and the Z. See Mundlak (1978), 

Chamberlain (1984). and Hausman and Taylor (1981) for alternative specifications. 



(Chamberlain, 1984).4 Each of these approaches is unsuitable for the groups 
effects specification. The pooled probit will generate consistent and asymp- 
totically normal, but inefficient, estimates of the parameters of interest, with 
standard statistical packages providing incorrect estimates of the standard 
errors. Computing the correct variance matrix for the parameter estimates for 
the pooled specification appears to us to be very difficult5 The Heckman and 
Willis random effects specification is theoretically appropriate for large J, but 
the performance of the estimator may not be satisfactory for large Nj since the 
model requires numeric integration over a term involving the product of 
cumulative normals for all group members. Large group sample sizes are likely 
to have numerical integrals which are at best, quite unstable, and at worst, 
involve integration over values which are smaller than machine precision.6 The 
Chamberlain two-stage approach simply appears to be impractical for group 
effects data for a number of reasons. The first-stage, consistent estimation 
procedure requires the estimation of separate probit models for common obser- 
vations across groups. In addition to the computational burden and obvious 
difficulties in justifying standard asymptotic results, there are conceptual diffi- 
culties since there is no natural ordering of observations for group effects data.’ 

2.2. A twv-step rstinmtor 

Our approach takes advantage of the fact that as the number of individuals in 
each group increases, we are able to avoid the dimensionality problem asso- 
ciated with estimating models conditional on group membership. We propose 
estimating p from a fixed effects probit specification and “1’ via a second-stage 
GLS regression of the consistently estimated fixed effects on the group level 
variables. This approach is a natural extension of the Amemiya (1978) two-step 
estimator for the linear random effects model. For expository reasons, we 
consider a balanced sample with J groups and N/J + cc observations per 

4Alternative assumptions about the error terms may generate additional approaches. For example, 
if the c are distributed as a logistic, conditional likelihood estimation (Anderson, 1970; Chamberlain, 

1980) is possible. 

’ See, for example, the technical appendix in Robinson (I 982) which includes formulae for computing 

the variance matrix in the case where the residuals in the model follow an AR(l) process. 

’ For a hypothetical sample of 500 observations per group assuming a generous likelihood contribu- 
tion of 0.5 for each observation in a group, the value of the integrand is e500 xtOp(o~O~e- 346.6. which 
is well below the capabilities of most existing computer precision. For as few as 30 observations in 

a group, the value is on the order of e -*’ ’ As a rough approximation, it would appear that group 

sizes over 50 may create significant instabilities if the model has low predictive power. 

‘We consider a modified Chamberlain approach which estimates models stratified by group in 

Section 2.2.3. Avery, Hansen, and Hotz (1983) propose a more general, but related generalized 

method of moments estimator. 



group. We begin with the straightforward case of J fixed, and defer considera- 
tion of the case J -+ m until Section 2.2.3. 

2.2.1. First-stage fi.ued effects 
Suppose that we estimate a standard probit model, conditioning on group 

membership by including dummy variables for each of the J groups. We are 
interested in estimates of the true (K + J)-dimensional parameter vector 
t& = (jYo, db) Note that since N/J + cc and J fixed, all of the components of the 
parameter vector 8 are structural in the sense of Neyman and Scott. 

Under appropriate regularity conditions, 6, the maximum likelihood es- 

timator is a consistent root for 0, the true parameter vector and fi asymp- 
totically normal distributed with asymptotic variance given by V = A- ‘, where 
A = lim ,.,,,N-‘E( - V’/(O,,)) and V*I(O) is the ((K + J) x(K + J)) matrix of 
log-likelihood second derivatives. For the probit model, Amemiya (1985, pp. 
270-273) provides sufficient conditions for standard asymptotic results to ob- 
tain. Abstracting from the usual considerations regarding collinearity of the X, 
the force of the restriction on the information matrix necessary for asymptotic 
results requires Nj/N --) nj > 0.’ Put differently, so long as there are variations 
in the binary responses within a group and the group sizes all tend to infinity, we 
can avoid the incidental parameters problem and apply ML to the fixed effects 
model.’ 

2.2.2. Second-stage GLS estimatim 
Using the estimated 2, we specify a second-stage regression model as 

d^ = Zy + w; w = u + (d^ - Ir,) where (2 - d,) is o,(l) and m(d^ - do) is O,(l) 
so that w--f u as N + cu. Then asymptotically, the second-stage model which 
regresses d^ on Z is a simple linear regression specification with normally 
distributed spherical errors and variance matrix oi1, (applying results from 
Randles, 1982, and Pierce, 1982). Thus, a second-stage OLS estimator for 
:’ employing d^ will asymptotically be both unbiased and normally distributed, 

*This condition is satisfied trivially for the balanced design since N, = N/J. As is the case for 

Berkson’s minimum chi-square methods, if this condition fails for some j, we can respecify by 

ignoring the observations corresponding to that group (see, for further discussion. Amemiya, 1985, 

p. 276). 

‘See Heckman (198la) for further discussion and Monte Carlo evidence that the estimator may be 

well-behaved for N/J as small as eight. Computationally, large J may pose some difficulties since 
there is no approach for removing probit fixed effects via ‘differencing’ or conditional likelihood 

(Anderson, 1970; Chamberlain, 1984). For large problems, we recommend a simplification of the 
usual ML estimation procedures which employs the recursive updating techniques described by Hall 
(1978) and Chamberlain (1980). These updating formulae require only inversion of K-dimensional 
matrices. 



and will possess the properties of standard OLS estimation. It is worth empha- 
sizing that because of the nonlinearity of the first-stage estimator, Amemiya’s 
(1978) equivalence results for one- and two-stage estimation procedures are not 
applicable. Note further the important fact that we may relax the group error 
normality assumption with no substantive effect on the asymptotic bias [though 
(2 - d,) will no longer be asymptotically normally distributed]. 

In practice, the errors will be nonspherical, with covariances depending upon 
the variability of parameter estimates from the first-stage ML model. The 
variance matrix for w is approximated in finite samples by 0 = azl, + Vddr 
where V,, is the portion of the first-stage variance matrix corresponding to the 
dummy variables. This expression provides the intuitive result that using the 
estimated dummy variables in the second stage adds the estimator variance 
for the d^ from the first-stage to the variance matrix for the residual U. 
Let il0 = (p’0, ;“O ) and define the two-stage estimator 2’ = (a’, y’) , where the 
p is derived from the ML estimator of the fixed effects model and where 
1; are estimates derived from GLS regression of the d^ on the Z; 
7 = (Z’Q- ‘Z) ‘Z’d- ‘~1 where d is an estimate of the second-stage residual 
variance matrix (see Appendix Section A. 1). Given Vda, the covariance matrix for 
the first-stage estimators a and p, define the matrices C,, = (Z’Q- ‘Z)) i and 
1,. = - (Z’Q- 1Z))‘Z’Q;2-1 Vdp. It follows (from Pierce) that /i^ - & has ap- 
proximate variance matrix C given by 

For fixed J, V,, and C,, are op (1) so that y - >‘0 ft N(0, ~$(z’Z))i) as 

N -+ co. Note that whether or not the group error u is normally distributed, the 
second-stage GLS estimator is not in general normally distributed in finite 
samples since it contains linear combinations of 2 - do which may be far from 
normally distributed for small N.” 

2.2.3. Large numbers qj’groups 

It is important to emphasize that the asymptotic unbiasedness outlined above 
and normality results for the two-stage estimation procedure outlined above 
require only that the group sample sizes approach infinity (for normally distrib- 
uted group errors). If we also allow the number of groups J to increase with the 
sample size (such that N/J increases as well), it is possible to demonstrate 

“It is worth noting by way of comparison that with .I fixed, neither the pooled probit. random 

effects probit, Chamberlain’s two-stage estimator, nor Avery, Hansen, and Hotz’s approach are 

consistent and asymptotically normal, nor are they uniformly asymptotically unbiased. 



G.J. Borius, G.T. Suewshi: Journal C$ Econometrics 64 (1994) 165- 182 171 

consistency and asymptotic normality for the two-stage estimator of y for 
alternative group error distributions. The only theoretical difficulty lies in 
establishing consistency for the first-stage ML estimates as both J and N/J 
approach infinity. Previous authors argue heuristically that asymptotic results 
follow so long as N/J increases (for example, see Heckman, 1981a, or Hsiao, 
1986) but the results do not follow from standard theorems (e.g., Wald, 1949) 
since the parameter space is of variable (increasing) dimension. 

The most straightforward way around this difficulty is to stratify the data by 
group (in a ‘reversal’ of the first-stage of Chamberlain’s approach) and to employ 

standard Jiv/J asymptotic results for each group. If efficiency is a concern, the 
cross-group restrictions can be imposed on the p via minimum distance estima- 
tion, or by using the Jj as plug-in estimates in ML estimation. While theoret- 
ically sound, in practice the stratified approach is likely to be more cumbersome 
than ML over a large parameter space since it requires estimation of a large 
number of models. Alternatively, it should be possible to use results from the 
extensive literature on semi-parametric estimation (see, for example, Wong and 
Severini, 1991; Ritov, 1991) to establish results for this problem, but this degree 
of generality strikes us as overkill. Recently, Sueyoshi (1992) has extended and 
adapted Portnoy’s (1984, 1985, 1987) asymptotic results for increasing dimen- 
sional linear m-estimators to consider nonlinear regression models with group 
indicators, and has demonstrated that (in addition to standard assumptions) 
(J log J) /N -+ 0 is sufficient for consistency.” 

Given consistency and J%$ normality of the first-stage estimates using the 
stratified model, asymptotic normality for the estimated y follows immediately 
from Randles and Pierce and standard proofs. Since the term involving (d - d) is 
0, (m) , provided that J grows slowly enough, we may safely ignore it in the 
second-stage fi asymptotics. Then if plim (Z’K ‘Z)/J = 0;’ plim (Z’Z)/J = 
ai2Q, where Q is a finite, positive definite matrix, and fi 50, IJ as J -+ co, 

plim 1; = y0 and a(;;, - yO) d -N(O, 0,’ Q- ‘) as N/J and J approach 

infinity. 
We emphasize that our two-stage approach does not require a distributional 

choice for u, only the orthogonality conditions. In contrast to the alternative 
approaches which all require correct specification of the distributions of both 
the individual effects e and the group effects u (and generally require normality 
of u for computational tractability), our procedure requires only that the 
distribution of E be correctly specified and that d^ be a consistent estimator. We 
investigate the practical importance of this robustness in the simulation work 
below. 

‘I Portnoy (1984) establishes the rate (JlogJ)/N for pure ANOVA models. See also Drost (1988) for 
results from a related literature. 



3. Simulation results 

3.1. Alternativr estimators 

In this section, we present results for a small, 100 replication, Monte Carlo 
simulation designed to assess the performance of the various estimators for the 
group effects probit model. In addition to the pooled probit and Heckman and 
Willis random effects specification, we initially consider four two-stage estima- 
tion techniques. First, we estimate the second-stage model using ordinary least 
squares. Under the assumptions of our data-generating process, this specifica- 
tion should asymptotically yield the best linear unbiased estimator for y since 
Vdd is o, (1). Next, we estimate the model performing a simple heteroskedasticity 
correction to account for the variability of the first-stage estimates of d, using the 
asymptotic standard errors for the first-stage fixed effects estimator and the 
estimator for the variance of the a,” outlined by Borjas (1987) (see Appendix 
Section A. 1). This estimator accounts oniy for the unequal variances associated 
with the estimates of d, but ignores the off-diagonal covariance terms in V,,. 
Finally, we consider two full GLS specifications which incorporate the off- 
diagonal terms from V,, into the estimate of Q: one estimate uses the ratio of the 
estimates from the pooled and the fixed effects specifications as an estimator for 
c,’ (GLS l), and the second uses the Borjas estimator for the D,’ (GLS 2). 

It is worth noting here that in the simulations reported below, the relative 
variance of u to the total error variance is chosen to be 0.20 (at = 2.5, of = 100). 
Clearly, the relative performance of the two-stage estimator will improve with 
greater degrees of group heterogeneity, and it is encouraging to note that the 
results presented below are obtained for reasonably small (in relative terms) 
group effects. Further details of the design of the simulation and of further 
computational considerations are presented in the Appendix. 

We begin with a simulation where the individual and group errors are both 
normally distributed. Table 1 reports summary statistics of simulations for the 
coefficients of the individual-level X variables. The most striking result is the 
poor performance of the Heckman-Willis random effects probit estimator. On 
average, the estimated coefficients are off by about 11 percent. More import- 
antly, despite the fact that the Heckman-Willis approach is the full-information 
ML estimator, the t-test nulls are rejected well in excess of the nominal size of 
the test. We attribute this severe bias to some combination of the computational 
difficulties associated with the HeckmanWillis approach as outlined above. 

In contrast, both the pooled and fixed effect probit estimators yield estimated 
coefficients that are quite close to the true parameter values. The bias for these 
estimators is generally on the order of 1 to 2 percent of the parameter value. 
Note, however, that the precision of hypothesis testing is improved substantially 
when using the fixed effect model. The size of the t-tests is substantially in excess 
of the nominal size of 5 percent in the estimates obtained from the pooled probit 
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Table I 
Summary of Monte Carlo results for coefficients of individual level variables (100 replications, 5000 

observations, 50 groups) 

Specification True parameter [j, = 1.75 /I2 = 0.5 [I3 = - 1.0 /I4 = 1.5 

Pooled probit Bias 

Std. deviation 
Minimum 

Median 

Maximum 

Size (5% nominal) 

Fixed effects 

probit 

Bias 

Std. deviation 

Minimum 

Median 

Maximum 

Stze (5% nominal) 

0.018 - 0.026 - 0.010 0.020 

0.06 1 0.09 1 0.058 0.074 
1.641 0.206 - 1.144 1.326 

1.766 0.473 - 1.006 1.527 
1.904 0.696 - 0.828 I .692 
0.17 0.07 0.1 I 0.10 

0.032 ~ 0.013 - 0.017 0.033 
0.045 0.080 0.054 0.067 

1.646 0.287 - 1.132 1.337 

1.788 0.492 - 1.018 1.536 

1.869 0.675 - 0.852 1.685 

0.05 0.04 0.10 0.08 

Random effects Bias - 0.199 - 0.077 0.115 ~ 0.167 

probit Std. deviation 0.06 I 0.072 0.053 0.068 
(HeckmanWillis) Minimum I .392 0.253 - 1.017 I.179 

Medtan 1.551 0.424 - 0.881 1.331 

Maximum 1.692 0.598 ~ 0.704 1.489 
Size (5% nominal) 0.95 0.14 0.63 0.73 

model. This is not surprising in view of the result from pooled linear models that 
the standard errors of the group level variables are substantially underestimated 
(see Moulton, 1986). ‘* Furthermore, despite the generally higher biases for the 
fixed effects model, it is superior to the pooled specification in terms of a mean- 
square error criterion. 

Table 2 reports similar summary statistics for the intercept and for the 
coefficients of the group level variables. As before, the Heckman-Willis es- 
timator has the poorest performance: the estimated intercept is 13 percent below 
its true value, and the estimated coefficients of the group level variables are 
overestimated by an average of 15 percent. Furthermore, while standard tests 
for the jj perform somewhat better than for the /?, the specification still rejects the 
null hypothesis eight times more often than the nominal size. 

“The pooled probit estimated standard errors for the /II, /13, and /I4 coefficients are, on average, 21, 

9, and 12 percent too low. In contrast, the fixed effects probit coefficients are 9 percent too high, and 
5 and 4 percent too low respectively. For b2, the pooled probit actually does better than the fixed 
effects estimator, overstating the standard error by 0.3 percent in contrast to the 8 percent for the 

fixed effects specification. The actual sizes of the asymptotic tests for fi2 are roughly comparable, 

with the pooled probit rejecting too frequently. 
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Table 2 

Summary of Monte Carlo results for coefficients of group level variables (100 replications, 5000 

observations, 50 groups) 

True parameters [I0 = 1.0 i’r = - 2.0 y2= -1.25 

Pooled probit Two-stage OLS 

B” :‘I ;‘z PO Tl ;‘Z 

Bias - 0.03 1 0.02 1 0.046 

Std. deviation 0.820 0.352 0.424 

Minimum ~ 1.058 - 2.837 ~ 2.287 

Median 0.897 - 1.973 ~ 1.150 
Maximum 3.275 - 1.061 - 0.374 

Size (5% nominal) 0.47 0.50 0.60 

0.028 ~ 0.018 0.02 I 
0.766 0.350 0.420 

- 0.762 - 2.838 ~ 2.296 

0.990 ~ 1.981 - 1.200 

3.098 ~ 1.057 - 0.307 

0.28 0.32 0.32 

Heteroskedasticity 

Bias 0.005 0.006 0.040 

Std. deviation 0.759 0.347 0.4 1 I 
Minimum ~ 0.823 - 2.8 12 ~ 2.227 
Median 0.986 - 1.959 ~ 1.184 

Maximum 3.097 - 1.052 ~ 0.311 
Size (5% nominal) 0.06 0.06 0.04 

GLS method 1 

- 0.005 0.033 0.057 

0.746 0.342 0.406 

- 0.819 ~ 2.784 - 2.201 

0.974 ~ 1.925 - 1.155 

3.050 ~ 1.038 - 0.307 
0.04 0.03 0.02 

GLS method 2 
Heckman-Willis 

random effects probit 

P” Tl ;‘z B” >‘I :‘z 

Bias - 0.009 0.037 0.058 

Std. deviation 0.747 0.341 0.404 

Minimum ~ 0.807 - 2.769 ~ 2.195 

Median 0.972 - 1.928 ~ 1.166 

Maximum 3.05 1 - 1.035 - 0.307 

Size (5% nominal) 0.05 0.05 0.02 

- 0.131 0.256 0.221 

0.922 0.369 0.500 
- 1.545 - 2.537 ~ 2.298 

0.819 - 1.743 ~ 1.019 

2.876 ~ 0.939 0.245 

0.4 1 0.44 0.46 

It is interesting to note that in terms of bias the pooled probit estimator 
performs about as well as any of the various two-stage estimators reported in 
Table 2. Regardless of the estimator used, the estimated intercept and coef- 
ficients of the group level variables are off by about 2 to 3 percent. However, the 
pooled probit estimator again performs poorly in terms of hypothesis testing, 
with conventional asymptotic f-tests generating sizes of about 50 percent for 
a nominal 5 percent value. This poor performance reflects the fact that the 
estimated standard errors are, on average, one-third of the Monte Carlo 
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Table 3 
Summary of Monte Carlo results for extreme value group errors (100 replications, 5000 obser- 

vations, 50 groups) 

True 

Pooled probit Two-stage GLS 

Bias Std. dev. Size” Bias Std. dev. Size 

P 1 .o 0.537 0.975 0.25 0.384 0.885 0.15 

1.75 0.207 0.069 0.98 0.03 1 0.046 0.08 

0.5 0.041 0.093 0.08 - 0.01 I 0.084 0.03 

- 1.0 - 0. I 20 0.063 0.59 - 0.020 0.055 0.07 

1.5 0.182 0.085 0.77 0.03 1 0.068 0.07 

., _ 2.0 - 0.248 0.139 0.48 ~ 0.026 0.106 0.00 
- 1.25 - 0.145 0.187 0.22 ~ 0.004 0.165 0.01 

a 5O/o nominal size 

standard errors. The sizes of the tests drop significantly if any of the two-step 
estimators are used. In particular, the sizes decline to about 30 percent if the 
second stage is estimated using ordinary least squares, and decline to 5 percent 
or less if the second stage is estimated using generalized least squares.13 Note 
that neither the extent of the bias nor the size of the test are particularly 
responsive to the type of variance correction made in the second stage. Even 
a simple heteroskedasticity correction provides estimators that are nearly as 
good as those using the additional information provided by the nonspherical 
covariance matrix. I4 

Table 3 reports selected results for the simulation in the case where the group 
equation does not have normal errors. Not surprisingly, the pooled probit 
estimates perform quite poorly in terms of bias, with the majority of the bias 
components comprising close to 90 percent of the root mean-square error. The 
size computations for the model are correspondingly poor, with, for example, 
rejections for the p3 null occurring over half of the time at a 5 percent nominal 
level. In contrast, the two-stage GLS estimator performs quite well. Ignoring the 
constant term, estimates of the coefficients are nearly unbiased, and the size 
computations, while not quite as well-behaved as when the u are normally 
distributed, are still quite close to the nominal level. If anything, the tests for the 
y are too conservative. We attempted to estimate the corresponding Heckman- 
Willis models but had difficulty attaining convergence (Appendix Section A.2.2). 

“The OLS esttmates understate the standard errors by 45 percent. For comparison purposes, note 

that the GLS corrected results ot~state the errors by a few percent. 

r4The latter are, however, better along other dimensions; they are slightly more efficient, with lower 

standard deviations and tighter ranges than simple heteroskedasticity corrected estimates. 



3.2. Group sizes arut numbers ofgroups 

Lastly, to provide practical guidance regarding the application of our two- 
stage GLS approach to data, we consider the finite-sample behavior of the 
estimator for alternative group sizes and numbers of groups. We estimated 100 
replications of balanced designs in which the number of observations per group 
ranges from 10 to 100 and the number of groups ranges from 10 to 50 (100 to 
5000 total observations). Table 4 reports biases and standard errors for the 
Monte Carlo simulation, as well as the relative importance of the bias compo- 
nent in the mean-square error (MSE). Lastly, for comparison purposes, we 
compute the empirical rejection frequencies under the assumption that our 
large-sample normality result is applicable. 

There are several results of note. First, in contrast to Heckman’s (1981a) 
influential simulations suggesting that 8 observations per dummy variable may 
be sufficient for the fixed effects probit estimator to perform well, we find that 
both the /I3 and the ;‘r bias components are quite high for 10 observations per 
group. Even for 50 groups (500 total observations), the bias for p3 is roughly 
one-fourth of the parameter size, and the squared bias is half of the total MSE. 
Similar results are obtained for ;‘,. The situation improves substantially once we 
have 25 observations per group, with the bias components falling to under 10 
percent for p3 and yr. 

Second, provided that we have 25 or more observations per group, the 
performance of the fixed effects estimator for /I, appears to depend primarily 
upon the total sample size, with weak preference given to increasing the number 
of observations per group relative to the number of groups. For example, the 
estimator for 25 groups with 100 observations per group is marginally better 
than 50 groups and 50 observations per group; 1000 observations from 10 
groups appears to be slightly preferable to 1100 observations from 25 groups (50 
per group). 

The behavior of the second-stage estimator for y1 is poor when there are only 
10 groups, even for large and increasing within group sizes. For example, 
increasing the total sample size from 250 to 1000 by fixing the number of groups 
at 10 and increasing group sizes from 25 to 100 observations per group yields 
only a slight improvement in the standard deviation of the estimator (0.886 to 
0.781) and little improvement in the bias component ( - 0.191 to - 0.157). This 
last result may be compared with the substantive improvement observed in 
moving from 250 to 625 observations by holding group size constant at 25 and 
increasing the number of groups from 10 to 25. 

Overall, our results suggest that having a greater number of groups with 
smaller group sizes may improve the performance of the second-stage estimator 
(provided that the number of observations per group is ‘large enough’). For our 
simulations, we conclude that while 10 observations per group may be too few, 
once group sizes exceed 25, increasing the number of groups provides greater 
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improvement than increasing the observations per group. Put differently, having 
a large number of noisy estimates of d appears to be preferable to having 
relatively few, precisely estimated values. 

4. Conclusion 

In recent years, the group effects, linear regression model has become increas- 
ingly popular in applied research both in economics and in other social sciences. 
In particular, individual outcomes are specified as a function of individual- 
specific variables as well as a function of group-specific (or ‘environmental’ 
variables). The statistical properties of (as well as alternative estimation proced- 
ures for) these models, which are a particular formulation of a more general class 
of random effects models, have been analyzed for the case of continuous (and 
observable) dependent variables. This paper extends the literature to outline 
a particular estimation procedure for estimation and inference in probit models 
with structural group effects. 

One key objective guided our analysis: computational tractability. It is well 
known that random effects models may be particularly difficult to estimate in 
a nonlinear setting, and that the difficulty grows significantly as the number of 
groups increases. To avoid these computational problems, we suggest a two- 
stage estimation procedure. The first-stage estimates a probit with fixed effects; 
the second stage regresses these estimated fixed effects on the group level 
variables, correcting for the nonspherical errors. Our approach is analytically 
and computationally simple so that estimates may be derived using standard 
econometric software. 

Under mild regularity conditions. the second-stage estimates are asymp- 
totically unbiased as the number of observations within groups approach 
infinity; furthermore, the two-stage estimator is consistent and asymptotically 
normal as both the number of groups and the number of observations within 
each group go to infinity (which are precisely the conditions required for 
consistency by alternative, and much more complex, estimators). More impor- 
tantly, the results of our Monte Carlo simulation of alternative estimating 
schemes reveal that the two-stage approach is superior to the one-stage, random 
effect or pooled probit formulations currently available in the literature. 

Appendix 

A.1. Variance estimution 

The finite-sample correction for the second-stage GLS variance requires 
estimation of the matrix Q. The variance matrix Vdd may be estimated 
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consistently from the fixed effects ML. G,’ may be estimated in at least two 
distinct ways.’ 5 

One approach uses estimates from separate maximum likelihood specifica- 
tions. The fixed effects estimator for p consistently estimates pO/oE, and the 
probit model on the pooled sample for N/J, J increasing provides consistent 
estimates FP of fio/(az + G:)“~. The ratio of coefficients is given by 
pP,/bP = (0: + oz)1!2/a,. Then an estimator for the variance is given by 
6fi = [(p^JJ# - l] 1:2 The ratio of standard errors is overidentified since there . 
are K coefficients in [j. This estimator is consistent as the N approaches infinity. 
Following Heckman’s (198 1 b) suggestion we recommend taking averages over 
the K estimates. 

A second approach follows Borjas (1987). OLS applied to the second-stage 
regression provides estimates of an error variance which has components from 
both U/G, and from the estimation error associated with 2. If ‘~j is the jth 
estimated residual from the second-stage OLS regression, then the estimate of 
the residual variance is e2 = &yZ 1 Gf/(J - M) Expanding the definition of u’, 

ii2 = 1 /(J - M) I;=, [ 6; + (dj - dj) ’ + 2~j (~j - dj)], where 12 are estimates of 
the latent residuals. Since the latter term is approximately zero from the 
independence of R and ~1, ~2 can be estimated by 6: = 8’ - $5=, rjf/(J - M) 
where the 8, is the standard error for the jth dummy variable m the first-stage 
estimation procedure.r6 

A.2. Conlputational issues 

A.2.1. Monte Carlo design 
We carry out a variety of estimation procedures for 100 replications of the 

underlying data-generation process. The data for each replication consist of 
observations on binary responses and observable data for individuals in groups. 
We consider both balanced and unbalanced sampling schemes, with group sizes 
ranging from 10 to 50 (for the balanced case) and from 50 to 150 individual 
observations (for the unbalanced case). The number of groups also varies. 

For concreteness, let us consider the 5000 observation, 50 group simulation 
(unbalanced). First, we draw 5000 independent observations from a six-dimen- 
sional multivariate normal distribution with mean zero and arbitrarily chosen 

I5 Note that since the first-stage probit identifies coethcients up to a scale factor, aprovides estimates 
of d.~,. The implicit group error variance to be included in Q is 0: = (gJa,) ‘. 

“As is the case for other GLS estimators based upon differences, estimates of Cri are not guaranteed 

to be positive. Due to the presence of the first-stage variance matrix r’,,, even if the estimates of the 
variance are negative, it is possible for the estimated Q to be positive definite. Our experience is that 

the variance will be positive for a well-specified model and that negative estimated values may 

therefore be evidence of misspecification. 



variance matrix. ” We assign to each individual a group identifier on the basis 
of exogenously specified group sizes. Additionally, the first four variables are 
treated as individual-specific variables so that we assign to each individual the 
corresponding values for X; the latter two are deemed group variables, with all 
individuals in a group assigned Z values based upon the data for the first 
individual in the group.‘* All of the subsequent analysis is carried out condi- 
tional on this realization of the observable variables. 

Conditional on the observed data, we consider two simulations for the 
unobserved components: one in which the group errors are normally distributed 
and a second one in which the group errors are distributed as extreme value 
variables. For the first simulation, we repeatedly draw sets of 5000 independent 
errors c, from a normal distribution with mean PO = 1 and variance 100, and 50 
draws of normally distributed u with mean 0 and variance 25, and assign each 
individual the corresponding individual F: value and the group error u associated 
with the draw for the group. The four /I coefficients are arbitrarily chosen to be 
(1.75, 0.5, -- 1.0, 1.5) and the two corresponding 1’ are ( - 2.0. - 1.25). The 
coefficients were chosen so that the signal to noise for the total model is roughly 
2: 1. We use these individual and group errors to form Y$ = Xij/I + 2;~ 
+ Uj + Cij for each individual, and assign binary outcomes to Yij, with 
Yij = I( Yz > 0) The second simulation generates the u from the extreme value 
distribution.‘” Using the c drawn previously, the remainder of the steps in the 
above simulation are then repeated for the new data generating process. 

A.2.2. Random t~$%xt.s prohit 

Our code for estimating the random effects model is a reimplementation of the 
Gauss-Hermite integration algorithms described in Butler and Moffitt.” We 

” Details on the exact design of the simulation are available upon request. Independent. pseudo- 

random normal deviates are generated by successive calls to the IMSL double precision function 

DRNNOR (IMSL, 1987). The resulting matrix of independent normal deviates is then multiplied by 

the Cholesky factorization of the appropriate variance matrix to generate the desired covariance 

structure. 

‘*The two-stage procedure for assignment of group characteristics is purely for programming 

convenience and should not affect our results. 

“The pseudo-random variables are obtained from repeated calls to the double-precision IMSL 

routine DRNEXP which yields standard exponential deviates, and then taking natural logarithms. 
To reduce sampling variability, the E are reused from the previous analysis; thus, the only elements 

that differ across the two simulations are the U. Because the standard form for the extreme value has 

E(u) = ~ 0.17444 and var(u) = rr2/6, we transform the resulting errors to have mean 0 and variance 

25 for more direct comparability to the standard normal described above. 

I0 We thank Robert Moffitt for providing us with a copy of their original FORTRAN code which we 
used as a guide in our programming and which allowed to verify the accuracy of our results. All of 

our FORTRAN code is available upon request for a nominal handling charge. 
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experimented with several choices for the number of expansion terms and settled 
on four as the basis for the results presented in the text2’ Interestingly enough, 
larger numbers of expansion terms began to generate numerical difficulties as 
the Monte Carlo estimation began to experience numerical underflow on 
a number of replications. This outcome suggests that it is the errors in the 
numeric approximation to the likelihood function that are allowing us to 
estimate the model; as we add terms so that our approximation becomes finer, 
the likelihood contributions for groups approach zero and the model becomes 
unstable. Any interpretation of the random effects results reported in the text 
should bear in mind the likely inherent problems with the estimates. 

We note also that the Monte Carlo simulation for the Heckman-Willis 
estimator exhibited considerable numerical difficulties for the extreme value 
specification. Out of the first twenty models, the first replication did not 
converge, and a number of subsequent specifications generated double pre- 
cision, floating point exceptions. We conclude that nonnormal group errors may 
make the ML random effects estimator more difficult to estimate. 
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