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Abstract: This paper considers a regression model in which coefficients obtained from a previous 

regression are themselves the object of analysis. It is shown that the parameters of interest can be 

obtained in two ways: pooling across observations and subsamples, or a two-stage process of first 

estimating the coefficients within each subsample, and then using these coefficients as dependent 

variables in a second stage regression. The relative properties of these estimators are analyzed, 

and the conditions under which the two estimators are equivalent are derived. 
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1. Introduction 

The recent availability of large scale data sets has led researchers to investigate 
variations in regression coefficients across observations. These models are, of 
course, a natural application of the literature on random coefficients [see, for 
example, Amemiya (1978), Cooley and Prescott (1973), Hildreth and Houck (1968), 
and Hsiao (1975)]. This paper deals with the case in which regression coefficients 
vary across subsamples (e.g., households or firms). Enough observations exist for 
each subsample to allow the researcher to estimate the regression coefficient within 
each subsample. It is then hypothesized that the variation in the regression coeffi- 
cients across subsamples can be partly explained by systematic factors, and it is this 
equation which is the object of the analysis. In other words, the problem is one of 
estimating a regression model in which the dependent variable is a previously esti- 
mated regression coefficient. 

There are several empirical examples of this type of model in the economics litera- 
ture. Wachter (1970) estimated the wage-unemployment relationship within each 
industry and subsequently investigated why the unemployment effect on wage rates 
varied across industries. Hanushek (1973) analyzed how the returns to schooling 
(estimated within each metropolitan area) were affected by metropolitan area 
characteristics. Finally, Borjas and Mincer (1978) estimated the wage-experience 
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profile for each individual in the Coleman-Rossi retrospective life history sample 
and then analyzed the determinants of slope differences across individuals. 

In each of these studies, the two-stage procedure outlined above was used. First, 
the regression coefficient was estimated for each subsample. Secondly, these coeffi- 
cients were regressed on the characteristics of the subsamples. Both Hanushek 
(1974) and Saxonhouse (1976) have noted that in this kind of procedure, a genera- 
lized least squares estimator is the appropriate estimator in the second stage. Saxon- 
house also noted that an alternative method of estimation exists. The alternative is 
to pool the data across subsamples, and this pooled regression would still yield the 
parameters of interest. He was able to show that in the special case where the 
variation in the regression coefficients across subsamples was deterministic, the 
alternative estimators were identical. 

This paper considers the more general case in which the variation in the regression 
coefficients across subsamples is partly stochastic. The objective of the study is to 
compare the properties of the alternative estimators, the pooled estimator and the 
two-stage estimator. 

2. The pooled estimator and the two-stage estimator 

Consider the regression model for the ith subsample (i= 1, . . . . n): 

yi = Zipi + Ei (I) 

where yi, zi, and ei are vectors of dimension L x 1, pi is a scalar, and the variables are 
measured in deviations from the mean. It is hypothesized that across subsamples /Ii 
is determined by 

bi=Sjy+ Vi (2) 

where si is 1 x k, and y is k x 1. The vector of coefficients y is assumed constant 
across observations, and it is the estimation of y which is the object of the analysis. 
A simple method of estimating y is to first estimate equation (1) within each sub- 
sample, and then use the n estimated coefficients as the dependent variables in (2): 
An alternative method of estimation can be obtained by substituting equation (2) 
into (1): 

Yi’ZiSiy+&i+ZiVj* (3) 

By pooling the L observations of each subsample across subsamples, an estimator of 
y can be obtained. If we pool all subsamples and stack the nL observations equation 
(3) can be written as 

y=ZSy+&+Zv (4) 
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where 

y=[:;], z=[;...J, s=[;;], +], “f]. 
Note that the dimensions of y, Z, S, E, and o are nL x 1, nL x n, n x k, nL x 1, and 
n x 1, respectively. 

The stochastic properties of the disturbances in the model are given by 

E(E) = 0, (5a) 

E(o) = 0, (5b) 

E(Ei&j) = a,2 !Piyii, i= j, (W 
E(&i &j) = 0, i#j (54 

Var(u) = c7,2Z, (5e) 

E(& 0’) = 0. (5f) 

Equation (5~) allows for the disturbances to be correlated within each subsample. 
This is likely to occur when, for example, a subsample is composed of time-series 
observations on an individual, firm, or industry. 

Given these assumptions, the error term in (4) has mean zero and a 
variance-covariance matrix given by 

zY= a,2 Y + 0,222’ (6) 

where 

Pll 0 

Y= 

I : 0 * pll,, I- 

Consider the case where o,‘, oi, and !P are known so that 2? is a known matrix (the 
estimation procedure in random coefficients models when 2 is unknown is discussed 
in Hanushek (1974) and Hsiao (1975)). The pooled estimator of y is then given by 
the generalized least squares estimator: 

y^=(s’z’z:-‘zS)-‘S’z’~-‘y. (7) 

It can be easily seen by the properties of the error term that yis an unbiased estima- 
tor of y and that Var($ = (S’Z’P ‘ZS))‘. A more convenient term for the variance 
of y can be derived by noting that due to the uncorrelatedness of E and o 

L 

0; !Pi, + o,‘z*z; 0 
z-‘= *. 

0 ‘& E 1 

-1 

nn +02z z’ - 
(8) 

vnn 

Using the definition of 2-i in (8) and substituting the definitions of Z and S into 
(S’Z’Z’-rZS)-I, we obtain 
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Var(f)= i S121(~~2ij+~vZZiZf)-lZiSi 
[ 1 

-1 

. 
i=l 

To derive the two-stage estimator, we first run a regression 
of subsample i, yielding the estimated /i: 

~i=(Z~Zi)-lZfYim 

(9) 

on the L observations 

(10) 

Given the estimated bi for all subsamples the second stage of the process consists of 
estimating equation (2) with the n observations on Bi. However, it is important to 
realize that by using /ii and not pi as the dependent variable, the second stage regres- 
sion is actually 

/?=Sy+ u+(Z’Z)-‘Z’& (11) 

where /?= (j?i, . . ..B.J’. Note that the error term in (11) has mean zero but that it is 
heteroscedastic with variance 

52=o~I+o,z(z’z)-‘Z’YZ(Z’Z)-1. (12) 

This fact implies that the minimum variance estimator of y is the generalized least 
squares estimator 

)L(S’Q-‘S)-‘S’Q-‘~ (13) 

which is an unbiased estimator of y with variance (S’W’S)- l. This expression for 
the variance can be rewritten as 

Var(f)= i S~[O,2+~,Z(Z~Zi)-‘Z~u/iiZi(Z~Zi)-’]-’Si 
[ i=l 1 

-1 
. (14) 

Theorem 1. The pooled estimator, f, and the two-stage estimator, { both provide 
unbiased estimates of the coefficient vector y. Further: 

(a) if the variance matrix !Z’ii + kiZ, where ki is a scalar, then the pooled estimator 
has a lower variance; 

(b) if the variance matrix !Pii = kiZ> where ki is a scalar, then the two methods of 
estimation are equivalent. 

Proof. To show unbiasedness of both estimators is trivial. To prove part (a) of the 
theorem note that the variance-covariance matrix of i, Var(f), exceeds Var(fi by a 
positive definite matrix if and only if War(f)]-’ - [Var(i)]-’ is positive definite. 
This expression can be written as 

A = i Sl(Z;[O,Z @Pii+ 0,2ZiZ(]-‘Zi 
i=l 

-[a,2+~,Z(Z~Zi)-1Z~yliiZi(Z~Zi)-’]-’}Si. (15) 

The theorem is proven if this differential is a positive definite matrix when Yii# kiZ. 

To show this consider thejth term of (15): 
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-[Ot+a,Z(Zi'Zj)-'ZilYjjZj(Zi'Zj)-'I-'}Sj. 

The inverse of the first bracketed term in (16) is given by 

(16) 

(17) 

Similarly, the inverse of the second bracketed term in (17) can be shown to be 

[0,2+0,2(Zj2j)-3Zjl~jZj(ZjZj)-1]-' = 
(ZjZj)(ZjZj, 

0,2(ZjZj)(ZjZj) + Oi(ZjYjjZj) ’ (18) 

Substituting equations (17) and (18) into (16) yields 

Aj = S; 
Zj @Ply ’ Zj (ZjZj)(ZjZj) - 

Oi(Zj'Yjy'Zj) + O,Z 0,2(ZjZj)(ZjZj) + 0,2(Zj Yjj Zj) I Sj m (1% 

Clearly, if equation (19) can be shown to be positive definite, then Aj is positive 
definite for allj, and hence A in (15) is positive definite. A necessary and sufficient 
condition for Aj to be positive definite is that the scalar inside the brackets be 
positive. This will be the case if and only if 

(Z~Y$jZj)(Z~~~'Zj)-(ZjZj)(ZjZj) >O* (20) 

To prove that indeed equation (20) holds, introduce a transformation zj = Qh, 
where the columns of Q are an orthonormal set of eigenvectors for Pjj. Hence the 
following quadratic forms can be obtained. 

Zj Yjj Zj = h’Q’ qj Qh = h’Dh = i Ai h;, 
i=l 

Z~Yj~‘zj=h’Q’Yj~‘Qh=h’D-‘h=~ (l/Li)h’ 
i=l 

(21) 

where D = Q’ Yjj Q, a diagonal matrix whose diagonal elements are the eigenvalues 
(Ai) of qj, and where use has been made of the fact that since !Z$j is symmetric and 
positive definite the eigenvalues of q;’ are the reciprocals of the eigenvalues of qj. 

Similarly, since Q’Q = Z, it is easy to show that 

(ZjZj)(zjzj) = (h’h)(h’h) = 
[ 1 $, hi2 2. 

Therefore, equation (20) can be rewritten as 

(22) 

(23) 

The strict inequality in (23) follows from a straightforward application of the 
Schwarz inequality, (C Ui b;)’ 5 1 u,? C bf, where a,? = Ai hi’ and Z$ = (1 /;li) hf. Equality 
will only be achieved if li= kj, implying that the variance-covariance matrix 
!f$j=kjZ. 
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To prove part (b) of the theorem, note that the discussion shows that if the within 
subsample disturbances are homoscedastic, then Var( 9) = Var( 7). Recall that the 
pooled estimator is given by jr = (S’Z’E’ZS)-‘S’Z’Z-‘y and the two stage esti- 
mator is given by y’ = (S’s)-’ S)-*s’Q-I/?. The fact that the variances are identical 
means that (S’Z’Z-iZS)-’ = (S’Q-IS)-*, thus to prove the equivalence of the two 
estimators it suffices to show S’Z’Z-’ y = S’Q-l/?. Note that 

and 

s'z'z-'y = i $2; L& c7; z; 2; 

i=l ki 0: ki o~(o~Z~z; + ki o,Z) I 
Yi (24) 

sy-J-l/j= f ’ ’ Si Zi Yi 

i-1 o~z~zi+kio~’ 
(25) 

The two estimators will be equivalent if each term in the sums (24) and (25) is identi- 
cal. For example, consider the differential for the jth term in the sum 

Uz(ZJZj)ZjYj ZJYj 

kjo~(o~ZjZj+kjo~) - 1 o:ZjZj + kjo,’ ’ 
(26) 

By expanding equation (26) it can be easily shown that @j = 0; hence S’Z’,Yty = 
s’Q-t/? and the two estimators are identical. 

Finally, an interesting question concerns the relationship between the GLS esti- 
mators presented in this paper and the inefficient ordinary least squares estimators. 
It follows from the properties of the error term that the OLS estimator of y using the 
pooled method, PO, is unbiased and that Var( 3°)=(S’Z’ZS)-’ (S’Z’zZS)(S’Z’ZS)-t . 
Similarly, the OLS estimator of y using the two-stage method, y”, is also unbiased 
with variance Var(gO) = (S’S)-1 S’sZS(S’S)-t . A simple relationship can be estab- 
lished between the two OLS estimators and the GLS estimators discussed earlier in 
an empirically relevant special case. 

Theorem 2. If the vector of explanatory variables Zi is the same for all subsamples, 
and if !Pii = Ifor all subsamples, then the use of OLS either in the pooled method or 
in the second stage of the two-stage method yields identical estimators. Further, 
these estimators are equivalent to the GLS estimators. 

Proof. To first establish the equivalence of the two estimators under the conditions 
of the theorem, note that 

po = (S’Z’ZS)-’ S’Z’y, (27) 

jr0 = (S’S)’ S’(Z’Z)-’ Z’ y, (28) 

Z’Z = 0; I, (29) 

where r-7: is the sum of squares x]Zi, which is constant across subsamples. It can then 
be easily verified that 

90 = [l/a,z](S’S)-‘ S’Z’y = 10 (30) 
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establishing that the two OLS estimators provide the same estimates. 
To prove the equivalence of OLS and GLS in this case, part (b) of Theorem 1 has 

shown that both GLS methods are identical, thus we need only consider one of the 
two methods of estimation. In particular, consider the two-stage estimator. To 
prove the equivalence of GLS and OLS we must establish that (S’W’ S)-’ S’B-* /? = 
(S’S)-’ SD. Note that 

(31) 

Using (31) it is easily shown that both GLS and OLS provide identical estimators. 
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