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(1) The Reeh-Schlieder theorem (1961), which is the basic result, showing that 
entanglement is unavoidable in quantum fieldtheory.

(2) Relative entanglement entropy in quantumfield theory.

Today’s Topics:
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Consider a QFT in Minkowski spacetime M, with a Hilbert space H. We 
assume that the vacuum state (vector) Ω, lives in H.

For a small open set U⊂ M, there is a bounded algebra of local operators 
AU supported in U acting on the vacuum vector (which is in fact the Haag-
Kastler vacuum representation) Ω. This action produces state of the form: 

φ(x1)φ(x2) · · · φ(xn)|Ω⟩ = AU |Ω⟩,

for all xi∈ U and for any n=1,2,3,… 

Note- φ(xi) are field operators defined in AU. 

The Reeh-Schlieder theorem states that every arbitrary state in H can be 
approximated by AU |Ω⟩.  
i.e. states AU |Ω⟩ are dense in H. 

The Reeh-Schlieder Theorem:
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Quick Sketch of the proof: 

If this statement were false (i.e. states φ(x1)φ(x2) · · · φ(xn)|Ω⟩ are 
not dense in H), then there exists a vector X in H such that it is 
orthogonal to φ(x1)φ(x2) · · · φ(xn)|Ω⟩.
i.e.                             

⟨X|φ(x1)φ(x2) · · · φ(xn)|Ω⟩ = 0,  

for all xi ∈ U.

→ To prove the statement is true, we need to show that for all 
xi∈ M (Minkowski space), ⟨X|φ(x1)φ(x2) · · · φ(xn)|Ω⟩ = 0.
So |X⟩ must be 0 → is a null vector → our statement is true!

The Reeh-Schlieder theorem: Every arbitrary state in H can be 
approximated by A|Ω⟩.
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Proof of the Reeh-SchliederTheorem:

Given that, ⟨X|φ(x1)φ(x2) · · · φ(xn)|Ω⟩ = 0, for all xi ∈ U. 

Suppose that, t is a future-pointing time-like vector and u is any real 
#, we can time-like shift the n-th point, xn∈ U’ :

xn → x’n = xn+ tu

Now the correlation function for x’n is:

g(u)= ⟨X |φ(x1) · · ·   φ(xn-1)φ(xn+ tu)|Ω⟩

We can also write x’n = eiH u xn e-iH u.

Where H is the Hamiltonian vanishing the vacuum (since e-iH u is a 
bounded operator.)
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So we can write g(u) as: 
g(u)= ⟨X |φ(x1) · · ·   φ(xn-1)eiH u φ (xn) e-iH u|Ω⟩

= ⟨X |φ(x1) · · ·   φ(xn-1)eiH u φ (xn) |Ω⟩

Because H is bounded below by 0, the operator eiH u is 

holomorphic for u in the upper half of u-plane → implies, g(u) is 
holomorphic for u in the upper half of u-plane and will vanish on 
the real axis.

Note: 
• For infinitesimally small u, x’n→ xn and so g(u) goes to 0.
• For u = 0, g(u) = 0.



As shown in a) we can Taylor expand around a fixed u (in u-plane).
Since g(u) is holomorphic in the upper half of u-plane, it can be 
computed by a Cauchy integral formula: any contour γ in the upper 
half-plane can be used to compute g(u) for u in the interior of the 
contour.
If g(u) is continuous on the boundary of the upper-half plane (which it 
is in here) then we can take γ to go partly on the boundary, as shown 
is b). → this part of the contour = 0 (since g(0) = 0).
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Since we saw the contour vanishes on the boundary → g(u) 
remains holomorphic on the boundary so we move down u into 
the lower half-plane without finding any singularities. 
And so as we explained g(u) is identically 0. 
Therefore,

g(u)= ⟨X |φ(x1) · · ·   φ(xn-1)φ(x’n)|Ω⟩ = 0,

For x1 , … , xn-1 ∈ U with no restriction on x’n

One can carry on doing this by introducing a new future-pointing 
time-like vector t’ to shift the last 2 points and so on and can see 
that at the end:

g(u)= ⟨X |φ(x’1) · · ·   φ(x’n-1)φ(x’n)|Ω⟩ = 0,
for any xi .
Thus, we showed that for all xi ∈ M, ⟨X |φ(x1) · · ·   φ(xn-1)φ(xn)|Ω⟩ = 0.

→ φ(x1) · · ·   φ(xn-1)φ(xn)|Ω⟩ ≠ 0,
→|X⟩ = 0,
→ φ(x1) · · ·   φ(xn-1)φ(xn)|Ω⟩ are dense in H.



One might expect that for a localized observable with AU ⊂ M, states, 
AU|Ω⟩ should be localized in U, i.e. states AU|Ω⟩ should look like the 
vacuum in the causal complement of U. 

But the Reeh-Schlieder theorem says every arbitrary state in H can be 
approximated by AU |Ω⟩. 

Looks Contradictory?!

Let’s look into this:
In Minkowski spacetime consider a state of the universe such that on 
some initial time slice, it looks like the vacuum near an open set U. 

Now suppose that a planet, “Marley”, lives in region V, which is at a 
space-like separated distance from U.

Let’s assign an operator J to be the operator creating planet “Marley”
in region V. The expectation value of J in a state that contains the 
planet in region V is close to 1, and 0 otherwise. 

𝛺′ ȁ𝐽 𝛺′ ~1,
𝛺′′ ȁ𝐽 𝛺′′ ~0.
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Physical Interpretations of The Reeh-Schlieder Theorem:
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The Reeh-Schlieder theorem states that there is an operator X in 
region U that by its action on the vacuum, XΩ, it can approximate 
the state that contains Marley in region V.
The “apparent contradiction” comes from that it seems like you 
can create a planet in region V by acting an operator X on the 
vacuum state in region U. 
Note- By physical creation we mean a Unitary operator (i.e. X†X = 1 )

═► 𝑋𝛺 ȁ𝐽 𝑋𝛺 = 𝛺 𝑋† ȁ𝐽𝑋 𝛺 .

Since X is supported in U and J is supported in the spacelike 
separated region V, X† and J commute:

═► 𝑋𝛺 ȁ𝐽 𝑋𝛺 = 𝛺 ห𝐽𝑋†𝑋 𝛺 ~1.

═►1~1 𝛺 ห𝐽𝑋†𝑋 𝛺 = 𝛺 ȁ𝐽 𝛺 ~0. 
BUT:

The Reeh-Schlieder theorem does not tell us that X could be 
unitary; it just tells us that there is some X in region U that can 
“approximately” “create” planet “Marley”, in a spacelike 
separated distant region V from U.                                 



Remark:

Let U to be an open set in Minkowski spacetime, by the Reeh-Schlieder
theorem:

• State AU Ω are dense in H0  →This is described by saying that Ω is a 
“cyclic” vector for the algebra AU.

• For any nonzero local operator algebra AU, AU Ω ≠ 0 → This is 
described by saying that Ω is a “separating” vector of AU.

In short: 

The Reeh-Schlieder theorem and its corollary say that the vacuum is a

cyclic separating vector for AU.



5/13/2020 12

Important uses of the R-S theorem:

• Entanglement is unavoidable in QFT:
In the vacuum state, operators X†X and J, which are supported 
in two space-like separated regions, do not commute so we get 
a non-zero correlation function ═► Entanglement! 

Note- This always happen in QFT even in free theory so no 
contradiction! 

• The state-operator correspondence in CFT:
is also a Reeh-Schlieder property.



2. Introduction to Entanglement Entropy in QuantumField Theory:

The Reeh-Schlieder theorem involves the entanglement between 
the degrees of freedom inside an open set U in Hilbert space and 
its causal complement U’ 

═► H = HU⊗ HU’

However, this is not the case in QFT! The QFT Hilbert space does 
not factorize! 
Fortunately, there is a mathematical machinery to analyze the 
entanglement in this situation: Tomita-Takesaki theory. 

5/13/2020 13



5/13/2020 14

Relative entropy of two states of a von Neumann algebra is 
defined in terms of the relative modular operator. 
The strict positivity, lower semi-continuity, convexity and 
monotonicity of relative entropy are proved. [Araki in 1970’s]
A relative entropy (also called relative information) is a useful tool 
in the study of equilibrium states of lattice systems. The relative 
entropy for (normal faithful) positive linear functional of Ψ and Φ, 
of a von Neumann algebra is defined as,

S Ψ|Φ(U ) = − ⟨Ψ| log ∆Ψ|Φ |Ψ⟩

where ∆Ψ|Φ is the relative modular operator of cyclic and 
separating vector representatives Ψ and Φ.
The definition coincides with usual definition of,

S (ρΨ / ρΦ) = tr (ρΨ log ρΨ) - tr (ρΦ log ρΦ ), 

in finite dimensional algebra and ρΨ and ρΦ are density matrices 
for Ψ and Φ.
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Quick Recap EE in QFT:

Consider a cyclic separating vector Ψ in an open set U⊂ H, with a given 
local operator algebra AU :

• Tomita operator is defined as an antilinear operator, SΨ : H → H:
SΨ a|Ψ⟩ = a†|Ψ⟩ with a∈AU

• The modular operator is a linear, self-adjoint operator defined by,

∆Ψ = SΨ
†SΨ.

• The relative Tomita operator:  SΨ|Φ a |Ψ⟩ = a†|Φ⟩.

• The relative modular operator:  ∆Ψ|Φ = SΨ|Φ 
†                       
SΨ|Φ. 

• The relative entanglement entropy: S Ψ|Φ(U ) = − ⟨Ψ| log ∆Ψ|Φ |Ψ⟩.



Remark:

For V ⊂ U, we defined the Tomita operator as,

SU a|Ψ⟩ = a†|Ψ⟩ 𝑤𝑖𝑡ℎ a∈AU

SV a|Ψ⟩ = a†|Ψ⟩ 𝑤𝑖𝑡ℎ a∈AV

˜

Important Properties:
• Positivity of relative entanglement entropy: SΨ|Φ ≥ 0.

• Monotonicity of relative EE under an increasing region: 
− ⟨Ψ |log ∆V|Ψ⟩ ≤ − ⟨Ψ |log ∆U |Ψ⟩.

The algebras are not the same: AU is bigger than AV, thus SU is defined 
on more states than SV.

═► ∆V ≥ ∆U ,

═► log ∆V ≥ log ∆U ,

═► − ⟨Ψ | log ∆V|Ψ⟩ ≤ − ⟨Ψ | log ∆U |Ψ⟩.

UU

U

V

U
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The Tomita operator for a state Ψ in region U of a Hilbert space, with 
a given algebra AU, is defined as an antilinear operator SΨ,  of the 
form,

SΨ : H → H,

SΨ a|Ψ⟩ = a†|Ψ⟩,

for a∈ AU , whenever |Ψ⟩ is a cyclic separating vector for AU.

Note:

• Separating property → The state a|Ψ⟩ is nonzero for all nonzero
a ∈ AU.

• Cyclic property → Defines SΨ on a dense set of states in H.

• From Tomita operator definition → SΨ
2 =1 → SΨ is invertible.

[ Assumption for simplicity: ⟨Ψ|Ψ⟩ = ⟨Φ|Φ⟩ = 1.]

• Tomita operator definition is leading us to an unbounded operator. 

Tomita Operator Definition:



Since SΨ is invertible, it has a unique polar decomposition and so it can 
be written as,

SΨ  = JΨ ∆ Ψ 
1/2, 

where JΨ is antiunitary (modular conjugate) and ∆ Ψ 
1/2 (modular 

operator) is Hermitian and positive-definite. 

So this implies that the modular operator is a linear, self-adjoint 
operator defined by,

∆Ψ = SΨ
†SΨ.

Modular Operator Definition:



Let the |Ψ⟩ be a cyclic separating state and |Φ⟩ be any other state, we 
define:

➢ The relative Tomita operator only depends on the cyclic separating 
nature of |Ψ⟩, and not on any property of |Φ⟩.

➢ If Φ is cyclic separating, then we can define, S Φ |Ψ  a |Φ⟩ = a†| Ψ ⟩.

═► SΨ|Φ S Φ |Ψ  = 1 and so SΨ|Φ  is invertible.

Note:

If Φ =Ψ, then the definitions would reduce to the previous results:
SΨ|Ψ = SΨ and ∆Ψ|Ψ = ∆Ψ .

The relative Tomita operator , SΨ|Φ as an anti-linear operator 
defined by,

SΨ|Φ  a |Ψ⟩ = a†|Φ⟩.

The relative modular operator is a linear, self-adjoint operator 
defined by,

∆ Ψ|Φ = SΨ|Φ 
†                       
SΨ|Φ. 



Consider an open set U, small enough such that it is spacelike separated 

from some other open set in Hilbert space. 

Now let |Ψ⟩ be any cyclic separating vector for AU, and |Φ⟩ any other 

vector. The relative entropy between these two states, for any 

measurements done in region U is defined by,

S Ψ|Φ(U ) = − ⟨Ψ | log ∆Ψ|Φ |Ψ⟩

Relative Entropy in QFT:

[ Araki in the 1970’s]

What we’d want to explore here is to discuss some the properties of the 

EE given above.



For a positive real number λ,
− log λ ≥ 1 − λ,

═►we can use this inequality for an operator, ∆:
− log ∆ ≥ 1 − ∆.

Now consider a completely general state Φ:

SΨ|Φ(U) = − ⟨Ψ | log ∆Ψ|Φ|Ψ⟩ ≥ ⟨Ψ | (1 − ∆Ψ|Φ) |Ψ⟩
= ⟨Ψ | Ψ⟩ − ⟨Ψ | S†

Ψ|Φ SΨ|Φ |Ψ⟩
= ⟨Ψ | Ψ⟩ − ⟨Φ|Φ⟩ = 0.

═►SΨ|Φ ≥ 0.

Positivity of Relative Entropy:

Mathematical Aside:



Monotonicity of Relative Entropy under an increasing region:

• Let us consider an open set V, such that V ⊂ U, where U is a bigger 
open set. 

• The two different algebras, AU and AV  are defined in regions U and 
V, respectively.

• We denote the relative Tomita operators as, SΨ|Φ ,U and SΨ|Φ,V and 
their relative modular operators as ∆ Ψ|Φ;U and ∆ Ψ|Φ;V.

V

U

U



Remark:

We defined the tomato operator as,

SU a|Ψ⟩ = a†|Ψ⟩ 𝑤𝑖𝑡ℎ a∈AU

SV a|Ψ⟩ = a†|Ψ⟩ 𝑤𝑖𝑡ℎ a∈AV

˜

Naively, one might think since they look the same, SU and SV are 
essentially the same! 

The algebras are not the same: AU is bigger than AV, thus SU is defined 
on more states than SV.

If we have unbounded operators, they are not defined on all Hilbert 
space (only, at most, on a dense subspace).

Proper statement: SU is an extension of SV ═►Only on the states that 
both SU and SV  are defined, they coincide.



• The relative entropy for measurements in U is:

• SΨ|Φ (U)= − ⟨Ψ| log ∆Ψ|Φ;U |Ψ⟩.

• Similarly for measurements in V,

• SΨ|Φ (V)= − ⟨Ψ| log ∆Ψ|Φ;V |Ψ⟩.



We want to show that the relative modular operator ∆V  is bounded from 
below by the other relative modular operator ∆U defined in U :

∆V ≥ ∆U ,

═► log ∆V ≥ log ∆U ,

═► − ⟨Ψ | log ∆V|Ψ⟩ ≤ − ⟨Ψ | log ∆U |Ψ⟩.

Notation:

We will be keeping Ψ and Φ fixed, so for the sake of notation, we’ll drop the 
subscript of Ψ and Φ from the operators throughout this proof.

Monotonicity of Relative Entropy with increasing region

Note: We only showed the monotonicity of entropy special to the case of 

increasing the size of a region considered in spacetime.

Generally, monotonicity of relative entropy under partial trace, implies the 

strong subadditivity of entropy (recently, it has had numbers of  

applications in QFT).
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Our goal:
We want to prove that the relative entropy is monotonic under 
increasing the region considered.

• The relative entropy for measurements in U is:

• SΨ|Φ (U)= − ⟨Ψ| log ∆Ψ|Φ;U |Ψ⟩.

• Similarly for measurements in V,

• SΨ|Φ (V)= − ⟨Ψ| log ∆Ψ|Φ;V |Ψ⟩.

A1. The Proof of Monotonicity under Increasing Region:



We want to show that the relative modular operator ∆V  is bounded from 
below by the other relative modular operator ∆U defined in U :

∆V ≥ ∆U ,

═► log ∆V ≥ log ∆U ,

═► − ⟨Ψ | log ∆V|Ψ⟩ ≤ − ⟨Ψ | log ∆U |Ψ⟩.

We need to show: If P and Q are positive self-adjoint operators 
such that: P ≥ Q, then, log P ≥  log Q.

Notation:

We will be keeping Ψ and Φ fixed, so for the sake of notation, we’ll drop the 
subscript of Ψ and Φ from the operators throughout this proof.

A.1. Monotonicity of Relative Entropy with increasing region:



If P and Q are bounded operators such that P ≥ Q, we can say:  
P – Q ≥ 0.

For any real s > 0,  
1

𝑠+𝑃
≤ 

1

𝑠+𝑄

A.1.  Proof for Bounded positive self-adjoint operators:

Define: 
R(t) = tP + (1-t)Q ,

as a family of operators P and Q.

═►
𝑑𝑅

𝑑𝑡
= 𝑃 − 𝑄 ≥ 0

𝑑

𝑑𝑡

1

𝑠+𝑅(𝑡)
= -

1

𝑠+𝑅(𝑡)

𝑑𝑅

𝑑𝑡

1

𝑠+𝑅(𝑡)

═►
𝑑

𝑑𝑡

1

𝑠+𝑅(𝑡)
≤ 0



׬►═
0

1
𝑑𝑡 (

1

𝑠+𝑅(𝑡)
)= 

1

𝑠+𝑅(1)
-

1

𝑠+𝑅(0)
≤ 0

═►
1

𝑠+𝑅(1)
≤

1

𝑠+𝑅(0)

A.1. Proof for Bounded positive self-adjoint operators:

We describe this result by saying that, 
1

𝑠+𝑅
is indeed a decreasing 

function of R so this implies that:
1

𝑠+𝑃
≤ 

1

𝑠+𝑄

═►log (P) ≥ log (Q)



A.1. Proof for Unbounded positive self-adjoint operators:

If P and Q are unbounded operators, then generally they are 

defined on different dense subspaces. 

Since it is difficult to deal with unbounded operators, we define 

s>0, so that 
1

𝑠+𝑃
and 

1

𝑠+𝑄
are bounded.

As before we define: R(t) = tP + (1-t)Q.

═► log R(t) = 0׬
∞
𝑑𝑠 (

1

𝑠+1
−

1

𝑠+𝑅
)

═►
𝑑

𝑑𝑡
log R(t) = 

0׬
∞
𝑑𝑠 (

1

𝑠+𝑅

𝑑𝑅

𝑑𝑡

1

𝑠+𝑅
)

Since 
1

𝑠+𝑅
and 

𝑑𝑅

𝑑𝑡
= 𝑃 − 𝑄 are both positive, the integral is positive.

𝑑

𝑑𝑡
log R(t) ≥ 0.

═► log (P) ≥ log (Q)

═►− ⟨Ψ | log ∆V|Ψ⟩ ≤ − ⟨Ψ | log ∆U |Ψ⟩.


