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Abstract

To reduce model dependence and bias in causal inference, researchers usually use
matching as a data preprocessing step, after which they apply whatever statistical
model and uncertainty estimators they would have without matching. Unfortunately,
this approach is appropriate in finite samples only under exact matching, which is
usually infeasible, or approximate matching only under asymptotic theory if large
enough sample sizes are available, but even then requires unfamiliar specialized point
and variance estimators. Instead of attempting to change common practices, we show
how those analyzing certain specific (but extremely common) types of data can in-
stead appeal to a much easier version of existing theory. This alternative theory is
substantively plausible, requires no asymptotic theory, and is simple to understand.
Its core conceptualizes continuous variables as having natural breakpoints, which are
common in applications (e.g., high school or college degrees in years of education, a
governmental poverty level in income, or phase transitions in temperature). The the-
ory allows binary, multicategory, and continuous treatment variables from the outset
and straightforward extensions for imperfect treatment assignment and different ver-
sions of treatments.
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1 Introduction

Matching is a powerful nonparametric approach for improving causal inferences in ob-

servational studies — that is where assignment of units to treatment and control groups is

not under the control of the investigator and not necessarily random. Matching is increas-

ingly popular among applied researchers because it can be simple to apply and easy to

understand. The basic idea involves pruning observations to improve balance between the

treated and control groups (solely as a function of measured pre-treatment covariates so

as to avoid inducing selection bias) and then estimating the causal effect from the remain-

ing sample. By eliminating or moderating the strength of the relationship between pre-

treatment covariates and the treatment assignment variable, matching can reduce model

dependence, estimation error, and bias (Cochran and Rubin, 1973; Rubin, 1974). By re-

moving heterogeneous observations, matching can sometimes reduce variance but, when

variance increases, the bias reduction offered usually more than compensates in typically

large observational data sets. See Ho et al. (2007); Imbens (2004); Morgan and Winship

(2014); Stuart (2010).

From the applied researcher’s perspective, matching is convenient because it is treated

an easy-to-use preprocessing step that does not disturb existing work flows and can be

used even when, as usual, exact matching is infeasible. That is, after pruning observa-

tions that do not approximately match, researchers apply whatever statistical methods

they would have without matching, such as a parametric regression modeling. In order

to improve the performance of some nearest neighbor matching methods, such as based

on propensity scores or Mahalanobis distance, applied researchers also often follow an ad

hoc procedure of iterating between these formal methods and informal balance checking

in the space of the covariates.

From the theoretical perspective, these practices are problematic because no finite

sample theory of inference justifies them: Under existing theories of inference, researchers

must either stick to exact matching, which will leave them with too few or no observa-

tions to infer anything, or, if enough observations are available, rely on asymptotic theory

and switch from familiar analysis methods and variance estimators to specialized ones
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(Abadie and Imbens, 2012).

The goal of this paper is to help applied researchers understand existing statistical

theory so that know when they can use matching as they have, without new complicated

approaches to learn; this enables them to use the techniques they know well, such as

regression modeling and diagnostics. The theory of inference which enables these prac-

tices is simple to understand and apply, and does not require asymptotic making sampling

assumptions or imposing distributional assumptions on the data researchers choose to an-

alyze. Researchers are still responsible for meeting the assumptions of the theory in any

application, but the simplicity of the theory may make this easier in the class of applica-

tions to which this theory applies.

Most of the change we propose is to merely use existing theory, but to recognize that in

many data sets variables referred to as “continuous” in fact often have natural breakpoints

that may be as or more important than the continuous values. These may include grade

school, high school, and college degrees for the variable “years of education”; the official

poverty level for the variable “income”; or puberty, official retirement age, etc., for the

variable “age”. This understanding of measurement recognizes that, for another example,

33◦ Fahrenheit may be closer to 200◦ than to 31◦, at least for some purposes. Variables

with natural breakpoints are such an omnipresent feature of observational data that they

are rarely even explicitly discussed. Most data analysts not only know this distinction well

but use it routinely to collapse variables in their ordinary data analyses. For example, in

analyses of sample surveys, which account for about half of all quantitative work in po-

litical science and a large fraction of work in rest of the social sciences (King et al., 2001,

fn.1), examples of continuous variables with no natural breakpoints, and even without any

examples where the authors used the breakpoints to collapse variables or categories, are

uncommon.

Thus, much of our goal is to help researchers evaluate whether their work fits into a

large class of applications we identify, for which existing theory works well, so commonly

used matching practices need not be altered.

Section 2 presents our theory of statistical inference for matching, and Section 3 gives
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the properties of estimators that satisfy it. We discuss what can go wrong and what to do

about it in Section 4. Section 5 explains which matching methods and associated proce-

dures are justified by the theory. Section 6 then extends the theory to situations where the

true and observed treatment status diverge and where different versions of treatment are

evident. Section 7 concludes.

2 A Theory of Causal Inference for Approximate Match-
ing

Consider a sample of n <∞ observations where subject i (i = 1, . . . , n) has been exposed

to treatment Ti = t, for t ∈ T , where T is either a subset of R or a set of (ordered

or unordered) categories, Ti is a random variable, and t one possible value of it. Then

Y = {Yi(t) : t ∈ T , i = 1, . . . , n} is the set of potential outcomes, the possible values of

the outcome variable when T takes on different values. For each observation, we observe

one and only one of the set of potential outcomes, that for which the treatment was actually

assigned: Yi ≡ Yi(Ti). In this setup, Ti is a random variable, the potential outcomes are

fixed constants for each value of Ti, and Yi(Ti) is a random variable, with randomness

stemming solely from the data generation process for T determining which of the potential

outcomes is observed for each i. (The potential outcomes could also be treated as random

variables with a distribution induced by sampling from a given superpopulation or data

generation process.) We also observe a p × 1 vector of pre-treatment covariates Xi for

subject i, and for some purposes consider this to be a random variable drawn from a

superpopulation, where X ∈ X .

In most applications, repeated sampling from a given (super)population is either a

convenient fiction or real but unobserved. In either case, the data generation process

is at least partly an axiom rather than a substantive assumption. In theoretical discus-

sions, researchers have made progress by treating the data as having been generated via

simple random sampling (i.e., “complete randomization”), see e.g. Abadie and Imbens

(2006). An alternative approach we use in Section 2.2 is stratified random sampling (i.e.,

“block randomization”), which, when designing a data generation strategy, is preferred
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on grounds of bias, model dependence, and variance; in many observational data sets of

interest here, however, either option is plausible and so may be a reasonable choice.

2.1 Quantities of Interest

Let t1 and t2 be distinct values of T that happen to be of interest, regardless of whether

T is binary, multicategory, or continuous (and which, for convenience we refer to as the

treated and control conditions, respectively). Assume T is observed without error (until

Section 6). Define the treatment effect for each observation as the difference between the

corresponding two potential outcomes, TEi = Yi(t1)− Yi(t2), of which at most only one

is observed (this is known as the “Fundamental Problem of Causal Inference”; Holland

1986). (Problems with multiple or continuous values of treatment variables have multiple

treatment effects for each observation, but the same issues apply.)

The object of statistical inference is usually an average of treatment effects over a

given subset of observations. Researchers then usually estimate one of two types of quan-

tities. The first is the sample average treatment effect on the treated, for which the poten-

tial outcomes and thus TEi are considered fixed, and inference is for all treated units in

the sample at hand: SATT = 1
#{Ti=t1}

∑
i∈{Ti=t1} TEi (Imbens, 2004, p.6). (The control

units are used to help estimate this quantity.) Other causal quantities of this first type are

averaged over different subsets of units, such as from the population, the subset of the

population similar to X , or all units in the sample or population regardless of the value of

Ti. Since a good estimate of one of these quantities will usually be a good estimate of the

others, usually little attention is paid to the differences for point estimation, although there

may be differences with respect to uncertainty estimates under some theories of inference

(Imbens and Wooldridge, 2009).

The second type of causal quantity is when some treated units have no acceptable

matches among a given control group and so are pruned along with unmatched controls,

a common situation which gives rise to “feasible” versions of SATT (which we label

FSATT) or of the other quantities discussed above. This formalizes the common practice

in many types of observational studies by focusing on quantities that can be estimated

well (perhaps in addition to estimating a more model dependent estimate of one of the
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original quantities) (see Crump et al., 2009; Iacus, King and Porro, 2011; Rubin, 2010),

an issue we return to in Section 3.2. (In multi-level treatment applications, the researcher

must choose whether to keep the feasible set the same across different treated units so that

direct comparison of causal effects is possible, or to let the sets vary to make it easier to

find matches.)

2.2 Assumptions

The existing finite sampling theory of causal inference in observational studies is based

on the assumption that it is possible to match treated and control units exactly on all

measured pre-treatment covariates (Lechner 2001, Imbens 2000, and Imai and van Dyk

2004.) Exact matching in relatively informative data sets normally yields no (or too few)

observations and so empirical analysts routinely violate its basic principles and match

only approximately. Approximate matching can be justified under asymptotic theory, if

enough data are available, but then specialize point and variance estimators are required

(Abadie and Imbens, 2012). We introduce here a theory of statistical inference that does

not require resorting to asymptotic theory unless some of the assumptions below fail to

hold for a given observational study.

We now describe Assumptions A1–A3, which establish the theoretical background

needed to justify causal inference under the standard practice of approximate matching

in finite samples; this theory can be seen as a natural extension of the pointwise theory

by Rosenbaum and Rubin (1983). The first assumption (which we generalize further to

more realistic situations in Section 6) helps to precisely define the variables used in the

analysis:

Assumption A1 [SUTVA: Stable Unit Treatment Value Assumption (Rubin, 1980, 1990,

1991)]: A complete representation of all potential outcomes is Y = {Yi(t) : t ∈ T , i =

1, . . . , n}.

SUTVA suggests three interpretations (see VanderWeele and Hernan, 2012). First is

“consistency,” which connects potential outcomes to the observed values and thus rules

out a situation where say Yi(0) = 5 if Ti = 1 but Yi(0) = 12 if Ti = 0 (Robins, 1986).
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Second is “no interference,” which indicates that the observed value Ti does not affect the

values of {Yi(t) : t ∈ T } or {Yj(t) : t ∈ T ,∀ j 6= i} (Cox, 1958). And finally, SUTVA

requires that the treatment assignment process produce one potential outcome value for

any (true) treatment value (Neyman, 1935).

Prior to introducing the next two fundamental assumptions, we clarify the link be-

tween the stratified sampling assumption and this theoretical framework. To be specific,

we take discrete variables as they are and coarsen continuous variables at their natural

breakpoints, which we take as fixed. As discussed above, natural breakpoints exist for

almost all apparently continuous variables in real applications. Then the product space

of all the discrete and coarsened continuous variables form a set of strata, within which

observations are drawn randomly and repeatedly.

To use our theory to justify a matching method requires that the information in these

strata, and the variables that generate them, be taken into account. As described in Sec-

tion 5, the theory does not require that our specific formalization of these strata be used

in a matching method, only that the information is accounted for. With this in mind, we

offer one clear formalization of this idea, in terms of a partition of the product space of

the covariates.

Matching by discretization of continuous variables dates at least to Cochran (1968)

(see also Rubin, 1977). We formalize these notions here:

Definition 1. Let Π(X ) be a finite partition of the covariate space X , and let Ak ∈ Π(X )

(k = 1, . . . , K <∞) be one generic set of the partition, i.e. ∪kAk = X and Al ∩Am = ∅

for l 6= m.

For example, if X is the product space of variables age× gender× earnings = X ,

then one of the sets, Ak, might be the subset of young adult males making greater than

$25,000: {age ∈ (18, 24]} × {gender = M} × {(earnings > $25000)}. When not

required for clarity, we drop the subscript k from Ak and write A.

We now introduce the second assumption, which ensures that the pre-treatment co-

variates defining the strata are sufficient to adjust for any biases. (This assumption serves

the same purpose as the “no omitted variable bias” assumption in classical econometrics,
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but without having to assume a particular functional form.) Thus, given the values of X

encoded in the strata A, we define:

Assumption A2 [Set-wide Weak Unconfoundedness]: T⊥Y (t)|A, for all t ∈ T and each

A ∈ Π(X ).

For example, under A2, the distribution of potential outcomes under control Y (0) is the

same for the unobserved treated units and as the observed control units; below, this will

enable us to estimate the causal effect by using the observed outcome variable in the

control group.

Apart from the sampling framework, Assumption A2 can be thought of as a degen-

erate version of the Conditioning At Random (CAR) assumption in Heitjan and Rubin

(1991) with conditioning fixed. CAR was designed to draw inferences from coarsened

data, when the original uncoarsened data are not observed. In the present framework,

Π(X ) represents only a stratification of the reference population and each stratum A in

that definition is fixed in repeated sampling. Assumption A2 is designed to obtain uncoun-

foundedness within each set A instead of for every single point {X = x}. A special case

of Assumption A2, with sets A fixed to singletons (i.e. taking A = {X = x}), is known

as “weak unconfoundedness” used under exact matching theory (Imbens, 2000; Imai and

van Dyk, 2004; Abadie and Imbens, 2006; Lechner, 2001) and was firstly articulated in

Rosenbaum and Rubin (1983).

As an example, consider estimating the causal effect of the treatment variable “taking

one introductory statistics course” on the outcome variable “income at 22 years old”, and

where we also observe one pre-treatment covariate “years of education”, along with its

natural breakpoints at high school and college degrees. Assumption A2 says that it is

sufficient to control for the coarsened three-category education variable (no high school

degree, high school degree and possibly some college courses but no college degree, and

college degree) rather than the full “years of education” variable. In this application,

A2 is plausible if, as seems common, employers at least at first primarily value degree

completion in setting salaries.

Finally, any matching theory requires the condition of “common support”, i.e. for any
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unit with observed treatment condition Ti = t1 and covariates Xi ∈ A, it is also possible

to observe a unit with the counterfactual treatment, Ti = t2, and the covariate values in the

same set A. This is the assumption that rules out, for example, being able to estimate the

causal effect of United Nations interventions in civil wars on peace building success when

the UN intervenes only when they are likely to succeed (King and Zeng, 2006). In less

extreme cases, it is possible to narrow the quantity of interest to a portion of the sample

space (an thus the data) where common support does exist. More formally,

Assumption A3 [Set-wide Common Support]: For all measurable sets B ∈ T and all

sets A ∈ Π(X ) we have p(T ∈ B|X ∈ A) > 0.

Assumption A3 makes the search for counterfactuals easier since those in the vicinity of

(i.e., with the same strata as), rather than exactly equal to, a given covariate vector X ∈ A

are now acceptable.

This hypothesis was introduced by Rosenbaum and Rubin (1983); the combination

of the pointwise versions of both A2 and A3 is often referred as “strong ignorability”

(Rosenbaum and Rubin, 1983; Abadie and Imbens, 2002).

2.3 Identification

We show here that Assumptions A1-A3 enable point identification of the causal effect

in the presence of approximate matching. Identification for the expected value of this

quantity can be established under the new assumptions by noting, for each A ∈ Π(X ),

that

E{Y (t)|A} A2
= E{Y (t)|T = t, A} = E{Y |T = t, A},

which means that within set Ak, we can average over the observed Y corresponding to the

observed values of the treatment T rather than unobserved potential outcomes for which

the treatment was not assigned. The result is that the average causal effect within the set

A, which we denote by τA, can be written as two means of observed variables, and so is

easy to estimate:

τA = E{Y (t1)− Y (t2)|A} = E{Y |T = t1, A} − E{Y |T = t2, A}, (1)
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for any t1 6= t2 ∈ T . That is, (1) simplifies the task of estimating the causal effect

in approximate matching in that it allows one to consider the means of the treated and

control groups separately, within each set A, and to take the weighted average over all

strata A ∈ Π(X ) afterwards. To take this weighted average, we use Assumption A3:

E(Y (t))
A3
= E(E{Y (t)|A}) (2)

which is exactly what we need to calculate the average causal effect τ = E(Y (t1)) −

E(Y (t2)). Assumption A3 is required because otherwise E{Y (t)|A} may not exist for

one of the two values of t = t1 or t = t2 for some stratum A, in which case E(Y (t)),

would not exist and the overall causal effect would not be identified.

3 Properties of Estimators After Matching

Current estimation practice after one-to-one matching involves using estimators for the

difference in means or with regression adjustment that follows matching. In j-to-k match-

ing for j > 0 and k > 1 varying over units, the same procedures are used after averaging

within strata for treatment and control groups or, equivalently, without strata but with unit-

level weights. Either way, the same simple and commonly used estimation procedures are

used as is, along with familiar diagnostic techniques. We now give some details of how

our theory of inference justifies these simple procedures.

Let MA
j = {i : Ti = tj, Xi ∈ A} be the set of indexes of all matched observations for

treatment level Ti = tj within stratum A ∈ Π(X ) and Mj =
⋃

A∈Π(X )

MA
j be the set of all

indexes of the observations corresponding to treatment T = tj .

Denote the number of observations in each set by mA
j = |MA

j | and mj = |Mj| re-

spectively. We assume A and mA
j , and thus mj , remain fixed under repeated sampling.

However, mA
j could be estimated via the first (observed) random draw and then fixed

for the remaining (hypothetical) samples, which is analogous to the common practice of

conditioning on a pretest in sample survey design.
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3.1 Difference in Means Estimator

To describe the property of the estimators we adapt the approach of Abadie and Imbens

(2011) and rewrite the causal quantity of interest as the weighted sum computed within

each stratum A from (1):

τ =
1

m1

∑
i∈M1

E{TEi} =
1

m1

∑
A∈Π(X )

∑
i∈MA

1

E{Yi(t1)− Yi(t2)|Xi ∈ A}

=
1

m1

∑
A∈Π(X )

∑
i∈MA

1

(µA1 − µA2 ) =
1

m1

∑
A∈Π(X )

(µA1 − µA2 )mA
1 =

∑
A∈Π(X )

τAWA,
(3)

where µAk = E{Y (tk)|X ∈ A} (k = 1, 2), with weights are WA = mA
1 /m1, and τA is the

treatment effect within set A as in (1).

Consider now an estimator τ̂ for τ based on this weighted average:

τ̂ =
∑

A∈Π(X )

τ̂AWA =
1

m1

∑
i∈MA

1

(Yi(t1)− Ŷi(t2)) (4)

where τ̂A is the simple difference in means within the set A, i.e.:

τ̂A =
1

mA
1

∑
i∈MA

1

(
Yi − Ŷi(t2)

)
=

1

mA
1

∑
i∈MA

1

Yi − 1

mA
2

∑
j∈MA

2

Yj


=

1

mA
1

∑
i∈MA

1

Yi −
1

mA
2

∑
j∈MA

2

Yj.

(5)

Finally, we have the main result (see the appendix for a proof):

Theorem 1. The estimator τ̂ is unbiased for τ .

Given that the sets of the partition Π(X ) are disjoint, it is straightforward to obtain

the variance σ2
τ̂ = Var(τ̂) of the causal effect. If we denote by σ2

τ̂A the variance of the

stratum-level estimates τ̂A in (5), we have σ2
τ̂ =

∑
A∈Π(X )

(
στ̂AW

A
)2. The weights WA

in (3) are fixed given that, in our stratified random sampling data generation process, the

number of treated units (Ti = t1) per strata A (mA
1 ), is fixed.

3.2 Estimators With Small Strata

If one or more strata contains only one treated unit and one control unit, one cannot

directly estimate the variance within the strata, but we can still obtain an estimate of it
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by applying whatever estimator one would have applied to the data set without matching.

To show this, we introduce a new set of weights to simplify the estimator in (4) as the

difference in weighted means. For all observations, we define the weights wi as

wi =


1, if Ti = t1,

0, if Ti = t2 and i 6∈MA
2 for all A,

mA
1

mA
2

m2

m1
, if Ti = t2 and i ∈MA

2 for one A.

Then, the estimator τ̂ in (4) can be rewritten as

τ̂ =
1

m1

∑
i∈M1

Yiwi −
1

m2

∑
j∈M2

Yjwj.

and the variance of this estimator is just the sum of the variances of the two quantities.

3.3 Robust Estimation via Regression Adjustment

If Assumption A2 holds, then adjusting for covariates is unnecessary. If Assumption A2

holds but the analyst is unsure, and so adjusts for pre-treatment covariates (with inter-

actions), then the downside is trivial (Lin et al., 2013; Miratrix, Sekhon and Yu, 2013).

If A2 does not hold, then adjusting for covariates after preprocessing may still produce

unbiased estimates. In this sense, current practice is doubly robust. In this latter case, if

researchers follow the rule of including in X any covariate that affects either T or Y , then

this set will satisfy A2 if any subset satisfies A2 (VanderWeele and Shpitser, 2011).

As an example of covariate adjustment, we consider the linear regression model:

Yi = β0 + β1Ti + εi, εi ∼ N(0, 1) and i.i.d

where τ̂ ≡ β̂ if weights wi are used in estimation. So the standard error of β̂1 obtained as

output of this simple weighted least squares (WLS) model is the correct estimate of σ2
τ̂ .

To introduce covariates (X1, X2, . . . , Xd), let

Yi = β0 + β1Ti + γ1Xi1 + · · · γdXid + εi

and again, by WLS, the estimated coefficient β̂1 is the estimator of the treatment effect τ̂

and the estimated variance is the standard error of β̂1. Other models, such as GLM with

weights, can be used as well in a similar fashion: The only change to the estimator that

one would have used without matching is to include these weights, as with any weighted

analysis.
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3.4 Estimation with Multi-level Treatments

For more than two treatments we define the multi-treatment weights as

wi(k) =


1, if Ti = t1,

0, if Ti = tk and i 6∈MA
k for all A,

mA

mA
k

mk

m1
, if Ti = tk and i ∈MA

k for one A.

Then, for each k = 2, 3, . . ., the treatment effect τ(k) can be estimated as β̂1(k) in

Yi = β0 + β1(k)Ti + · · ·+ εi

with weights wi(k) and, again, the usual standard errors are correct as is.

4 What Can Go Wrong and What to Do About It

When a data set has no controls sufficiently close to a treated unit, or in our framework

a stratum A does not include a sufficient number of treated and control units, the now

prevalent view in the literature is that changing the quantity of interest and switching

from SATT to FSATT is often the best approach (Crump et al., 2009; Iacus, King and

Porro, 2011; Rubin, 2010). This is the motivation for the common application of calipers

applied to existing methods, the only qualification being that the new estimand should be

fully characterized (Iacus, King and Porro, 2011, Section 6.3.3).

In the relatively unusual situation when switching to FSATT is not an option, because

only an inference about the original quantity of interest will do, we have four options.

Fixed, finite sample Asymptotic sample
Assume A2–A3 Case 1 Case 4
(keep strata A)

Violate A2–A3 Case 2 Case 3
(enlargen strata A)

Table 1: Four Cases for Estimating SATT With Unfilled Strata

Case 1: Fixed Strata with Adjustment via Extrapolation. As Iacus, King and Porro

(2011) detail, the ultimate quantity of interest can be computed as a weighted average
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with two parts: strata that contain both treated and controls units, and strata that contain

only treated units (which require modeling and thus risk model dependence). We then use

a parametric model, such as in Section 3.3, to extrapolate the missing potential outcomes.

This weighted average approach will normally be more robust than fitting a structural

model to the entire data set since, as in approaches like multiple imputation, the model

is used only where needed and is thereby restricted from causing any damage to portions

of the data set without problems to begin with. In this case the sample size and strata

remains fixed, and A2–A3 are assumed.

Case 2: Strata Enlargement with Regression Adjustment. For each stratum without

at least one treated and one control unit, create a new stratum from the union of sufficient

adjacent sets, which, when combined, contain sufficient treated and control units. This

union implies a modification of the original Assumptions A2–A3, and should of course

only be done if appropriate theoretically or if the likely bias induced would be less than

the precision needed in the final estimate. If this relaxed version of the assumption is sub-

stantively plausible, we can proceed without changing the theory or estimation procedure.

If the alternative assumption is not likely correct, the result will be additional model de-

pendence, even after conditioning on A. In this situation, a regression adjustment within

the strata or a global model with weights determined as in the previous section may be

used to obtain an acceptable or possibly unbiased estimate of the quantity of interest. In

this case, the sample size remains fixed, and alternative forms of Assumptions A2–A3

are used, and unbiasedness may require assuming the veracity of the model chosen after

matching.

Case 3: Strata Enlargement with Asymptotic Adjustment. We now adapt the non-

parametric adjustment approach justified by the innovative asymptotic theory of Abadie

and Imbens (2006, 2011, 2012). This theory establishes the speed at which the space of

observations must be filled in order to find control observations to serve as counterfac-

tuals Abadie and Imbens (2012, Prop. 1), so that approximate matching estimators work

asymptotically almost as well as exact matching after nonparametric adjustment. Un-
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like other asymptotic approaches, which are specific to a given method of matching, this

approach does not require any distributional assumptions on the data.

In this view, one can merge those sets A which contain only control units or only

treated units into other sets of the partition, or create a new stratum which is the union

of both the original ones. This increased coarsening may introduce bias. To understand

where bias may arise when some strata A need to be enlarged or changed, we study the

following bias decomposition. Let µt(x) = E{Y (t)|X = x} and µ(tk, x) = E{Y |X =

x, T = tk}. Under Assumption A2 we know that µtk(x)
A2
= µ(tk, x) ≡ µAk for all {X =

x} ⊆ A. Then the bias is written as:

τ̂A − τA =
∑

A∈Π(X )

{
(τ̄A − τA) + EA +BA

}
WA,

where

τ̄A =
1

mA
1

∑
i∈MA

1

(µt1(Xi)− µt2(Xi))

EA =
1

mA
1

∑
i∈MA

1

(Yi − µt1(Xi))−
1

mA
1

∑
i∈MA

1

1

mA
2

∑
j∈MA

2

(Yj − µt2(Xj))


and

BA =
1

mA
1

∑
i∈MA

1

1

mA
2

∑
j∈MA

2

(µt2(Xi)− µt2(Xj))

where µtk(X) = µAk for X ∈ A. Therefore, both (τ̄A− τA) and EA have zero expectation

inside each set A and BA = 0. But if some of the sets A′ are different from the original

partition A, or a mix or simply enlarged, then assumption A2 no longer applies and, in

general, µtk(X) 6= µAk for X ∈ A′ 6= A. Thus we proceed with the following regression

adjustment, as in Abadie and Imbens (2011), that compensates for the bias due to the

difference between A and A′. Let µ̂t2|A(x) be a (local) consistent estimator of µt2(x) for

x ∈ A. In this case, one possible estimator is the following

τ̂A =
1

mA
1

∑
i∈MA

1

(Yi − µ̂t2|A(Xi))−
1

mA
2

∑
j∈MA

2

(Yj − µ̂t2|A(Xj)). (6)

This estimator is asymptotically unbiased if the number of control units in each strata

grows at the usual rate. If instead of using a local estimator µ̂t2|A(x) we use a global es-

timator µ̂t2(x), i.e. using all control units in the sample as in Abadie and Imbens (2011),

15



then the calculation of the variance of the estimator is no longer obtained by simple

weighting and the validity of the approach requires a treatment similar to the asymptotic

theory of exact matching. More technical assumptions and regularity on the unknown

functions µt(x) are needed to prove that the regression type estimator in (6) can compen-

sate for the bias asymptotically but, essentially, it is required that, for some r ≥ 1, we

impose mr
1/m2 → κ, with 0 < κ < ∞. A simplified statement is that m1/m

4/k
2 → 0,

where k is the number of continuous covariates in the data and this condition is equiva-

lent to mk/4
1 /m2 = mr

1/m2 → κ. The proof of these results can be found in Abadie and

Imbens (2011).

Case 4: Fixed Strata with Asymptotic Sampling and No Adjustment. If relaxing

Assumptions A2–A3 is not an option but there is the possibility of increasing the sample

size of the control group using a sufficiently large reservoir of control units, we can still

produce unbiased estimates of the causal effect τ , without any post hoc adjustment.

More specificaly, under the assumption that mr
1/m2 ≤ κ, with 0 < κ < ∞, r > k,

and k the number of continuous covariates, then by Proposition 1 in Abadie and Imbens

(2012), all the strata A will be filled with probability one. This result is enough to obtain

unbiased estimates of the causal effect under the original assumptions A2–A3 and without

changing the initial partition Π(X ) and without other technical smoothness assumptions

on the functions µt(x) and µ̂t|A(x). Notice that this result requires assumptions A2–A3:

That is, under other approximate matching theories, even if the strata will be filled at the

given rate, the bias would not vanish asymptotically for k > 2 and further nonparametric

regression adjustment is required as in point 3. Instead, all we need here is Assumptions

A2–A3 and standard asymptotics, with no bias correction.

5 How Specific Matching Methods Fit the Theoretical Frame-
work

We now show that most common methods of matching, as used in practice, are justified by

the theory of inference proposed here. Of course, whether appeal to this theory justifies the
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specific inferences a researcher draws from any one data set depends on their appropriate

use of an appropriate matching method to meet Assumptions A1–A3.

Thus, in this section, we focus on the prior question of which matching methods, if

used appropriately, can in principle be justified by our theory of inference. The answer

to this question for any one method depends on whether it makes use of the knowledge

conveyed in the strata we denote A (within which we imagine observations are drawn

over repeated samples). The particular representation we choose for this information (i.e.,

the strata A) is less important than knowing that the method includes this information

encoded in it in some way.

The existence of the information itself and the fact that most researchers have this

knowledge is rarely at issue. Almost all applied researchers have a great deal of knowl-

edge about their data. They usually understand which covariates are discrete, recognize

the natural breakpoints in their continuous variables, and thus perceive intuitively the

strata in their data, and when observations within these strata are essentially equivalent

(i.e., up to Assumption A2). The issue, then, is less whether the researchers are aware of

this information, and instead whether the matching methods they choose use this infor-

mation.

In this light, the theory of inference we proposed justifies Coarsened Exact Matching

(CEM) if the chosen coarsenings correspond with the strata A (Iacus, King and Porro,

2011). Moreover, in real data sets, even though the number of strata grow fast in the

number of variables, no more than n of these are populated; and, in practice, observations

within a data set tend to cluster much more tightly than any random calculation would

indicate. CEM falls in the class of Monotonic Imbalance Bounding (MIB) methods, and

some other methods within this class are also easily justified by this theory of inference

(Iacus, King and Porro, 2011). These include when familiar matching methods — such as

propensity score matching, Mahalanobis distance-based matching, or others — or para-

metric methods — such as linear, logistic, or other regression analysis — are applied

within CEM strata.

An approach not fully justified by our theory is a one-shot application of nearest neigh-
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bor methods, such as based on propensity score or Mahalanobis distances. These methods

do define strata and, if the strata happen to respect the strata A, then we might think that

the theory can be used. However, the strata are defined only as a function of the data,

without any integral way to add prior information about natural breakpoints in variables

or other features represented in fixed strata A. In this sense, like Bayesian modeling

without the ability to include known prior information, the methods used in this one-shot

way have an impoverished representation of our knowledge of the data and so cannot be

justified by our theory.

In practice, applied researchers seem to understand intuitively that these existing one-

shot applications of some matching methods exclude considerable information, and it

turns out are able to avoid the problem. We can see their intuition in their efforts to com-

pensate by the common practice of iteratively switching between one of these methods,

most often propensity score matching, and a direct examination of the imbalance in X be-

tween the treated and control groups. The iterations ensure that the deep prior knowledge

analysts have is used, for example, by verifying that we not match a college dropout with a

first year graduate student even if they have been in school only slightly different amounts

of time. This can happen with the iterative method somewhat more automatically as they

stratify more and more finely directly or on the propensity score.

Statisticians also understand the problem and have made numerous suggestions for

how to perform this iterative process manually in order to try to include this crucial

prior information (which we choose to represent in A) in their analyses. See for exam-

ple Austin (2008), Caliendo and Kopeinig (2008), Rosenbaum, Ross and Silber (2007),

Stuart (2008), and Imai, King and Stuart (2008). Similarly, Ho et al. (2007, p.216) rec-

ommend searching across matching solutions and using the one with the best balance on

X . Rosenbaum and Rubin (1984) try to compensate for the missing prior information

in an application of propensity score matching (a technique they invented) by including

and excluding covariates in their propensity score regression until sufficient balance on X

information is included. Finally, Imbens and Rubin (2009) propose a mostly automated

algorithm to iteratively adjust until convergence between propensity score matching and
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specific types of balance checking, along with a warning to include manual checking.

Thus, although many one-shot applications of nearest neighbor matching methods are

not justified by our theory of inference, the application of these methods when combined

with the iterative procedure used in practice are much better justified. When an analyst is

able to include all the relevant prior information (which we summarize as A) during the

stage in which they check balance on X , then iterative application of matching methods

are justified by the theory of matching described in this paper.

Finally, for clarity, we note that this iterative procedure when used with propensity

score matching in particular requires an assumption (even before considering the theory

we propose here) that has not been formally stated. That is, the validity of the iterative

procedure depends on the assumption (in addition to A1–A3) that a subinterval [p1, p2] of

the (0,1) range of the propensity score scale corresponds to a unique setA. More precisely,

for all i such that the propensity score e(Xi) ∈ [p1, p2], there exists a set A ∈ Π(X ) such

thatXi ∈ A; that is, e−1([p1, p2]) = A, where e−1(·) is the inverse image of the propensity

score function. This additional assumption is required to ensure that essential information

about closeness of units the k-dimensional space ofX is not obliterated when transformed

into the scalar propensity score before matching.

6 Allowing True and Observed Treatment Status to Di-
verge

Thus far, the observed treatment variable T has been assumed (by us and the matching

literature generally) to equal the true treatment actually applied, T ∗, so that T ∗ = T . In

most applications, this assumption is implausible and so we now let these two variables

diverge. To do this, we offer definitions, assumptions for identification, and, when T is

continuous, assumptions for estimation.

6.1 Definitions

Consider the following three cases:

i) Versions of treatments: Observing treatment variable T = tj implies that the unob-
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served true treatment T ∗ = t∗ belongs to a known set Uj . For example, if treatment

group members are assigned to receive a medicine, say T ∗ = t∗1, we know they take

the medicine but, unbeknownst to the researcher, they take the medicine at different

times of day, or with different foods, or in slightly different amounts, etc., within

the constraints defined by set U1. That is, we assume that all possible variations of

the treatment belong to a set U1. In this case, if the prescribed assignment to the

treatment was T ∗ = t∗j but actually t∗ ∈ Uj was the true treatment received, then

T = tj is observed, T ∗ and its realization t∗ are unobserved, Y (T ) is a random

variable (with variation depending on T ∗), and its realization Y (t∗) is observed.

ii) Discretization: In this situation, T ∗ is an observed (continuous or discrete) treat-

ment, which the investigator chooses to discretize for matching as T . We set T = tj

if T ∗ ∈ Uj , with Uj a prescribed (nonrandom) set. In this framework, T = tj and

T ∗i = t∗ ∈ Uj are observed; Y (T ) is an observed random variable (with variation

depending on the known T ∗), and Y (t∗) is an observed point.

iii) Discretization with error: Given the unobserved true treatment level T ∗, we observe

T̄ ∗ = T ∗+ ε, where ε is unobserved error. Then, for the purpose of matching (again

based on some substantive criteria so matches can be found), the observed value

of T = tj corresponds to a discretized version of T̄ ∗, i.e T = tj if T̄ ∗ belongs to

the interval Uj . As a result, T = tj is observed, T ∗ and ε are unobserved, Y (T )

is an observed random variable (with variation depending on the observed T̄ ∗) and

Y (T ∗) is an unobserved point.

The above cases correspond to an analysis based a discretized version of T ∗ which we de-

note by T . The distinguishing feature of these cases is that the discretization is controlled

by unobserved features of the data generation process in case i), the investigator in case

ii), and both in case iii). The discretization of T ∗ (in case ii) and T̄ ∗ (in case iii) may be

temporary for the purpose of matching and can be reversed when a modeling step follows

matching.

When T and T ∗ diverge, we redefine the treatment effect as averaging over the vari-

ation (observed for ii and unobserved for i and iii) in Y (T ∗) for each observed treatment

20



level so that analyzing a discretized version of the treatment variable rules out the prob-

lem of uncertainty about the true value of the treatment. That is, instead of comparing two

treatment levels t1 and t2, we compare the average effect between two sets of unobserved

true treatment sets U1 and U2. Thus, for two chosen observed levels, T = t1 and T = t2,

the corresponding true treatment levels are T ∗ = t∗ ∈ U1 and T ∗ = t∗ ∈ U2, respectively.

Then, the redefined treatment effect is

TEi = E[Yi(t
∗) | t∗ ∈ U1]− E[Yi(t

∗) | t∗ ∈ U2] = E[Yi(Ti = t1)]− E[Yi(Ti = t2)]

with the averages SATT, FSATT, and others defined as in Section 2.1.

6.2 Assumptions

We keep the usual SUTVA assumption A1 but extend the framework of the previous

sections to where the true treatment level T ∗ may diverge from the observed treatment

level T . In what follows, we denote this mechanism as a map ϕ of the form t = ϕ(t∗)

which includes case i), ii) and iii) above.

We now introduce one additional assumption which ensures that different treatment

levels remain distinct:

Assumption A4 [Distinct Treatments]:: Partition T into disjoints sets, Uj , j = 1, . . ., and

define ϕ as a map from T ∗ to T be such that ϕ(t′) 6= ϕ(t′′) for t′ ∈ Uj and t′′ ∈ Uk, j 6= k.

Assumption A4 is enough to ensure the identifiability of the true treatment effect despite

the divergence of T and T ∗; it can usually be made more plausible in practice by choosing

treatment levels that define the causal effect farther apart. A4 also says that discretizing

the true treatment T ∗ into the observed value T does not affect the distribution of the

potential outcomes; that is, if T = 1 = ϕ(T ∗ = 2), the relevant potential outcome (which

is observed if T = 1) is based on the (true) treatment actually applied, Y (T ∗ = 2).

Assumption A4 can also be replaced with instrumental variables and other assumptions

where the divergence between observed and true treatment levels is conceptualized as

noncompliance (e.g., Angrist, Imbens and Rubin, 1996; Imai, King and Nall, 2009), or

different types of constancy assumptions (VanderWeele and Hernan, 2012).
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To complete the setup, we make Assumption A2 compliant with Assumption A4. Let

DU(z) be an indicator variable of the set U of T such that DU(z) = 1 if z ∈ U and

DU(z) = 0 otherwise. Then we replace Assumption A2 with A2’, which we refer to as

“double set-wide” because of the sets for the treatment and covariates:

Assumption A2’ [Double Set-wide Weak Unconfoundedness]: Assignment to the treat-

ment T ∗ is weakly unconfounded, given pre-treatment covariates in set A ∈ Π(X ), if

DU(t∗)⊥Y (t∗)|A, for all t∗ ∈ U and each U ⊂ T and A ∈ Π(X ).

A2’ is again an extension of the notion of weak unconfoundedness suggested by

Rosenbaum and Rubin (1983).

6.3 Identification

Under coarsening of a continuous treatment, Assumptions A1, A2’, A3 and A4 allow for

identification and estimation of the treatment effect. For each A ∈ Π(X ) and t∗ ∈ Ui, we

have

E{Y (T ∗)|A} A2′
= E{Y (T ∗)|DUi

(T ∗) = 1, A} = E{Y |DUi
(T ∗) = 1, A}

= E{Y |T ∗ ∈ Ui, A}
A4
= E{Y |T = ti, A} = E{Y (ti)|A}

Hence, the average casual effect for t∗ ∈ U1 versus t∗ ∈ U2, within set A, is

E{Y (t∗1)− Y (t∗2)|A} = E{Y (t1)|A} − E{Y (t2)|A}

Then, under Assumption A3, we average over all strata as in (2), which enables us to

compute the average treatment effect even when conditioning on an observed treatment

assignment that differs from the true treatment.

6.4 Assumptions for Estimation when T is Continuous

In case iii) where the observation is continuous, a meaningful quantity of interest is

E{Y (t∗1) − Y (t∗2)}, given the comparison of two chosen levels of the treatment t∗1 and

t∗2. After matching, E{Y (t)} is modeled and used to estimate E{Y (T ∗)}. Our goal here

is to evaluate the discrepancy E{Y (t1) − Y (t2)} − E{Y (t∗1) − Y (t∗2)}, which of course

we want to be zero. We begin with an assumption on the type of measurement error, u:
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Assumption A5 [Berkson’s type measurement error]: Let T = T ∗ + u, with E(u) = 0

and u independent of the observed treatment status T and X .

(We name Assumption A5 in honor of Berkson (1950), although we have added the con-

dition, for our more general context, of independence with respect to X ; see also Hyslop

and Imbens 2001.) We now offer three theorems that prove, under different conditions, the

validity of using T for estimation in place of T ∗. We begin with the simplest by assuming

that Y (t) is linear in t, although it may have any relationship with X .

Theorem 2. Under Assumptions A1, A2’, A3, A4, and A5, when Y (t) is linear in t, and

any function of X is independent of t, E{Y (T )} = E{Y (T ∗)}.

Theorem 2 enables us to work directly with the observed treatment T becauseE{Y (T )} =

E{Y (T ∗)}. With Assumption A5, we can write E{Y (T ∗)|A} = E{Y (T )|A} by a par-

allel argument. Therefore, Assumptions A1, A2’, A3, A4, and A5 allow for valid causal

estimation even in the presence of approximate matching and a divergence between the

observed and true treatment. The average causal effect for t∗1 versus t∗2 when t1 ∈ U1 and

t2 ∈ U2 is then

E{Y (t∗1)− Y (t∗2)|A} = E{Y (t1)− Y (t2)|A}

Linearity in t, which is part of the basis of the assumption’s reliance on the difference

in means estimator, is not so restrictive because the Theorem 2 does not constrain the

functional relationship with X . Nevertheless, we can generalize this in two ways. First,

consider a polynomial relationship:

Theorem 3. Under Assumptions A1, A2’, A3, A4 and A5, when Y (t) is a polynomial

function of t of order p, it follows that

E{Y (T )} − E{Y (T ∗)} =

p∑
k=1

ak

k−1∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}.

If, in addition, we assume a structure for the error u such that the moments of u are

known (e.g., u ∼ N(0, 1) or the truncated Gaussian law to satisfy Assumption A4), then

the moments of T can be estimated. With estimators of a0, a1, . . . , ap, we can estimate

and correct for the bias term. For example, if p = 2 and u ∼ N(0, 1) then the bias has the
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simple form a2(2E{u2}+ 2E{T}E{u}) = 2a2. So one estimates a generalized additive

model for E{Y (T )} = a0 + a1T + a2T
2 + h(X) (with h(X) any function of X) and

adjust the result by −2â2. This makes valid estimation possible under this less restrictive

polynomial process, once one assumes Assumptions A1, A2’, A3, A4, and A5.

Our final generalization works under a special type of measurement error:

Assumption A6 [Stochastically ordered measurement error]: Let T = T ∗ + u, with T ∗ a

non-negative random variable and u a non-negative random variable independent of the

observed treatment status T and X .

Then, we have our final theorem justifying how estimation can proceed:

Theorem 4. Let Y be differentiable with respect to t. Then given Assumptions A1, A2’,

A3, A4 and A6,

E{Y (T )} − E{Y (T ∗)} =

∫ ∞
0

Y ′(z)(FT ∗(z)− FT (z))dz

with and FT and FT ∗ the distribution functions of T and T ∗ respectively.

Theorem 4 allows one to estimates the bias due to the measurement error. If the

distribution functions of u (or T ) and T ∗ are known, this bias can be evaluated analytically

or via Monte Carlo simulation. In Assumption A6, the measurement error cannot be zero

mean and T ∗ is nonnegative. The measurement error u is still independent of T and,

even though T is systematically larger than T ∗, it is not deterministic. Note that if u

is a negative random variable, a similar result apply with a change of sign in the above

expression. Thus, Assumptions A1, A2’, A3, A4, A5, and A6 allow for valid causal

estimation if we can adjust for the bias, as in Theorem 3.

7 Concluding Remarks

This paper highlights the assumptions and estimators necessary for identification and un-

biased causal estimation when, as is usually the case in practice, matches are approximate

rather than exact and treatment variables are not assumed known and applied without

error. The theory of statistical inference we develop here justifies the common practice
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among applied researchers of using matching as preprocessing and then forgetting it while

applying other models and methods, as well as the common practice of iterating between

formal matching methods and informal balance checks. Only with formally stated as-

sumptions like those presented here can applied researchers begin to assess whether they

are meeting the requirements necessary for valid causal inference in real applications.

Adding this approach to the tools available may enable applied researchers in appropri-

ate situations to harvest the power of matching without changing their well known data

analytic procedures.

A Proofs

Proof of Theorem 1. This is true because, for each A, τ̂A is an unbiased estimator of τA.

In fact,

E{τ̂A} =
1

mA
1

∑
i∈MA

1

E(Yi)−
1

mA
2

∑
j∈MA

2

E{Yj} =
1

mA
1

∑
i∈MA

1

µA1 −
1

mA
2

∑
j∈MA

2

µA2 = µA1 − µA2

now
E{τ̂} =

∑
A∈Π(X )

E{τ̂A}WA =
∑

A∈Π(X )

(µA1 − µA2 )WA = τ.

Proof of Theorem 2. Recall that T ∗ = T −u. If Y (t) is a generalized additive function of

T linearly and X , then it has a form like a+ bt+ c · h(X), for any deterministic function

h(·) independent of t. Hence E{Y (T )} − E{Y (T ∗)} = a + bE{T} + c · h(X) − a −

bE{T} − c · h(X) + bE(u) = bE(u) = 0.

Proof of Theorem 3. Recall that Y (t) = a0 +
∑p

k=1 akt
k with coefficients a0, a1, . . . , ak.

Using independence of T and u and the fact that T ∗ = T − u, we write

E{Y (T ∗)} = a0 +

p∑
k=1

akE{(T − u)k} = a0 +

p∑
k=1

ak

k∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}

= a0 +

p∑
k=1

ak

(
E{T k}+

k−1∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}

)

and the result follows.
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Lemma 1. [Mean Value Theorem (De Crescenzo, 1999)] Let X and Y be nonnegative

random variables, with X stochastically smaller than Y . Let g be some measurable and

differentiable function such thatE[g(X)] andE[g(Y )] are finite; let g′ be measurable and

Riemann-integrable on [x, y] for all y ≥ x ≥ 0. Then

E{g(Y )} − E{g(X)} = E{g′(Z)} (E{Y } − E{X})

with Z a non-negative random variable with distribution function

FZ(z) =
FX(z)− FY (z)

E{Y } − E{X}
, z ≥ 0,

and FX , FY and FZ the distribution functions of X , Y and Z respectively.

Proof of Theorem 4. A direct application of Lemma 1, with Y = T = T ∗ + u, X = T ∗

and g = Y .
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