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1 Introduction

Survey research constitutes about half of the quantitative evidence base of political sci-

ence (King, Honaker, et al. 2001; Sturgis and Luff 2020) and an enormous enterprise

with data collectors, providers, and analysts spanning numerous areas of academia, gov-

ernment, and private industry. In all these fields, survey researchers have gone to great

lengths to protect respondent privacy (Plutzer, 2019; Connors, Krupnikov, and Ryan,

2019), usually by stripping out personally identifiable information, such as name, ad-

dress, and phone number. Unfortunately, a growing literature now demonstrates that

these “de-identification” procedures (and other procedures, such as restricted views, clean

rooms, query auditing, etc.) do not protect respondents from intentional re-identification

attacks (Dwork and Roth, 2014; Henriksen-Bulmer and Jeary, 2016; Wood et al., 2018).

For a vivid example, Sweeney (1997) discovered that 87% of the US population can be

individually identified with merely zip code, gender, and date of birth. A quarter cen-

tury later, modern surveys collect considerably more information and faster computers

make re-identification much easier. In fact, the US Census Bureau was able to re-identify

the personal answers of 52 million Americans from supposedly anonymous and publicly

available 2010 census data (Abowd, 2018). This situation “scares the daylights out of

those responsible for curating ‘public use’ versions of confidential data” (Christensen,

Freese, and Miguel, 2019, p.181ff).

Political scientists have a special responsibility to ensure the privacy of our research

subjects because political beliefs constitute at once (a) some of the most information re-

spondents seek to keep private, (b) a large fraction of our surveys, and (c) many of our

most important scholarly questions. In democracies, privacy legislation, which political

scientists also study and which governs our license to operate in some subfields, is based

in part on elected representatives’ views of these political beliefs. In autocracies, privacy

is essential for ensuring the safety of our respondents and their willingness to provide sin-

cere answers. Unfortunately, political science is not immune to this problem, which we

demonstrate below by performing our own re-identification attack (on data about attitudes

toward a controversial referendum seeking to define life as beginning at conception).
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The working solution to this problem, in the law and in social science scholarship,

has been balancing individual privacy with the benefits to the public good that can come

from scholarly access to survey data. In this paper, we introduce new methods to reduce

the need for balancing by simultaneously offering mathematical guarantees for the pri-

vacy of survey respondents and statistical validity guarantees for researchers analyzing

privacy protected data to learn about societal patterns. This is possible by adapting to

survey research the fast growing literature on “differential privacy” (Dwork, McSherry, et

al., 2006), which may also have the advantage of satisfying regulators (King and Persily,

2020). By adding specially calibrated random “noise” to the data before sharing, dif-

ferential privacy gives respondents deniability for what they may have said to a pollster

and even for whether they took the survey at all. Although differential privacy requires

adaptation to new data types, as we do here for surveys, the technique has seen increasing

adoptions in other contexts, including Social Science One and Facebook (Messing et al.,

2020), US Census Bureau (Abowd et al., 2020), Google (Erlingsson, Pihur, and Korolova,

2014; Wilson et al., 2019), Apple (Tang et al., 2017), and Microsoft (Ding, Kulkarni, and

Yekhanin, 2017).

Although theorists have found ways of minimizing the amount of noise necessary

to protect the privacy of every person who could be in the dataset, the resulting “noisy”

dataset has the equivalent of measurement error, which can bias many statistical inferences

in any direction and by any amount (Evans and King, forthcoming; Blackwell, Honaker,

and King, 2017; Buonaccorsi, 2010). Fortunately, a principle of differential privacy is

that the process generating the noise is always made public. We thus use this public

information to design statistical procedures to draw valid inferences from differentially

private data. We show that, with the methods proposed herein, the main cost incurred

for protecting privacy is larger standard errors or confidence intervals, a cost that can

be overcome by increasing the sample size. Of course, for some sensitive surveys, the

alternative to paying this “cost” may be no survey data at all. The new procedures also

have a surprising benefit in that they also provably reduce the risks of p-hacking and

overfitting (Dwork, Feldman, et al., 2015).
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We provide a framework to understand where privacy protective noise can be injected

into the survey research process in Section 2, and the types of noise for each in Section

3. Although our framework has not appeared before, we use existing differentially pri-

vate mechanisms from the computer science literature wherever possible (presented in

self-contained ways when feasible, because the works we cite are written for a different

audience and so would be largely unrecognizable to most social scientists). In Section

4, we then derive our own novel statistical methods to avoid the biases (and uncertainty

estimates) induced by the resulting measurement error, and ignored in prior literature. We

evaluate our methods with empirical data and simulations in Section 5, and give practical

survey design advice in Section 6. Section 7 concludes, with technical details, additional

practical advice, and extensions in the Supplementary Appendix.

2 Adding Privacy Protective Noise to Survey Data

For datasets researchers have possession of, privatization is sometimes necessary to con-

vince IRBs to allow us to analyze or share data. The methods described here are even

more valuable when researchers negotiate to obtain data from others, especially as data

providers, regulators, private companies, governments, nonprofits, and survey respon-

dents continue to increase their expectations for security and privacy.

We now show how to protect survey respondent privacy by adding differentially pri-

vate noise to the data at one of five different points in the usual data collection process.

Each of these points comes with its own requirements, assumptions, and noise distribu-

tion. Although we focus primarily on the second and third steps in subsequent sections,

we describe all five here to put these two in context and to provide advice for those wish-

ing to use other methods for one of the other steps. We save for Section 3 a description of

how the noise for each is calibrated and added.

We begin with Figure 1, which illustrates the typical survey research process. Reading

from left to right, we have the text of the survey, administered to a respondent, who then

enters his or her answers into a device (e.g., a computer, app, cell phone, or perhaps

a tablet provided by an interviewer). The information from all the devices and all the
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respondents are then continuously sent to the server. The data is then amassed and given

to researchers who write up and publish their results for the public or their clients.

Pu
bli
ca
tio
ns

Survey Respondent Device Server Researchers

① ② ③ ④ ⑤

Figure 1: Points In the Survey Process where Privacy Protective Noise Can be Added:
1⃝ Randomized response, 2⃝ Device output, 3⃝ Server ingest, 4⃝ Server output, and 5⃝
Pre-publication. A process described by each point ensures privacy via cybersecurity to
its left and differential privacy to its right.

If no privacy protective noise is added, an “attacker” can potentially violate respon-

dents’ privacy at any stage, including even from aggregated results that are published.

Figure 1 also identifies points at which noise can be added (indicated by numbers in cir-

cles at the top of the figure). For each point, ensuring respondent privacy requires trusting

one’s cybersecurity procedures for every step to its left and differential privacy guarantees

for each step to its right.

Consider, for example, Point 5⃝, which we call pre-publication. Here, researchers are

trusted and can run any statistical procedure on the private data they wish, but noise is

added, or other privacy protective changes are made, to their statistical results prior to

publication, providing a replication data file with the publication, or other public release.

This approach requires trusting researchers not only to avoid publishing private informa-

tion, but also to avoid inadvertently leaking information through data-dependent choices

of which analyses to publish (Dwork and Ullman, 2018), such as via preregistration. For

this point, we must assume that cybersecurity is good enough to prevent an attacker from

obtaining information from the respondent, the device, the server, or the researchers. In

contrast, differentially private results that appear in publications come with mathematical

guarantees of deniability for any survey respondent, regardless of how hard an attacker
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may try or what external information they may have.

If instead we add noise at Point 4⃝, server output, the researchers need not be trust-

worthy since they cannot learn anything about any one individual. With noise injected at

this point, we are still reliant on cybersecurity to prevent an attacker from breaking into

the server where data are stored, the device, or the respondent, but we can guarantee that

neither the researchers nor the public reading publications will be able to identify any

respondent.

We could alternatively use Point 3⃝, server ingest, where noise is added in the server

immediately upon receiving data from the device. Because no private data is stored

on the server, a one-time break-in to the server cannot violate anyone’s privacy. (This

strong guarantee is known in the computer science literature as “one-intrusion panpri-

vacy” Dwork, Naor, et al. 2010).

If we are concerned about the security of the server even for the simple task of ag-

gregating and adding noise upon receipt, we can move to Point 2⃝ to add noise, which

only requires ensuring that the respondent’s device is secure, since all data leaving it has

privacy protective noise and comes with the mathematical guarantees of deniability.

Finally, we add 1⃝, the well known case of randomized response, where noise is added

before the respondent chooses and reports an answer, using a physical randomization

device under the respondent’s control (such as a spinner or a pair of coins, as we describe

in Section 3.1). Only after this randomization of the survey question does the respondent

enter information into their cell phone or device. This procedure, which can use the same

randomization mechanism as 2⃝, protects the respondent so long as an attacker is unable to

break cybersecurity by spying on the (randomized) survey question or somehow reading

the respondent’s mind. Any other use of the data — including by the device, server,

researcher analyses, or publications and combination with any external information not in

the data — is guaranteed to protect respondent privacy.
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3 Differential Privacy

Points 4⃝ and 5⃝ in Figure 1 enter after the dataset is amassed and so can be approached

using a range of specific procedures fine tuned to each statistical analysis method. See

Dwork and Roth (2014) and Vadhan (2017) for overviews and Evans, King, et al. (2020)

for a more generic approach. Point 1⃝ is the well known randomized response, which we

describe in Section 3.1 for its use as designed and because we will use it as a building

block for defining differential privacy. Our focus then is on methods for Points 2⃝ (device

output) and 3⃝ (server ingest) in Sections 3.3 and 3.4 respectively, and their combination

in Section 3.5. We will show that mixing these levels will be especially useful in a wide

range of applications.

3.1 A Special Case: Randomized Response

Consider the goal of estimating the proportion µ of a population that has engaged in

some highly sensitive activity, such as protesting against an authoritarian government,

participating in oral sex, or committing a serious crime. For a simple random sample of

n observations from this population, each individual i (i = 1, . . . , n) either did, which

we denote y∗i = 1, or did not, y∗i = 0, engage in this activity, but may not be willing

to reveal this information honestly to a researcher. To be more precise, let yi denote a

binary response to a direct question about participation in the same activity. Then, ȳ ≡∑n
i=1 yi/n is likely a biased estimate (and probably underestimate) of µ ≡

∑n
i=1 y

∗
i /n.

Randomized response is a way of obtaining a plausibly unbiased estimate of this

population parameter, while giving the respondent deniability about their actual answer

(Warner, 1965; Blair, Imai, and Zhou, 2015). For simplicity, suppose the survey con-

tains only one sensitive question, although the technique can be extended to any num-

ber. Thus, the interviewer (or device) presents each respondent with a spinner that has p

(0 ≤ p < 0.5) proportion of an area where the arrow can stop labeled “I did this” (i.e.,

claiming that y∗i = 1) and the rest labeled “I did not do this” (i.e., y∗i = 0). The value p

(and the fact that the spinner follows a uniform distribution) is known publicly, but each

respondent spins privately and does not disclose where the spinner stops. The respondent
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is then asked only whether the message where the spinner stopped is correct, which we

denote y
(p)
i , with values 1 for “yes” and 0 for “no”. More formally, let zi ∼ Bernoulli(p)

be a Bernoulli random draw (observed only to the respondent when they spin the spinner)

with known proportion p, and let y(p)i = (1− zi)yi + zi(1− yi), an expression which flips

the value of yi from 0 to 1 or 1 to 0 with probability 1 − p. The special case of p = 0,

indicating that the spinner always returns the same value, is equivalent to the direct survey

question: y(0)i ≡ yi.

Randomized response can be viewed from three perspectives. First, the privacy of

the respondent is protected because they have deniability: no one can determine whether

their observed response is their revelation of their participation in the sensitive activity or

the action of the spinner changing the answer. The farther p is from 0, the more privacy

is ensured (and as p → 0.5, no information is conveyed at all). Second is the social

psychological assumption which is that, because of the privacy protections, the respondent

is more likely to give an honest answer when p > 0 (for which some evidence exists; see

Rosenfeld, Imai, and Shapiro 2016).

And finally, conditional on the social psychological assumption, we have a statistical

theory: Although the mean of the observed responses ȳ is biased, we can construct an

unbiased estimate by writing ȳ = pµ+ (1− p)(1− µ) and solving for µ:

µ̂ =
ȳ − (1− p)

2p− 1
. (1)

That is, E(µ̂) = µ, with variance

V (µ̂) =
µ(1− µ)

n
+

1
16(p− 1

2
)2
− 1

4

n
. (2)

In the special case with 1 − p = 0, we have the familiar results µ̂ = ȳ and V (µ̂) =

µ(1− µ)/n.

The advantages of this procedure include (1) a quantification of privacy protection by

the choice of p (the closer to 0.5, the more privacy); (2) a reduction in bias, indicated

empirically by how sensitively the respondent views the question and how much that

would affect their answer; and (3) a plausible (but to-be-empirically-validated) increase

in the likelihood that a potential survey respondent will participate in the survey at all. The
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disadvantage of the procedure is the introduction of noise, which we quantify in terms of

an increase the variance or, more specifically, the second term in Equation 2. We build on

all these features in the following sections.

3.2 Basic Definition

We now define differential privacy and then give randomized response from Section 3.1

as a special case. First consider two datasets D and D′ that differ by, at most, one respon-

dent (with mnemonic notation indicated by the corresponding underline). In a standard

rectangular survey dataset with one row per respondent, D′ is the same as D except that

one row may have been swapped out with the data from another respondent or removed

entirely. Then define a mechanism M(D) to be a statistical estimator (i.e., a function of

the data) that also includes random noise somewhere in the calculation. A mechanism

M(·) is said to be ϵ-differentially private if M(D) is indistinguishable from M(D′), in

the following sense (Dwork, McSherry, et al., 2006):

Pr[M(D) = m]

Pr[M(D′) = m]
≤ eϵ, (3)

for any value m (in the range of M(D)), for a discrete sample space, and where ϵ is a pol-

icy choice made by the data provider that quantifies the maximum level of privacy leakage

allowed, with smaller values potentially giving away less privacy. For small values of ϵ,

Equation 3 can be written more intuitively as Pr[M(D) = m]/Pr[M(D′) = m] ∈ 1 ± ϵ

(because eϵ ≈ 1 + ϵ).

The probabilities in this expression stem from the randomness in the mechanism (treat-

ing the data as fixed); thus, the choice of ϵ determines the amount of noise required. In

fact, the similarity between ϵ in this general case and p in randomized response from

Section 3.1 (where smaller values of p imply less randomness and thus less privacy) is

not accidental: given a choice for ϵ, a randomized response mechanism is ϵ-differentially

private if the spinner area p is computed as p = 1/(1 + eϵ).1

1Denote pjk as the probability of truth y∗ = j and observed response y(p) = k. Then “the randomized
response mechanism” satisfies Equation 3 and so is ϵ-differentially private if max(p00/p10, p11/p01) ≤ eϵ,
with m fixed. The solution to this expression is p10 = p01 = 1/(1 + eϵ).
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3.3 Local Differential Privacy

One broad distinction commonly made in the differential privacy literature is that between

the “local model” — where noise is added at Points 1⃝ or 2⃝ in Figure 1 — and the “central

model” — where noise is added at Points 3⃝, 4⃝, or 5⃝ (Vadhan, 2017, Section 7.9.2). In

this section we focus on the local model, with noise added as data leaves the respondent’s

device (Point 2⃝). We do this by first representing a survey dataset in a useful way for

this problem and then, second, generalizing the classical randomized response mechanism

by applying it to all observed survey responses in a dataset to the respondent’s nominal

answers, at 2⃝ rather than as part of the survey question in 1⃝.

First, we introduce three data representations, along with an example of each in Table

1. Panel (a) gives the most common representation of raw data with three dichotomous

survey questions y, x, and z, coded for n individuals, one in each row. With three di-

chotomous survey questions, only 23 = 8 data patterns can be found in Panel (a) and so

we more compactly represent the same data in Panel (b) with these 8 rows and a count

for each. Finally, we present the same data a third way by reforming it into a traditional

contingency table in Panel (c). Subscripts of the counts in Panels (b) and (c) provide the

crosswalk between different data forms by defining the function i(k) as returning the first

row from individual level data in Panel (a) with the same values of the variables y, x, and

z as a corresponding row in Panel (b). The choice of the first row is an arbitrary choice to

remove ambiguity, as all rows of the same type have the same values.

(a) Respondents
i y x z
1 0 0 1
2 0 1 0
3 0 1 0
4 1 0 1
5 1 1 0
...

...
...

...
n

(b) Weighted
Counts y x z
gi(1) 0 0 0
gi(2) 1 0 0
gi(3) 0 1 0
gi(4) 1 1 0
gi(5) 0 0 1
gi(6) 1 0 1
gi(7) 0 1 1
gi(8) 1 1 1

(c) Tabular
y

z x 0 1

0
0 gi(1) gi(2)
1 gi(3) gi(4)

1
0 gi(5) gi(6)
1 gi(7) gi(8)

Table 1: Three Representations of the Same Data. (The subscript i(k) of the counts in
Panels (b) and (c) is a function that returns the first index value i from (a) with the same
values of x, y, and z as the corresponding row in (b) or cell in (c).)
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We now generalize these data representations. Consider a survey where question q

(q = 1, . . . , Q) has cq possible response categories. (That is, we use the fact that in most

surveys almost all questions are have discrete responses, or can be recoded into discrete

categories without loss of much information.) Next, form the Cartesian product of all

possible answers to all the survey questions, which has cardinality K =
∏Q

q=1 cq. Then

define a K×Q matrix R with columns q referring to survey questions and rows k denoting

possible response patterns across all questions (R is represented in Panel (b) in Table 1).

All of the survey responses for a respondent (more commonly represented by the set of

Q responses) can be represented by the matching row of R. We do this via a one-hot

encoding for individual i, where rik = 1 for row k of R when all survey responses match

and rik′ = 0 for all k ̸= k′. “One-hot” means that only one element of the K-vector

ri is 1 and so
∑K

k=1 rik = 1. (We can picture a one-hot encoding in Table 1, Panel (b),

for an individual as an extra column of this table with a 1 in the row that matches all the

respondents answers and a zero for all other rows.)

Second, we now add noise by applying the randomized response mechanism to each

element in each respondent’s one-hot vector: With probability 1−p, we flip each bit from

0 to 1 or 1 to 0, and keep it the same with probability p = 1/(1+eϵ/2). That is, we draw zik

from Bernoulli(p) for all i and k, and then compute a differentially private one-hot vector,

rdp
i , with rdp

ik = (1 − zik)rik + zik(1 − rik) for each k. The device then sends this vector

(or a compact version of it) to the server without fear that the respondent’s privacy could

be violated. The server then sums up all the one-hot vectors, resulting in differentially

private or “noisy” counts: gdp
i(k) =

∑n
i=1 r

dp
ik .

Although we show how to analyze the data in Section 4, we pause here to emphasize

that, just as in Section 3.1 for classical randomized response, this noise biases even the

individual counts. However, we can compute unbiased estimates of the true counts, which

we label ĝi(k), in the same way as for classical randomized response. We merely substitute

in 1/(1 + eϵ/2) for p and gdp
i(k)/n for ȳ into Equation 1, which gives the unbiased estimate.

The same substitutions in Equation 2 give the variance.
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3.4 Central Differential Privacy

To add noise on ingest to the server ( 3⃝, Figure 1), we use the “central model” of differ-

ential privacy applied to a one-hot encoding of all the data. The server begins by creating

a K-vector of all zeros. Then we add noise to each element by adding a draw from the

Laplace distribution (which it turns out makes it easy to satisfy Equation 3). Then each

device sends its own raw one-hot encoded vector ri (see Section 3.3) to the server and it is

added one at a time to this vector. If any identifying information comes along, such as the

IP address, it is deleted. This means that the raw data from each respondent is only avail-

able on the server for long enough to be aggregated with the noise and other respondents’

answers.

More formally, this centralized noisy mechanism, applied to counts in the one-hot

vector, produces gdp
i(k) =

∑n
i=1 rij + ek, with ek ∼ Laplace(1/ϵ) which is ϵ-differentially

private for all k (because the “sensitivity”, the maximum change in the count due to any

one respondent, is 1) (Dwork and Roth, 2014, p.32ff).

Since Laplace noise is mean zero, the differentially private count of each element

of the one-hot vector is an unbiased estimate of the true count: E(gdp
i(k)) = gi(k). The

variance of gdp
i(k), conditional on the private data, is simply the variance of the chosen

Laplace distribution, V (gdp
i(k)|gi(k)) = 2/ϵ2.

3.5 Mixed Local and Central Differential Privacy

Local and central differential privacy are fundamentally connected in ways we can use

to our advantage. In particular, a differentially private mechanism evaluated at the local

level on many devices (device output, 2⃝ in Figure 1) produces stronger privacy guaran-

tees after aggregating when evaluated at the central level (server ingest, 3⃝). That is, an

ϵℓ-differentially private mechanism for device output implies an ϵc-differentially private

mechanism after server ingest, with ϵc ≪ ϵℓ.

In fact, we can make a choice for ϵc and deduce the (larger) implied value for ϵℓ

(Erlingsson, Feldman, et al., 2020), meaning that we can use the modified randomized

response mechanism for device output in Section 3.3 to achieve a chosen central guaran-
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tee. The advantage of this strategy is that for the same ϵc at server ingest — that normally

comes with no privacy protections at device output — we can also offer some additional

(albeit small) privacy guarantee there without any additional cost in terms of noise. We

do this by adding a small amount of noise to each of the n local devices. We illustrate

this result in the left panel of Figure 2, which shows that for any level of local privacy

guarantee (on the horizontal axis), we can obtain a much tighter privacy guarantee at the

central level (on the vertical axis), with the effect increasing in n (different lines).

n = 2500

n = 5000

n = 20000

n = 1000000.5

1.0

1.5

2.0

2.5

2.5 5.0 7.5 10.0
εl

ε c

Local to Central Epsilon 

Laplace

Randomised
Response

Gaussian

0.00

0.04

0.08

0.12

−20 −10 0 10 20

Figure 2: Local Epsilon for Central Guarantees (left panel) and different noise distribu-
tions, with Gaussian for comparison (right panel).

Although the exact value of ϵc can thus be ensured by either using Laplace noise

following Section 3.4, or the modification of randomized response noise following Sec-

tion 3.3, the statistical consequences are not identical since the randomized response and

Laplace mechanisms and noise distributions differ. We convey these differences in the

right panel of Figure 2. This panel includes a Laplace distribution, the implied distri-

bution of error in the bias corrected count from modified randomized response, and a

Gaussian distribution for comparison.2

2We can also construct a mechanism that gives the same central guarantee as the Laplace mechanism
but with the addition of some local protection as well (see Balle et al., 2019). Thus, on each device, for
each of the K elements of the one-hot vector, add a random variable vik ≡ Xik − Yik, where {Xik, Yik}
are independent Polya(1/n, α) variates. Since

∑n
i=1 vik ≡ Zk ∼ DLap(α), this approach is equivalent to

adding Laplace noise on the server (i.e., the sum of the local noise is distributed discrete Laplace), with a
central privacy guarantee of ϵ = log(1/α).
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4 Statistical Methods

As methods for randomized response in Point 1⃝ are familiar to social scientists (e.g.,

Blair, Imai, and Zhou, 2015), and methods for implementing differential privacy for

Points 4⃝ and 5⃝ in Figure 1 are already available outside the survey context (e.g., Evans,

King, et al., 2020), we focus here on developing methods for Points 2⃝ and 3⃝, and their

combination. Most importantly, these are also points where privacy protection can pro-

vide the most value for the vast majority of sample surveys in current use throughout

academia, government, and private industry. We return to the others in Section 6.

Our specific goal here is a method that can estimate the same quantities of interest

from the same statistical models as we would if we had observed the private data (i.e.,

without noise). Thus, consider an analysis of data in the form of Table 1, Panel (a),

which is the usual n×Q data matrix of respondents by survey questions (or recodes from

these questions), from which we construct a binary outcome variable yi and a vector of

explanatory variables xi. Assume, as is typically used survey data, that rows are indepen-

dent (conditional on covariates and any hierarchy or clustering), and yi ∼ Bernoulli(πi),

with a logistic regression expressing the relationship between the two:

Pr(yi = 1) ≡ πi =
1

1 + e−Xiβ
. (4)

Then the unknown parameter β (or, given chosen values of X , a derived quantity like a

probability, risk ratio, or risk difference) is the quantity of interest. (Equation 4 could be

easily generalized to multinomial or ordinal logit.)

Without noise, we would estimate β by simply maximizing its log-likelihood:

lnL(β) =
n∑

i=1

yi lnπi + (1− yi) ln(1− πi)

= −
n∑

i=1

ln
(
1 + e(1−2yi)Xiβ

)
(5)

= −
K∑
k=1

gi(k) ln
(
1 + e(1−2yi(k))Xi(k)β

)
(6)

=
K∑
k=1

gi(k)fk(β) (7)
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where Equation 5 uses the individual data representation portrayed in Panel (a) of Table

1 with index i; Equation 6 uses Panel (b) with weights defined as the cell values gi(k)

with index k; and Equation 7 simplifies (in a way that will enable us to generalize to

other statistical models below) by letting fk(β) = − ln
(
1 + e(1−2yi(k))Xi(k)β

)
for the logit

model.

We now provide three methods to estimate β from a differentially private dataset in the

form of Panels (b) or (c). We begin with a simple intuitive approach that turns out to have

limited usefulness, then describe a simple, fast, and approximately unbiased approach that

is inefficient in certain circumstances, and finally introduce a full information approach

that is computationally more intensive but approximately unbiased and efficient even in

these circumstances.

4.1 Nonparametric Reconstruction

Without noise, we could estimate the logistic regression coefficients of interest by recon-

structing the individual-level n×Q dataset directly from each of the counts, gi(k) and then

maximizing the log-likelihood in Equation 4 directly (cf. Liu, 2016; Quick, 2019).

To use this idea in a dataset with noise, we must first address the issue of negative and

non-integer valued noisy counts gdp
i(k). We describe an intuitive but naive approach to this

problem here by first replacing each gdp
i(k) with the best nonparametric estimate of gi(k) (for

all k), which we obtain by simply rounding each to its nearest non-negative integer value

and then reconstructing an estimate of the full n×Q matrix.

The problem with this approach is that rounding negative values up to zero induces

systematic bias for most statistics involving the whole dataset, even though rounding to

zero is the best estimate for each observation considered on its own. Because the sample

space of the true counts gi(k) is asymmetric, only noise can cause us to observe, and hence

correct for, gdp
i(k) < 0. And we have no indication for any one observation of how to adjust

for noisy counts where gdp
i(k) ≥ 0.

Although the approach is intuitive, nonparametrically optimal at the individual ob-

servation level, and can thus sometimes be advantageous in studying small numbers of

counts, it is not recommended in most situations due to the bias.
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4.2 Log-Linear

We now develop a consistent and approximately unbiased method of estimating β in a lo-

gistic regression model. We also show how the same technique can be used for estimating

many other types of statistical models. We chose the log-linear model (LLM) name for

this methodology based on its surprising connections to the classic log-linear modeling

literature for contingency tables (see Appendix A).

Although the maximum likelihood estimates can be found in a variety of ways, an

approach that will also prove convenient for differential privacy is the score equation.

That is, without noise, we merely find the value of β in a logistic regression that satisfies

∂ lnL(β)

∂β
= 0. (8)

However, under differential privacy, gi(k) is not observed and we instead disclose its noisy,

unbiased estimate gdp
i(k) = gi(k)+vi(k), where vi(k) is the mean zero noise. In this situation,

instead of maximizing Equation 7 using Equation 8, we maximize

lnLdp(β) =
K∑
k=1

gdp
i(k)fk(β) (9)

which is intuitive and, because it can be recognized as a set of “unbiased estimating equa-

tions” (Desmond, 2014), is easy to show that it is consistent. We can obtain point estimates

by using the score equation, after taking expected values over the noise,

E

[
∂ lnLdp(β)

∂β

]
=

K∑
k=1

gi(k)
∂fk(β)

∂β
+

K∑
k=1

E(vi(k))
∂fk(β)

∂β
=

∂ lnL(β)

∂β
,

setting it to zero, and solving.

This result also easily generalizes to many statistical models beyond logit: Any statis-

tical model with a likelihood function that can expressed (as in Equation 7) as the counts,

to which noise will be added to make it differentially private, multiplied by a function

fk(β), without the need for noise, can be estimated by satisfying Equation 9. Appendix B

shows how to compute standard errors.

4.3 Full Information

Without noise, LLM (Section 4.2) and the full information maximum likelihood (FIML)

approach described here are identical, when the model can be expressed as a model for
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the counts. They are also identical with or without noise under a “fully saturated” model

specification (i.e., with all possible higher order interactions). With both added noise and

some dimensions of the contingency table omitted in the logistic regression, however,

LLM is no longer full information, meaning that information is available to improve our

estimates of β in Equation 4.

We begin with the complete-data likelihood, which is the likelihood we would use if

we had observed not only the observed noisy counts gdp
i(k) but also with the unobserved

true counts, gi(k):

L(λ; g, gdp) =
K∏
k=1

p(gdp
i(k) | gi(k))p(gi(k)|λi(k)), (10)

where the second factor, p(gi(k)|λi(k)), is the distribution of the data without noise, a Pois-

son distribution from the log-linear model approach. The first factor, p(gdp
i(k)|gi(k)), is the

noise distribution given the true counts. Under our centralized model, this distribution is

Laplace(1/ϵ) and under the local model Appendix C.1 proves that it is Binomial(n, gi(k)(2p−

1)/n+1−p) where p = 1/(1+eϵ). For either process, we integrate over the complete-data

likelihood in Equation 10 to derive the likelihood (which, in this context, is sometimes

called the “observed data likelihood”):

L(λ; gdp) =
K∏
k=1

∞∑
g=0

p(gdp
i(k)|g)p(g|λi(k)) (11)

where g is a the dummy variable used in the summation to denote one of the logically

possible values that gi(k). Letting λi(k) = exi(k)β , our FIML estimator involves maximizing

Equation 11 with respect to β.

Because maximizing this expression directly is computationally expensive, Appendix

C gives a faster Expectation-Maximization (EM) algorithm and an even faster approach

based on an approximation that gives almost identical answers (in all simulated and real

examples we have studied). Of course, LLM is faster than either of these approaches, at

the cost of some efficiency when extra variables are collected but not used. See Appendix

B for variance estimation and Appendix D for intuition.
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5 Analyses

We now use the methods described in Section 4 to analyze differentially private simulated

data in Section 5.1 and a real survey which we make differentially private in Section 5.2.

5.1 Simulations

To evaluate the methods introduced in Section 4, we generate xi ∼ Bernoulli(0.8), and

yi ∼ Bernoulli(πi), with πi = [1 + exp(−0.5 − βxi)]
−1, with the quantity of interest

set to β = 1.5. We also modeled other variables to be collected by generating zi from

a discretized Beta distribution with either 23 or 53 categories (since our methods only

use the set of categories created by the Cartesian product of all responses to all variables,

this is equivalent to multiple variables with fewer categories, so long as K = {92, 212}).

(We also studied numerous other simulation designs and found similar results and so only

present this one version.)

We begin with Figure 3, which we construct by running all three methods on 200

simulated datasets, with ϵc = ϵℓ = 1, n = 5, 000, for K = 92 (in light blue) and K = 212

(in dark blue). Each point in this figure is an estimate of β (represented vertically), with

the truth indicated by a dashed horizontal line at 1.5. Each of the boxes summarize the

individual results with the mean indicated by a line at the midpoint and endpoints at the

25th and 75th percentiles.

The two plots at the left of Figure 3, showing simulations under nonparametric recon-

struction (NP), clearly indicate the large biases of this approach, as most of the dots fall

below the line, with the degree of bias increasing in K. Although both show attenuation,

we could have used other specifications resulting in bias in any direction.3 In contrast,

both log-linear modeling (LLM in the center) and full information maximum likelihood

(FIML, at the right) are approximately unbiased for both levels of K, centered as they are

around the truth of 1.5. The figure also reveals that the log-linear model approach has a

variance that increases in K — which can be seen by the length of the boxes — but the

3For example, consider a simulation with an additional covariate that was an essential confounder, mean-
ing that dropping it would flip the estimated sign on the quantity of interest. As K increases, the power of
this confounder drops and the sign will switch. The same result occurs as ϵ decreases.
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Figure 3: Comparison of Methods Under Different Numbers of Survey Question Cat-
egories: Nonparametric reconstruction (NP), Log-linear (LLM), and Full Information
(FIML). Each dot is the result of the analysis of one simulated data set with an estimate
of β on the vertical axis. Each plot includes slight horizontal jitter for graphical clarity.

variance (and unbiasedness) of FIML remains steady in K.

We summarize the conclusion from Figure 3 in Figure 4, Panel (a). This panel plots

histograms of estimates from each of the three methods in 300 simulated datasets with

n = 1, 000, ϵℓ = 3.5, and the truth (β = 1.5) marked with a vertical dashed line. As can

be seen, nonparametric reconstruction (NP in black) is biased, FIML (in orange) and LLM

(in blue) are each unbiased (centered around the truth), and LLM has higher variance than

FIML.

We now analyze LLM and FIML in more detail. Panel (b) plots root mean square

error vertically by the variance of the differentially private noise (as a function of ϵ, hori-

zontally). This panel shows that FIML has lower root mean square error for all levels of
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Figure 4: Statistical Properties of Full Information (FIML) and Log-Linear (LLM) ap-
proaches. The horizontal axes of panels (b), (c), and (d) is S2, the variance of the counts
induced by the noise controlled by ϵ.

noise (and privacy protection) than LLM, with the advantage growing as the noise grows.

Because our estimators are approximately unbiased, the cost of the noise induced to

protect privacy under our framework is limited to increased uncertainty. This uncertainty

is accurately measured by our standard errors, as can be clearly seen in Panel (c) of Figure

4, which plots the standard error vertically by the variance of the noise horizontally. In this

panel, the true standard deviation of both LLM and FIML increase as the noise increases

(the slope is positive for both in the graph, but much more slowly for FIML), and it is

closely tracked by the estimated standard error.

We also quantify the cost due to adding noise by translating the increase in standard

errors into the proportionate loss in effective sample size. That is, the increase in the stan-

dard error due to privacy protective noise is equivalent to not adding noise but discarding

L proportion of observations (see Evans, King, et al., 2020, Section 4.2). Or, to put it
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positively, we can overcome the cost of this privacy protective procedure by increasing

the number of survey respondents by this “lost” proportion of observations. This analysis

appears in Panel (d). The horizontal axis is the variance of the counts induced by the

noise; the vertical axis is the proportion of observations discarded. Graphs like this, cal-

culated from the data, should provide important guidance for those designing, planning

to share, and reporting on survey research. Of course, if the number of observations is

large enough to begin with so that even with larger standard errors one’s inferences are

sufficiently precise, we may not need to collect additional data.

5.2 Breaking and Protecting Privacy of Abortion Attitudes

In this section, we use real political science data and verify that it is possible to break

the privacy protections of the current best practices of survey researchers. We then com-

pare the results of an analysis of (normally unobserved) private data to the corresponding

analysis of privatized (i.e,. noisy) data with our statistical methods.

To accomplish these tasks, we begin with a publicly available dataset collected for

a landmark article offering the “first comprehensive validation study” of randomized re-

sponse methods (Rosenfeld, Imai, and Shapiro, 2016). This is especially useful because

the survey contains some highly sensitive questions in need of protection. (That the same

survey dataset also includes classic randomized response questions, which we cover, may

also be especially useful for pedagogical purposes related to this paper.) Rosenfeld, Imai,

and Shapiro (2016) surveyed 2,655 voters in Mississippi’s 2011 General Election about

an anti-abortion ballot initiative called the “personhood amendment,” seeking to declare

in the state constitution that life begins at conception. The survey asked individuals to

report how they voted on this controversial initiative, along with demographic traits such

as their age, gender, party ID, and education. Although numerous polls ask about support

for abortion, this survey is unusual because it is about an event in which citizens were

asked to act on their views by directly voting on the legal status of abortion.

First, we show that the commonly used and best practice de-identification procedures

in Rosenfeld, Imai, and Shapiro (2016) in fact did not protect respondents’ privacy. We

do this through what is known as a “re-identification attack,” with which we were able

20



to show that information publicly available was sufficient to unambiguously identify indi-

viduals in the survey data. To do this, we followed now standard ethical practices from the

cybersecurity literature by privately informing the authors of our discovery prior to pub-

lishing this paper. We then helped the authors with an alternative data sharing methodol-

ogy that protected their respondents’ privacy, and which they graciously implemented. We

also went further than the literature’s ethical standards by limiting ourselves to develop-

ing the procedure for our re-identification attack, and demonstrating that re-identification

was possible, so that we never needed to actual view or distribute the names of those we

showed it was possible to identify.

For obvious reasons, we do not provide replication information for this part of our

analysis, but we can give a sense of how re-identification attacks work. The idea is to

find survey respondents uniquely characterized by the full cross-classification of a set

of variables that are available in both the survey and an outside data source describing

the population from which the survey was drawn. Finding an isolated person in one

of the cells of this cross-classification indicates that it is possible to find the identity of

that person (a step we skipped). Although most such attacks marshal multiple datasets

(Henriksen-Bulmer and Jeary, 2016), we used only the data in the article’s replication file

and one publicly available data source. Thus, without other external information, unusual

detective work, or resorting to probabilistic methods, we were able to uniquely re-identify

more than a dozen individuals in this dataset — thus making it possible to learn their

names, addresses, private answers to sensitive questions about abortion preferences, and

more.

Second, we show how, if we had distributed a noise-infused dataset rather than the

original, we would have been able to fully protect the privacy of every respondent in the

dataset. This procedure would thus enable researchers to substitute mathematical privacy

guarantees for mere attestations of how hard they may have tried to protect respondent

privacy. And importantly, we also demonstrate that, despite the bias-inducing noise, our

statistical methods generate unbiased estimates of quantities of interest to political scien-

tists, along with accurate uncertainty estimates.
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To illustrate this result, we focus on support for legal abortion, as indicated by re-

porting to have voted “No” on the ballot initiative. Surprisingly, prior research in public

opinion polls — outside the context of a specific ballot initiative — reveal few gender

differences in support for abortion. Our quantity of interest is therefore the difference be-

tween men and women in the probability of voting “No” — both the raw descriptive result

and the same estimate adjusting for partisan identification as an obvious confounder.

We now treat the original data as “private” and also create a differentially private

dataset by adding noise as described in Section 3.3 (with a value of the privacy parameter

of ϵ = 0.5). Our first simple descriptive analysis appears in Panel (a) of Figure 5. The

vertical dashed blue line indicates that the “private” data shows that men vote “No” 0.31

(31 percentage points) more in favor of legal abortion than women. We then privatize

1,000 data sets (adding noise each time following the same procedure) and, in each, esti-

mate the same quantity from the noisy data with our corrections. The distribution of these

estimates reveals the distribution of noise around this result, but centered around the truth,

revealing that our estimator is unbiased. Since this distribution does not reflect sampling

uncertainty, the cost of the privacy protection is seen (only) in the extra noise illustrated

by this distribution. See Appendix E for further details.

Finally, we also give results adjusting for partisan identification with logistic regres-

sion; see Panel (b) of Figure 5. The vertical axis in this Panel is the quantity of interest,

with a point estimate as a dot and the 95% confidence interval given as a vertical bar. At

the left of this figure is the (normally unobserved) result of analyzing the private data,

using a logistic regression. Here, we see that men have a predicted probability of voting

“No” 0.175 higher than women, which is smaller than the raw 0.31 figure but still much

larger than in traditional opinion polls outside the context of a referendum, with a suffi-

ciently narrow confidence interval. We also analyze the privacy protective data and reveal

approximately the same point estimate (indicating unbiasedness) with slightly larger con-

fidence intervals — the cost of privacy protection. The confidence intervals here reflect

both sampling uncertainty and uncertainty due to the differentially private mechanism. Of

course, if smaller confidence intervals were required, we could have collected additional
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observations, but the substantive conclusion about the large gender gap in attitudes toward

abortion is clear either way.
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Figure 5: Comparison of Data Analysis: Private to Privatized

6 Practical Issues

The best practices of privacy protected survey research includes all the best practices of

classical survey research fine tuned over many decades (e.g., Rossi, Wright, and Ander-

son, 2013). To these, we now add practices related to data analysis protected by differ-

ential privacy. The idea of differential privacy, described formally in Section 3.2, is to

give any one person plausible deniability for having taken the survey at all. For any given

amount of privacy (i.e., for any ϵ), deniability is enhanced and thus the noise we need

to add relative to the signal is reduced with (1) more respondents and (2) fewer or less

informative survey questions. A survey with a larger n makes finding, distinguishing, and

thus re-identifying any one respondent more difficult; similarly, less informative survey

questions makes it easier for one person to be confused with a larger number of others.

We discuss these issues here and elaborate with other approaches in Appendix F.

It turns out that satisfying each requirement for privacy protection can be thought of

as offering new reasons to follow existing best practices: First, survey researchers have

always tried to collect as many observations as logistically and financially feasible, and

so this practice should continue. In fact, the increase in the standard errors resulting from
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noise added can be eliminated by increasing the n even further.

Second, designing surveys typically involves a conflict between our expansive creativ-

ity in thinking of questions and limited space on any survey instrument. Longer surveys

cost more and also tax each respondent’s patience and so may increase inattention, mea-

surement error, nonresponse, and attrition. The move to online surveys, and apparently

decreasing attention spans in the general public, may be accelerating these effects. In

fact, so strong is the tendency to include unneeded questions in surveys that we have long

found it helpful, in advising those designing surveys for the first time, to construct simu-

lated datasets and run simulated analyses prior to finalizing the survey instrument. Survey

questions that are not used can then be dropped. Similarly, eliciting coarsened values of

variables is a valuable way of limiting unneeded information collected; e.g., if an indi-

cator for being below the poverty level is needed analysis, then eliciting a respondent’s

income may be wasteful (Iacus, King, and Porro, 2012).

Finally, the methods discussed in this paper can also be used for experiments, which

are often survey based and conducted on platforms like Amazon’s Mechanical Turk. One

advantage of any fully randomized experiment, in this context, is that the assignment

variable is unrelated in expectation to any other pre-treatment variables. Thus, if the re-

searcher trusts the that the random assignment is conducted correctly and the sample size

is large enough to avoid chance imbalances, we can remove these pre-treatment variables

from the survey and save further on the privacy budget.

Although dropping unneeded variables saves on the privacy budget, researchers may

choose to include these variables for exploratory analyses, to check on population repre-

sentativeness, or in experiments to validate the success of random assignment procedures.

This is the same type of decision as with the choice of pre-registering a study vs. searching

for discoveries in uncharted areas.

Large numbers of or highly informative questions has an additional impact in privacy

protective survey research because the amount of noise added increases with the number

of questions (and their responses) to be revealed to the researcher (at Points 1⃝, 2⃝, or 3⃝

in Figure 1). One way around this problem is to not reveal the (noisy) survey answers to
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a researcher, and instead to add noise only after computing the quantity of interest, using

Points 4⃝ or 5⃝ — an approach well designed for large omnibus surveys with many ques-

tions, such as the American National Election Study, Cooperative Congressional Election

Survey, the General Social Survey, and the British Election Study. In contrast, Points

1⃝, 2⃝, or 3⃝ are more appropriate for more specific single-purpose surveys, as they have

fewer questions and are designed to address one or a small number of research topics. For

these surveys, ensuring that only needed questions are included will be helpful.

Finally, our paper adapts only the most commonly used statistical methods used in

surveys in the social sciences for use in privatized data analysis. Certain other methods,

such as some IRT or independent multinomial logit models, can be adapted directly from

our methods. Some approaches, like methods of missing data, can be made to work within

our approach, such as by coding missing values as extra categorical responses. More

sophisticated methods may require extending our results or developing new approaches.

7 Concluding Remarks

Survey researchers have a long history of trying to ensure privacy for their survey respon-

dents. Not only do respondents deserve these protections from ethical, legal, and moral

perspectives, but failure to protect them will reduce incentives to participate in future

research and hurt our ability to create public good from survey data.

Unfortunately, classical procedures designed to protect privacy are far less protective

than the social science community had realized, just as the threats to privacy are increas-

ing. In contrast, with the differentially private methods offered here, survey researchers

can offer respondents mathematical privacy guarantees while knowing that their analyti-

cal results will remain statistically valid, both in approximate unbiasedness and accurate

uncertainty intervals.

We hypothesize that, as differential privacy and the methods discussed in this paper

become more widely known, respondents may be more likely to participate in our surveys

and give sincere answers to sensitive survey questions. They may eventually insist on

these assurances from many data collectors, from academic researchers to commercial
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companies. We encourage further research into the conditions that may make this outcome

likely. We also hope that scholars will be able to push forward our methods and provide

tighter privacy bounds, a wider range of valid statistical methods, and other convenient

approaches for creating and analyzing differentially private datasets.
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