Motivation

- **Currency devaluation**: response to loss of competitiveness
 - New relevance: crisis in the Euro Area

- **Fiscal devaluation**: set of fiscal policies that lead to the same real outcomes but keeping exchange rate fixed
 - Old idea (Keynes, 1931): *Uniform tariff cum export subsidy*
 - More recently: *VAT plus payroll subsidy*

- **No longer a theoretical curiosity**
 - France (2013)
 - Germany (2007)
What we do

• **Formal analysis of fiscal devaluations**
 — New Keynesian open economy model
 — Dynamic and GE
 — wage and price stickiness (in local or producer currency)
 — arbitrarily rich set of alternative asset market structures
 — general stochastic sequences of devaluations.
 — conventional fiscal instruments

• **Example**: optimal devaluation, nominal or fiscal
What we do

• **Formal analysis of fiscal devaluations**
 — New Keynesian open economy model
 — Dynamic and GE
 — wage and price stickiness (in local or producer currency)
 — arbitrarily rich set of alternative asset market structures
 — general stochastic sequences of devaluations.
 — conventional fiscal instruments

• **Example**: optimal devaluation, nominal or fiscal

• **Relate literature**
 3. Quantitative studies of the VAT effects
Main Findings

1. **Robust Policies**: Small set of *conventional* fiscal instruments suffices for equivalence across various specifications at all horizons. *Unilateral interventions.*

2. **Sufficient Statistic**: Size of tax adjustments functions only of size of desired devaluation and independent of details of environment.

3. **Revenue Neutrality**
 - If restricted set of taxes then increasing in the trade deficit.
Main Findings

1. Two robust Fiscal Devaluation policies

 (FD′) Uniform increase in import tariff and export subsidy

 OR

 (FD″) Uniform increase in value-added tax (with border adjustment) and reduction in payroll tax

2. In general, (FD′) and (FD″) need to be complemented with a reduction in consumption tax and increase in income tax
 — dispensed with if devaluation is unanticipated

3. If debt denominated in home currency, equivalence requires partial default (forgiveness)
1. Static (one-period) model

2. Full dynamic model

3. Extensions
 - Monetary union
 - Capital
 - Labor mobility
 - Differential short-run tax pass-through

4. Optimal devaluation: an example
Fiscal devaluation

- **Definition:** Consider an equilibrium path of the economy with
 \[\mathcal{E}_t = \mathcal{E}_0(1 + \delta_t), \quad \text{given} \quad \{ M_t \}. \]

 *Fiscal \(\{ \delta_t \} \)-devaluation is a sequence
 \[\{ M'_t, \tau^m_t, \zeta^x_t, \tau^v_t, \zeta^p_t, \zeta^c_t, \tau^n_t, \tau^d_t \} \]

 that leads to the same real allocation, but with \(\mathcal{E}'_t \equiv \mathcal{E}_0 \).

 — Anticipated and unanticipated devaluations
Static Model

Setup

- Two countries:
 - Home: **Unilateral** fiscal and monetary policies.
 - Foreign: Passive

- Households:
 - Preferences: \(U(C, N) \) and \(C = C_H^\gamma C_F^{1-\gamma}, \gamma \geq 1/2 \)
 - Budget constraint
 \[
 \frac{PC}{1 + \varsigma^c} + M + T \leq \frac{WN}{1 + \tau^n} + \frac{\Pi}{1 + \tau^d} + B
 \]
 - Cash in advance: \(PC/(1 + \varsigma^c) \leq M \)
Static Model
Setup

- Firms: \(Y = AN \)

\[\Pi = (1 - \tau^v)P_H C_H + (1 + \varsigma^x)\mathcal{E} P_H^* C_H^* - (1 - \varsigma^p)WN \]

- Government: balanced budget

\[M + T + TR = 0, \]
\[TR = \left(\frac{\tau^n}{1 + \tau^n} WN + \frac{\tau^d}{1 + \tau^d} \Pi - \frac{\varsigma^c}{1 + \varsigma^c} PC \right) \]
\[+ (\tau^v P_H C_H - \varsigma^p WN) + \left(\frac{\tau^v + \tau^m}{1 + \tau^m} P_F C_F - \varsigma^x \mathcal{E} P_H^* C_H^* \right) \]
Equilibrium relationships I

PCP case

1 International relative prices:

\[P_H^* = P_H \frac{1 \ (1 - \tau^v)}{\mathcal{E} \ 1 + \varsigma^x} \]

\[P_F = P_F^* \mathcal{E} \frac{1 + \tau^m}{1 - \tau^v} \]

\[\Rightarrow \quad S = \frac{P_F^*}{P_H^*} = \frac{P_F^*}{P_H} \mathcal{E} \frac{1 + \varsigma^x}{1 - \tau^v} \]

2 Wage and Price setting:

\[P_H = \bar{P}_H^{\theta_p} \left[\mu_p \frac{1 - \varsigma^p}{1 - \tau^v} \frac{W}{A} \right]^{1-\theta_p} \]

\[W = \bar{W}^{\theta_w} \left[\mu_w \frac{1 + \tau^n}{1 + \varsigma^c} PC^\sigma N^\varphi \right]^{1-\theta_w} \]

3 Demand — cash in advance:

\[PC \leq M(1 + \varsigma^c) \]
Equilibrium relationships II

4. Goods market clearing: \(Y = C_H + C_H^* \)

5. Exchange rate determination:
 - Budget constraint (allowing for partial default)

\[
P^* C^* = P_F^* Y^* - \frac{1 - d}{\mathcal{E}} B^h - B^{f*}
\]

\[
\Rightarrow \quad \mathcal{E} = \frac{\frac{1 - \tau^v}{1 + \tau^m} M(1 + \varsigma^c) - \frac{1 - d}{1 - \gamma} B^h}{M^* + \frac{1}{1 - \gamma} B^{f*}}
\]
Perfect risk-sharing:

\[
\left(\frac{C}{C^*} \right)^\sigma = \frac{P^* \mathcal{E}}{P/(1 + \varsigma^c)} \equiv Q \quad \Rightarrow \quad \mathcal{E} = \frac{M}{M^*} Q^{\frac{\sigma - 1}{\sigma}}
\]
Proposition

The following policies constitute a fiscal δ-devaluation

1. under balanced trade or foreign-currency debt:

 \[
 \begin{align*}
 (FD') & \quad \tau^m = \zeta^x = \delta \\
 (FD'') & \quad \tau^v = \zeta^p = \frac{\delta}{1+\delta}
 \end{align*}
 \]

 and \hspace{1cm} \zeta^c = \tau^n = \epsilon, \quad \frac{\Delta M}{M} = \frac{\delta - \epsilon}{1 + \epsilon} \quad \forall \epsilon

2. under home-currency debt supplement with partial default:

 \[d = \frac{\delta}{1 + \delta}\]

3. under complete international risk-sharing need to set:

 \[\epsilon = \delta \quad \text{and} \quad \frac{\Delta M}{M} = -\frac{\sigma - 1}{\sigma} \frac{\Delta Q}{Q}\]
Results II

- Local currency pricing: Same fiscal instruments for equivalence
- Law of one price does not hold
- Price setting in consumer currency

- Terms of trade appreciates
 \[S = \frac{P_F}{P_H^*} \frac{1 - \tau^v}{\mathcal{E}} \]

- Foreign firm profit margins decline
 \[\Pi^* = P_F^* C_F^* + P_F C_F \frac{1 - \tau^v}{\mathcal{E}} - W^* N^* \]

- Price setting in consumer currency
 \[P_H^* = \bar{P}_H^{*\theta_p} \left[\mu_p \frac{1 - \varsigma_p}{1 + \varsigma^x} \frac{1}{\mathcal{E} A} \right]^{1-\theta_p} \]

- Real effects differ under PCP and LCP
Revenue neutrality

- Revenue neutrality is relative to the fiscal effect of a nominal devaluation

- Result: (FD') and (FD'') are fiscal revenue-neutral.

\[
TR = \frac{1}{1 + \delta} (WN - PC) + \frac{1}{1 + \delta} (PHCH - WN) + \frac{\delta}{1 + \delta} PFCF
\]

\[
= \left[\frac{\delta}{1 + \delta} - \frac{\delta}{1 + \delta} \right] (PC - WN).
\]

- If use all four taxes: VAT + payroll, consumption + income
- If use only two: VAT + payroll, TR increasing in the trade deficit.
Features

1. Taxes required for equivalence similar under PCP and LCP

2. Equivalence in real variables and nominal prices
 - Redistribution

3. Only a function of size of desired devaluation δ
 - Independent of details of micro frictions
Dynamic model

- Endogenous savings and portfolio decisions
- Dynamic (interest-elastic) money demand
- Arbitrary degrees of asset market completeness

Consumers

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t, m_t),$$

$$\frac{P_t C_t}{1 + \varsigma_t^C} + M_t + \sum_{j \in J_t} Q^j_t B^j_{t+1} \leq \sum_{j \in J_{t-1}} (Q^j_t + D^j_t) B^j_t + M_{t-1} + \frac{W_t N_t}{1 + \tau^n_t} + \frac{\Pi_t}{1 + \tau^d_t} + T_t.$$

- Nested CES aggregators: $C(C_H, C_F)$, $C_H(\{C_{hi}\})$, $C_F(\{C_{fi}\})$

- Generalizable to: Variable mark-ups, strategic complementarities in pricing, non-homothetic demand
Dynamic model

- **Producers**
 - firm i produces according to

 $$Y_t(i) = A_t Z_t(i) N_t(i)^{\alpha}, \quad 0 < \alpha \leq 1,$$

- **Dynamic Calvo price setting**

 $$\sum_{s=t}^{\infty} \theta_p^{s-t} \mathbb{E}_t \left\{ \Theta_{t,s} \frac{\prod_{s}^{i}}{1 + \tau_s} \right\},$$

- Generalizable to: Menu cost pricing with real menu cost (labor).

- **Government**: Same as static.
Dynamic model

- **Equilibrium conditions**
- Consolidated country budget constraint

\[
\begin{align*}
\sum_{j \in \Omega_t} \frac{Q^*_j}{P^*_t} B^j_{t+1} - \sum_{j \in \Omega_{t-1}} \frac{Q^*_j + D^*_j}{P^*_t} B^j_t &= \frac{P^*_{Ht}}{P^*_t} \left[C^*_t - C^*_{Ft} S_t \right],
\end{align*}
\]

where \(C^*_{Ht} = (P^*_{Ht} / P^*_t)^{-\zeta} C^*_t \) and \(C^*_{Ft} = (P^*_{Ft} / P^*_t)^{-\zeta} C^*_t \)

- **\(S_t \) Terms of Trade** :

\[
S_t = \frac{P^*_{Ft}}{P^*_{Ht}} \frac{1}{\mathcal{E}_t} \frac{1 - \tau^v_t}{1 + \tau^m_t}
\]
Dynamic model

- International risk sharing condition:

\[\mathbb{E}_t \left\{ \frac{Q_{t+1}^j + D_{t+1}^j}{Q_t^j} \frac{P_t}{P_{t+1}} \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{Q_{t+1}}{Q_t} - \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \right] \right\} = 0 \quad \forall j \in \Omega_t \]

- \(Q_t \): Real Exchange Rate

\[Q_t = \frac{P_t^* \mathcal{E}_t}{P_t/(1 + \varsigma_t)} \]
Dynamic model

• Pricing equation:

\[\bar{P}_{Ht}(i) = \frac{\rho}{\rho - 1} \frac{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} P_{Hs}^{\rho} (C_{Hs} + C_{Hs}^*) \frac{(1+\varsigma_c^s)(1-\varsigma_p)}{1+\tau_d^s} W_s}{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} P_{Hs}^{\rho} (C_{Hs} + C_{Hs}^*) \frac{(1+\varsigma_c^s)(1-\tau_v)}{1+\tau_d^s} A_s Z_s(i)} \]

• Interest elastic money demand

\[\chi C_t^\sigma \left(\frac{M_t (1 + \varsigma_t^c)}{P_t} \right)^{-\nu} = \frac{i_{t+1}}{1 + i_{t+1}} \]
Dynamic model

- **Definition:** Consider an equilibrium path of the economy with

\[\mathcal{E}_t = \mathcal{E}_0(1 + \delta_t), \quad \text{given} \quad \{M_t\}. \]

Fiscal \{\delta_t\}-devaluation is a sequence

\[\{M'_t, \tau^m_t, \varsigma^x_t, \tau^v_t, \varsigma^p_t, \varsigma^c_t, \tau^n_t, \tau^d_t\} \]

that leads to the same real allocation, but with \(\mathcal{E}'_t \equiv \mathcal{E}_0 \).

— Anticipated and unanticipated devaluations
Result 1
Complete markets

Proposition

Under complete international asset markets a fiscal \(\{\delta_t\}\)-devaluation can be achieved by one of the two policies:

\[
\begin{align*}
\tau_t^m &= \xi_t = \zeta_t^c = \tau_t^n = \tau_t^d = \delta_t & \text{for } t \geq 0, \\
\tau_t^v &= \kappa_t = \frac{\delta_t}{1 + \delta_t}, & \zeta_t^c = \tau_t^n = \delta_t \quad \text{and} \quad \tau_t^d = 0 & \text{for } t \geq 0;
\end{align*}
\]

as well as a suitable choice of \(M_t'\) for \(t \geq 0\).

— analogous to static economy: terms of trade, RER
— interest-elastic money demand: no additional tax instruments

\[
\chi C_t^\sigma \left(\frac{M_t(1 + \zeta_t^c)}{P_t} \right)^{-\nu} = \frac{i_{t+1}}{1 + i_{t+1}}
\]
Lemma

Under arbitrary international asset markets, \((\text{FD}'_F)\) and \((\text{FD}''_F)\) constitute a fiscal devaluation as long as the foreign-currency payoffs of all assets \(\{D_{ij^*}\}_{j,t}\) are unchanged.

- \((\text{FD}'_F)\) and \((\text{FD}''_F)\) replicate changes in all relative prices and price levels
- Require that \(\{D_{ij^*}, Q_{ij^*}\}\) are unchanged

\[
Q_{ij^*} = \sum_{s \geq t} \mathbb{E}_t \{ \Theta_{t,s}^*, D_{js^*}^* \},
\]

- Under no-bubble asset pricing require that the path of foreign-currency nominal asset payoffs \(\{D_{ij^*}\}\) is unchanged.
Result II
Incomplete markets

• Foreign-currency risk-free bond
 \[D_{t+1}^{f*} \equiv 1 \text{ in foreign currency and its foreign-currency price is} \]
 \[Q_{t}^{f*} = E_t \{ \Theta_{t+1}^{*} \} = \frac{1}{1 + i_{t+1}^{*}}, \]

• Equities
 \[\frac{D_{t}^{e}}{E_{t}} = \frac{\Pi_{t}}{[1 + \tau_{t}^{d}]E_{t}} \quad \text{and} \quad D_{t}^{e*} = \Pi_{t}^{*}. \]

• No additional instruments required
Result II
Incomplete markets

- Local-currency risk-free bond
 $$D^h_{t+1} = 1$$ in home currency and $$D^{h*}_{t+1} = 1/E_{t+1}$$ in foreign-currency.

- Need partial default (haircut, $$\tau^h_t$$) to make its foreign-currency payoff the same as in a nominal devaluation:
 $$D^{h*}_{t+1} = 1 - \tau^h_{t+1} E_{t+1}$$,
 and hence price
 $$Q^{h*}_t = \mathbb{E}_t \left\{ \Theta^*_t \frac{1 - \tau^h_{t+1}}{E_{t+1}} \right\} .$$

$$\tau^h_t = \frac{\delta_t - \delta_{t-1}}{1 + \delta_t}$$
Result III
Unanticipated devaluation

Proposition
A one-time unanticipated fiscal δ-devaluation in an incomplete markets economy:

\[
\begin{align*}
(FDD') & \quad \tau_t^m = \varsigma^x_t = \delta \\
(FDD'') & \quad \tau_t^v = \varsigma^p_t = \frac{\delta}{1+\delta} \\
\end{align*}
\]

and $M'_t \equiv M_t$.

— No consumption subsidy needed
— Applies to risk-free bonds and international equities economies
— Home-currency debt: one-time partial default $d = \delta/(1 + \delta)$
Extensions: Implementation in a Monetary Union

- Coordination with union central bank:
 - Union-wide money supply:
 \[
 \bar{M}_t = M_t + M^*_t
 \]
 - \(\frac{M_t}{M^*_t} \) is endogenous
 - Division of seigniorage between members:
 \[
 \Delta \bar{M}_t = \Omega_t + \Omega^*_t
 \]

- Special cases: unilateral fiscal adjustment suffices
 - seigniorage is small \((\Delta \bar{M}_t \to 0) \)
 - devaluing country is small \((\Delta \bar{M}_t / \bar{M}_t \to 0) \)
Numerical Illustration

- Spain
- Adjustment costs to capital
- Wage rigidity
- Debt elastic interest rate

\[i_{t+1}^* = i^* + \psi (e^{(B^*-B_{t+1})} - 1) + \varepsilon_{r,t} \]
Numerical Illustration

Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor, β</td>
<td>0.98</td>
</tr>
<tr>
<td>Risk aversion, σ</td>
<td>5.00</td>
</tr>
<tr>
<td>Labor share, α</td>
<td>0.75</td>
</tr>
<tr>
<td>Depreciation rate, δ</td>
<td>0.05</td>
</tr>
<tr>
<td>Frisch elasticity of labor supply, $1/\varphi$</td>
<td>0.50</td>
</tr>
<tr>
<td>Disutility of labor, κ</td>
<td>1.00</td>
</tr>
<tr>
<td>Capital adjustment cost parameter, ϕ_I</td>
<td>2.00</td>
</tr>
<tr>
<td>Semi-elasticity of M/P to i, $1/\nu$</td>
<td>0.2</td>
</tr>
<tr>
<td>Relative weight for utility from money, χ</td>
<td>$5e^{-4}$</td>
</tr>
<tr>
<td>Home bias, γ_H</td>
<td>0.60</td>
</tr>
<tr>
<td>Elasticity of subst. across H and F, ζ</td>
<td>1.20</td>
</tr>
<tr>
<td>Elasticity of subst. across home varieties, ρ</td>
<td>4.00</td>
</tr>
<tr>
<td>Payroll subsidy, ς_p</td>
<td>-0.18</td>
</tr>
<tr>
<td>Value added tax, τ_v</td>
<td>0.16</td>
</tr>
<tr>
<td>Capital subsidies, ς_k</td>
<td>-0.18.3</td>
</tr>
<tr>
<td>Labor income tax, τ_n</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Numerical Illustration

Shock

- At time zero, the economy is in its non-stochastic steady state.
- At time one, agents are hit by an unexpected shock to their cost of borrowing.
- $\rho_r = 0.95$, $\varepsilon_r = 0.013$. Match the 4% decline in GDP in Spain between 2008-2009.
F: Flexible prices, S: Sticky Prices, FD: Fiscal Devaluation(10%)

Figure: Impulse response to an interest rate shock

VAT increase of 7.6, payroll tax cut of 10.7, capital tax cut of 10.8 percentage points.
Numerical Illustration

Impulse Responses

Figure 1: Impulse response to an interest rate shock and quantitatively from the flexible price case.

It is useful to compare the sticky wage outcome to papers that have used interest rate shocks but with flexible prices. For instance, Neumeyer and Perri (2005) highlight the importance of attenuating wealth effects on labor supply to generate a negative comovement between interest rates and output. Further, they require working capital to generate the required correlation. As is evident here, with pricing power and wage rigidity, even without working capital and with preferences that allow for wealth effects on labor supply interest rate shocks can generate negative co-movement. An important difference is that wage rigidity generates inefficient relative price movements in the hiring of labor versus capital.

F: Flexible prices, S: Sticky Prices, FD: Fiscal Devaluation(10%)

Figure: Impulse response to an interest rate shock
Welfare

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Loss relative to no shock</th>
<th>Of this gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permanent</td>
<td>10 quarters</td>
</tr>
<tr>
<td>No intervention</td>
<td>−0.64%</td>
<td>−3.65%</td>
</tr>
<tr>
<td>10% one-time devaluation</td>
<td>−0.45%</td>
<td>−2.55%</td>
</tr>
<tr>
<td>— 10% Fiscal devaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Fiscal devaluation w/out capital subsidy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Anticipated fiscal devaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— No seigniorage transfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementation

1. Non-uniform VAT (e.g., non-tradables)
 - match payroll subsidy

2. Multiple variable inputs (e.g., capital)
 - uniform subsidy
 - Model w/capital

3. Tax pass-through assumptions: equivalence of
 - VAT and exchange rate pass-through into foreign prices
 - VAT and payroll tax pass-through into domestic prices
 - Generalization

4. Quantitative investigation
Summary

• **Robust Policies**: Small set of conventional fiscal instruments suffices for equivalence.
 — uniform import tariff and export subsidy
 — uniform increase in VAT and reduction in payroll tax

• Unanticipated devaluation: no additional instruments

• More generally does not suffice: Anticipated devaluations
 • Replicate savings/portfolio decisions
 • Exact equivalence in reset prices.

• **Sufficient Statistic**: $\tilde{\tau}_t^y = \frac{\tilde{\tau}_0^y + \delta_t}{1 + \delta_t}$

• **Revenue Neutrality**

• Sidesteps the trilemma in international macro
Popular arguments for abandoning Euro and devaluation:

— Feldstein (FT 02/2010):

If Greece still had its own currency, it could, in parallel, devalue the drachma to reduce imports and raise exports... The rest of the eurozone could allow Greece to take a temporary leave of absence with the right and the obligation to return at a more competitive exchange rate.

— Krugman (NYT): *Why devalue? The Euro Trap, Pain in Spain*

Now, if Greece had its own currency, it could try to offset this contraction with an expansionary monetary policy – including a devaluation to gain export competitiveness. As long as its in the euro, however, Greece can do nothing to limit the macroeconomic costs of fiscal contraction.

— Roubini (FT 06/2011): *The Eurozone Heads for Break Up*

... there is really only one other way to restore competitiveness and growth on the periphery: leave the euro, go back to national currencies and achieve a massive nominal and real depreciation.

• Keynes (1931) in the context of Gold standard

Precisely the same effects as those produced by a devaluation of sterling by a given percentage could be brought about by a tariff of the same percentage on all imports together with an equal subsidy on all exports, except that this measure would leave sterling international obligations unchanged in terms of gold.
Related Literature
Comparison to ACT (Adao, Correia and Teles, JET, 2009)

<table>
<thead>
<tr>
<th></th>
<th>ACT (2009)</th>
<th>FGI (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation</td>
<td>Flexible-price (first best)</td>
<td>Nominal devaluation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— one-time unexpected</td>
</tr>
<tr>
<td>Implementation</td>
<td>General non-constructive</td>
<td>Specific implementation:</td>
</tr>
<tr>
<td></td>
<td>fiscal implementation principle</td>
<td>— simplicity, robustness, feasibility</td>
</tr>
<tr>
<td>Environment</td>
<td>Sticky prices (PCP or LCP)</td>
<td>Sticky prices (PCP and LCP) and sticky wages</td>
</tr>
<tr>
<td></td>
<td>Risk-free nominal bonds</td>
<td>Arbitrary degree of completeness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arbitrary incomplete markets</td>
</tr>
<tr>
<td>Instruments</td>
<td>Separate consumption taxes by origin of the good and income taxes in both</td>
<td>VAT, payroll, consumption and income tax in one country</td>
</tr>
<tr>
<td></td>
<td>countries; additional instruments in other cases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAT and payroll tax only in one country</td>
</tr>
<tr>
<td>Implementability</td>
<td>No</td>
<td>Yes, simple characterization and expressions</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No, unilateral policy</td>
</tr>
<tr>
<td></td>
<td>In general, yes</td>
<td>No, robust to any changes in environment</td>
</tr>
<tr>
<td></td>
<td>In general, complex dynamic path</td>
<td>Path of taxes follows the path of devaluation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one-time tax change</td>
</tr>
</tbody>
</table>
Local currency pricing

- Law of one price does not hold

- Price setting in consumer currency

\[
P_H^* = \bar{P}_H^{*\theta_p} \left[\mu_p \frac{1 - \varsigma^p}{1 + \varsigma^x} \frac{1}{\mathcal{E} \ A} \right]^{1-\theta_p},
\]

\[
P_F = \bar{P}_F^{\theta_p} \left[\mu_p \frac{1 + \tau^m}{1 - \tau^v} \frac{W^*}{\mathcal{E} \ A^*} \right]^{1-\theta_p}
\]

- Terms of trade appreciates

\[
S = \frac{P_F}{P_H^*} \frac{1}{\mathcal{E} \ 1 + \tau^m} \frac{1 - \tau^v}{1 - \tau^v}
\]

- Foreign firm profit margins decline

\[
\Pi^* = P_F^* C_F^* + P_F C_F \frac{1}{\mathcal{E} \ 1 + \tau^m} \frac{1 - \tau^v}{1 - \tau^v} - W^* N^*
\]
Price setting

\[
\bar{P}_{Ht} = \frac{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} P_{Hs}^\rho Y_s \frac{\rho}{\rho-1} \frac{(1+\varsigma_s^c)(1-\varsigma_p)}{1+\tau_s^d} W_s / A_s}{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} \frac{(1+\varsigma_s^c)(1-\tau_s^\gamma)}{1+\tau_s^d}},
\]

- Under (FDD′′), \((1 + \varsigma_s^c)(1 - \tau_s^\gamma) = (1 + \varsigma_s^c)(1 - \varsigma_p^c) = 1\), therefore the reset price \(\bar{P}_{Ht}\) stays the same, and hence so does \(P_{Ht}\)

- (FDD′) additionally requires compensating with \(\tau_s^d = \delta_t\), unless devaluation is unanticipated
Home-currency Bond

- Partial defaults on home-currency bonds: contingent sequence \(\{d_t\} \)

- The international risk sharing condition becomes

\[
Q_t = \beta E_t \left\{ \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{P_t^* E_t}{P_{t+1}^* E_{t+1}} \left(1 - d_{t+1} \right) \right\}
\]

\[
= \beta E_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}} \frac{1 + \varsigma_{t+1}^c}{1 + \varsigma_t^c} \left(1 - d_{t+1} \right) \right\},
\]

- Country budget constraint can now be written as

\[
Q_t \frac{1}{\mathcal{E}_t} B_{t+1}^h - (1 - d_t) \frac{\mathcal{E}_{t-1}}{\mathcal{E}_t} \frac{1}{\mathcal{E}_{t-1}} B_t^h = (1 - \gamma) \left[P_t^* C_t^* - P_t C_t \frac{1}{\mathcal{E}_t} \frac{1 - \tau_t^w}{1 + \tau_t^m} \right]
\]
International trade in equities

• Budget constraint

\[
\frac{P_t C_t}{1 + \varsigma_t^e} + M_t + (\omega_{t+1} - \omega_t) \mathbb{E}_t \{\Theta_{t+1} V_{t+1}\} - (\omega_{t+1}^* - \omega_t^*) \mathbb{E}_t \{\Theta_{t+1} \mathbb{E}_{t+1} V_{t+1}^*\} \\
\leq \frac{W_t N_t}{1 + \tau_t^n} + \omega_t \frac{\Pi_t}{1 + \tau_t^d} + (1 - \omega_t^*) \mathbb{E}_t \mathbb{E}_{t+1} \Pi_t^* + M_{t-1} - T_t,
\]

• Value of the firm:

\[
V_t = \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s}^* \frac{\Pi_s}{1 + \tau_s^d}, \quad \Theta_{t,s} = \prod_{\ell=t+1}^{s} \Theta_{\ell}, \quad \Theta = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \frac{1 + \varsigma_{t+1}^e}{1 + \varsigma_t^e},
\]

\[
V_t^* = \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s}^* \Pi_s^*
\]

• Risk-sharing conditions

\[
\mathbb{E}_t \sum_{s=t}^{\infty} \left(\Theta_{t,s} - \Theta_{t,s}^* \frac{\mathbb{E}_t}{\mathbb{E}_s}\right) \frac{\Pi_s}{1 + \tau_s^d} = 0 \quad \text{and} \quad \mathbb{E}_t \sum_{s=t}^{\infty} \left(\Theta_{t,s} \frac{\mathbb{E}_s}{\mathbb{E}_t} - \Theta_{t,s}^*\right) \Pi_s^* = 0.
\]
Model with capital

- Choice of capital input by firms:
 \[
 \frac{L_t}{K_t} = \frac{\alpha}{1 - \alpha} \frac{(1 - \varsigma_r t)}{(1 - \varsigma_p t)} \frac{R_t}{W_t}
 \]

- Choice of capital investment by households:
 \[
 U_{c,t} \left(1 + \varsigma_r t\right) = \beta E_t U_{c,t+1} \left[\frac{R_{t+1}}{P_{t+1}} \left(1 + \varsigma_c t+1\right) \frac{1 + \tau_k t}{1 + \tau_k t+1} + (1 - \delta) \frac{1 + \varsigma_c t+1}{1 + \varsigma_i t+1} \right]
 \]

- Results:
 1. When consumption subsidy \(\varsigma_t^c\) is not used, only capital expenditure subsidy to firms \(\varsigma_t^r\) is required (parallel to payroll subsidy). All variable inputs should be subsidized uniformly.
 2. Otherwise, investment subsidy and capital income tax need to be used in addition:
 \[
 \varsigma_t^i = \tau_t^k = \varsigma_t^c = \delta_t
 \]
Pass-through of VAT and payroll tax

- Static model with differential pass-through $\xi_p > \xi_\tau$:

$$P_H = \left[\bar{P}_H \cdot \frac{(1 - \varsigma^p)^{\xi_p}}{(1 - \tau^\nu)^{\xi_\tau}} \right]^{\theta_p} \left[\mu_p \frac{1 - \varsigma^p}{1 - \tau^\nu} \frac{W}{A} \right]^{1-\theta_p}$$

Proposition

Fiscal devaluation is as characterized in Results I-III, but with payroll subsidy given by

$$\varsigma^p = 1 - \left(\frac{1}{1 + \delta} \right)^{\frac{\xi_v \theta_p + 1 - \theta_p}{\xi_p \theta_p + 1 - \theta_p}}.$$

- still $\tau^\nu = \delta/(1 + \delta)$, to mimic international relative prices
- $\xi_v > \xi_p$ implies $\varsigma^p > \tau^\nu = \delta/(1 + \delta)$
- as θ_p decreases towards 0, ς^p decreases towards $\delta/(1 + \delta)$
• Symmetry of VAT and ER pass-through into import prices
 • Campa, Goldberg, Gonzalez-Minguez (2005): SRPT 66%, LRPT 81% (4 months)
 • Andrade, Carre, and Benassy-Quere (2010): French exports to the euro zone (1996-2005), median pass-through of VAT shocks 70-82% at a one year horizon.
 • Conclude that similar pass-through behavior for ER and VAT shocks over a year.

• Symmetry of VAT and payroll into domestic prices
 • Carbonnier (2007) studies two French reforms that involved steep decreases in the VAT in 1987 and then in 1999:
 • Finds that the pass-through into domestic prices was 57 percent in the new car sales market and 77 percent in the household repair services market.
 • Carare and Danninger (2008): German VAT, payroll. Finds evidence of staggered price adjustment to ER shocks.
Quantitative investigation
Source: Gopinath and Wang (2011)

<table>
<thead>
<tr>
<th>Taxes</th>
<th>Germany</th>
<th>Spain</th>
<th>Portugal</th>
<th>Italy</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>— VAT</td>
<td>13%</td>
<td>7%</td>
<td>11%</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>— payroll contributions</td>
<td>14%</td>
<td>18%</td>
<td>9%</td>
<td>24%</td>
<td>12%</td>
</tr>
<tr>
<td>— including employee’s SSC</td>
<td>27%</td>
<td>22%</td>
<td>16%</td>
<td>29%</td>
<td>22%</td>
</tr>
</tbody>
</table>

% change, 1995-2010

- wages | 25% | 61% | 64% | 39% | 127% |
- productivity | 17% | 19% | 28% | 3% | 42% |

Required devaluation*

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>Spain</th>
<th>Portugal</th>
<th>Italy</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>34%</td>
<td>28%</td>
<td>28%</td>
<td>77%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximal fiscal devaluation**

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>Spain</th>
<th>Portugal</th>
<th>Italy</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>23%</td>
<td>11%</td>
<td>32%</td>
<td>14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with German fiscal revaluation</td>
<td>38%</td>
<td>26%</td>
<td>47%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>additionally reducing employee’s SSC</td>
<td>43%</td>
<td>34%</td>
<td>56%</td>
<td>43%</td>
<td></td>
</tr>
</tbody>
</table>

- Required devaluation brings unit labor cost (W_t / A_t) relative to Germany to its 1995 ratio
- Maximal fiscal devaluation is constrained by zero lower bound on payroll contributions and 45% maximal VAT rate (which is never binding). A reduction of x in payroll tax and similar increase in VAT is equivalent to a $x / (1 - x)$ devaluation
- Maximal German revaluation is an additional decrease in German VAT of 13% and a similar increase in German payroll tax, equivalent to an additional 15% devaluation against Germany
Optimal Devaluation

Setup

- Small open economy
- Flexible prices, sticky wages
- Permanent unexpected negative productivity shock
- Nominal devaluation is optimal
- Fiscal devaluation requires no consumption subsidy (VAT+payroll, or tariff+subsidy)

- Parameters:

 \[\beta = 0.99, \quad \theta_w = 0.75, \quad \gamma = \frac{2}{3}, \quad \sigma = 4, \quad \varphi = \kappa = 1, \quad \eta = 3 \]