Primal/Dual Mesh with Application to Triangular/Simplex Mesh and Delaunay/Voronoi

November 16, 2012

Humayun Irshad¹, Stéphane Rigaud¹ and Alexandre Gouaillard²

¹Image & Pervasive Access Lab, National Centre for Scientific Research (CNRS), Fusionopolis, Singapore
²Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore

Abstract

This document describes an extension of ITK to handle both primal and dual meshes simultaneously. This paper describe in particular the data structure, an extension of itk::QuadEdgeMesh, a filter to compute and add to the the structure the dual of an existing mesh, and an adaptor which let a downward pipeline process the dual mesh as if it was a native itk::QuadEdgeMesh. The new data structure, itk::QuadEdgeMeshWithDual, is an extension of the already existing itk::QuadEdgeMesh [2], which already included by default the due topology, to handle dual geometry as well. Two types of primal meshes have been specifically illustrated: triangular / simplex meshes and Voronoi / Delaunay. A functor mechanism has been implemented to allow for different kind of computation of the dual geometry. This paper is accompanied with the source code and examples.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3392]
Distributed under Creative Commons Attribution License

Contents

1 Surfaces 2
 1.1 Orientable 2-Manifold Mesh: A discrete real-world object 2
 1.2 Special Case A: Triangular Meshes 3
 1.3 Special Case B: Simplex Meshes 3

2 Duality 4
 2.1 Notion of Duality 4
 2.2 Triangulation - Simplex Duality 5
 2.3 Delaunay - Voronoi Duality 6
3 Implement Duality in ITK 6

3.1 Existing Data Structure for Meshes in ITK 6
3.2 Extension in data structure, QuadEdgeMeshWithDual data structure 7
3.3 Primal to primal/dual filter .. 8
 Dual point functor ... 9
 Dual borders calculation ... 10

4 Validation 10

4.1 Test on planer triangular to simplex mesh with and without holes 10
4.2 Test with Delaunay to Voronoi ... 12
4.3 Test on non planar mesh .. 12

5 Usage 13

1 Surfaces

1.1 Orientable 2-Manifold Mesh: A discrete real-world object

The surfaces of real world objects are oriented 2-manifolds. Those are usually represented in computer using meshes which are the sampled, discrete version of the underlying, supposedly continuous surface. The definition of surface mesh is of combinatorial nature [3], that improves reasoning about data structure like the same facet cannot appear on both sides of an edge. The surface mesh is a union of $C = V \cup E \cup F$ of three disjoint sets together with an incidence relation where V the vertices, E the edges and F the facets of the mesh. The incident relation on C must be symmetric. No two elements from the same set V, E, F are incident. There are four additional conditions: (1) every edge is incident to two vertices, (2) every edge is incident to two facets, (3) for every incident pair of vertices or facets, there are exactly two edges incident to both and (4) every vertex and every facets is incident to at least one other element. The neighbourhood of a vertex are edges and facets which are incident to that vertex. Thus, the neighbourhood decomposes into disjoint cycles, where each cycle is an alternating sequence of edges and facets.

A surface mesh is 2-manifold if (1) each edge is incident to only one or two facets and (2) the facets incident to a vertex form a close or an open fan i.e. for each point on a 2-manifold there exists a neighbourhood that is homeomorphic to the open disc. If every vertex has a closed fan, the given 2-manifold has no boundary. If a vertex has a open fan, then edges that are incident to one facet; they are called border edges and they form the boundary of the 2-manifold mesh. A non-manifold example would be two tetrahedra glued together at a single vertex or common edge as shown in figure 1. A mesh is a 2-manifold if and only if the neighbourhood of each vertex decomposes into a single cycle. The next distinction is between orientable and non-orientable mesh. A surface mesh is oriented if each cycle around a facet is oriented and if, for each edge, the two cycles of its two incident facets are oriented in opposite direction. A 2-manifold mesh is orientable if there exists such an orientation. This new data structure only consider orientable 2-manifolds mesh representation with and without boundary.

Genus is a topologically invariant property of a surface defined as the largest number of non-intersecting closed curves that can be drawn on the surface without separating it. Also, it is a complete invariant in the sense that, if two orientable closed surfaces have the same genus, then they must be topologically equivalent.
The genus of a surface is related to the Euler characteristic χ. For an orientable surface such as a sphere (genus 0) or torus (genus 1), the relationship is

$$\chi = 2 - 2g - b$$

With g being the genus, and b being the number of borders (for non-closed surfaces).

Given an arbitrary polygonal mesh τ of a regular region $R \subset S$ of a surface S, we shall denote by F the number of polygonal faces, by E the number of sides(edges), and by V the number of vertices of the triangulation. Another way to compute the Euler characteristic is then

$$F - E + V = \chi$$

Special cases of discrete 2-manifolds of interest to us are triangular meshes and simplex meshes illustrated in figure 2.

1.2 Special Case A: Triangular Meshes

A common representation of discrete surfaces are triangulation τ for which the surface $\mathbb{R} \subset S$ is composed of a set of adjacent triangles $T_i, i = 1, \ldots, n$, such that

- $\bigcup_{i=1}^{n} T_i = \mathbb{R}$.
- If $T_i \cap T_j \neq \emptyset$, then $T_i \cap T_j$ is either a common edge of T_i and T_j or a common vertex of T_i and T_j.

Each triangles of a triangulation shares at least one of its edge with a neighbouring triangle. Triangles being the simplest polygon that can represent a surface, it has been used intensively in Computer graphics and is still ubiquitous today in surface representations and corresponding data formats.

1.3 Special Case B: Simplex Meshes

Simplex meshes are used for discrete surface representation. Simplex meshes have two main properties, (1) each vertex is adjacent to a fixed number of neighbouring vertices: 2 for a contour (1-simplex mesh), 3 for a surface (2-simplex mesh) and 4 for tetrahedron (3-simplex mesh, not treated here); and (2) the topology of a 2-simplex mesh is dual of a triangulation. A k-simplex can be referred a $(k+1)$-connected mesh. For instance, a segment of non-zero length is a 1-simplex, a triangle (polygon) of non-zero area is a 2-simplex.
and a tetrahedron of non-zero volume is a 3-simplex mesh. Formally, a k-Simplex Mesh (kSM) of \mathbb{R}^3 is defined as a pair $(V(M), N(M))$ [1] where:

\[
V(M) = \{P_i\}, \{i = 1,...,n\}, P_i \in \mathbb{R}^3
\]

\[
N(M) : \{1,...,n\} \rightarrow \{1,...,n\}^{k+1}
\]

\[
i \mapsto (N_1(i), N_2(i), ..., N_{k+1}(i))
\]

\[
\forall i \in \{1,...,n\}, \forall j \in \{1,...,k+1\}, \forall l \in \{1,...,k+1\}, l \neq j
\]

\[
N_j(i) \neq i
\]

\[
N_i(i) \neq N_j(i)
\]

$V(M)$ is the set of vertices of M and $N(M)$ is the associated connectivity function. Equations (5) and (6) present a mesh from exhibiting loops. It is important to make a distinction between the topological nature of a mesh represented by its connectivity function $N(M)$ and its geometric nature corresponding to the position of its vertices $V(M)$.

The structure of a simplex mesh is the one of a simply connected graph and does not in itself constitute a new surface representation. The simplex mesh representation has several desirable properties that makes them well suited for the recovery of geometric models from range data. The characteristics of simplex mesh for discrete surfaces includes generality (represents all types of orientable surfaces regardless of their genus and end numbers), simplicity (minimum number of vertices to represents a surface or shape) and adaptability.

2 Duality

2.1 Notion of Duality

We define A and B to be dual surface meshes i.e., B is dual of A and vice versa, if the following conditions are satisfied.

- The number of vertices of A is the same as the number of face of B, so that they can be put into one-to-one correspondence.
- The number of vertices of B is the same as the number of face of A, so that they can also be put into one-to-one correspondence.
2.2 Triangulation - Simplex Duality

One of the most interesting way of considering simplex meshes is through duality of triangulations. The structure of a k-simplex mesh is indeed closely related to the structure of a k-triangulation. A k-triangulation of \mathbb{R}^d is composed of p-simplices ($1 \leq p \leq k$) which are the p-faces of the triangulation. We define a p-face of a k-simplex mesh as being the dual of a $(k - p)$ simplices of a k-triangulation. For instance, a 1-face of a 2-simplex mesh is an edge and a 2-face of a 2-simplex mesh is polygon. In general, a p-face of a k-simplex mesh is a $(p - 1)$-simplex mesh and is, therefore, made of q-faces ($q < p$). A Simplex mesh is said to be regular if all p-faces have the same number of vertices.

Simplex meshes are dual of triangulations. Thus, their connectivity functions $N(M)$ are mapped by an homeomorphism. Simplex meshes are topologically equivalent to triangulations but not geometrically equivalent. We can define a topological transformation that associates a k-simplex mesh to a k-triangulation. This transformation is pictured in figure 4 and considers differently the vertices and edges located at the boundary of the triangulation from those located inside.
2.3 Delaunay - Voronoi Duality

Taking a set of points P in \mathbb{R}^3, the Delaunay triangulation of P is a specific triangulation of P that respects the Delaunay criterion stating that no point of P should be inside of the circumference circle of any triangle of the triangulation of P. Taking a set of points P in \mathbb{R}^3, the Voronoi diagram (or tessellation) is the partition of \mathbb{R}^3 into n polyhedral regions such as each region T has a set of points in \mathbb{R}^3 which are closer to T than to any other region.

The Voronoi diagram is the dual of the Delaunay triangulation, and the Delaunay triangulation is the dual structure of the Voronoi diagram. By dual, we mean to draw a line segment between two Voronoi vertices if their Voronoi polygons have a common edge, or in more mathematical terminology: there is a natural bijection between the two which reverses the face inclusions. The duality between Delaunay triangulations and Voronoi diagram is geometric because it depends on the position of its vertices.

3 Implement Duality in ITK

3.1 Existing Data Structure for Meshes in ITK

The $QuadEdgeMesh$ data structure in itk, as depicted in figure 5, can handle discrete 2-manifold surfaces. It actually store the geometry and both primal and dual topology. It has a constant complexity local accesses an modifications. The $QuadEdgeMesh$ data structure is a 3 layers structure in which the bottom layer is called QuadEdge (QE) layer that represents the topology, the intermediate layer is called QE Geometric (QEGeom) layer that linking topology and geometry and finally the upper layer is native to ITK called ITK layer. The QE data structure is presented in detail in [2]. For each edge, there are 4 QEs in the structure as illustrated in figure 5(b). It contains two primal QEs and two dual QEs. For the sake of simplicity, we only draw connection for one point and one face from QE to QEGeom and QEGeom to ITK layer as shown in figure 5(b), conversely both points and faces are equally linked in the data structure. This data structure only need three operators as Rot, Onext and Splice to implement all other modifications (Euler operator) and accessibility of the mesh. Currently, $QuadEdgeMesh$ data structure have topological duality but lack geometrical duality as represent in table 1. There are only few filters available in ITK that transform triangular mesh to simplex mesh but it is specific not generic to duality. Additionally, in many cases it is of much interest to have the both representation of a discrete surface directly integrated in the structure. Our contribution includes an extension of data structure that contain both primal and dual mesh simultaneously,
3.2 Extension in data structure, QuadEdgeMeshWithDual data structure

We create a new class itk::QuadEdgeMeshWithDual derived from itk::QuadEdgeMesh. This class now stores both primal and dual mesh simultaneously. The new design of QuadEdgeMeshWithDual data structure is contained double reference i.e., one for primal point to dual cell and one for primal cell to dual point as depicted in figure 6(a). For the sake of simplicity, we only draw connection from QE layer to QEGeom layer and QEGeom layer to ITK layer for one point and one face instead of both points and both faces as shown in figure 6(a). The primal and dual overlapping structures of connections at QEGeom layer is shown in figure 6(b). Furthermore, this class contains three new containers; DualPointsContainer for dual points, DualCellsContainer for dual cells and DualEdgeCellsContainer for boundary edges and three new functions; AddDualPoint for adding dual point, AddDualFace for dual cells (polygon) and AddDualEdge for boundary edges.

In order to keep the primal-dual references in a single data structure, we have two design options. In first design, we use to maintain two look up tables; one table for storing references of primal cell to dual point and and second table for primal point to dual cell. The advantage of this approach is backward compatibility of code and test cases. The bad side of this design is to maintain these tables that having the complexity nlog(n) causing severe degradation of performance in case of large mesh. In second design, we modify the
3.3 Primal to primal/dual filter

In order to transform primal mesh into dual mesh, we also create a new filter called \texttt{itk::QuadEdgeMeshToQuadEdgeMeshWithDualFilter}. This filter is templated with \texttt{QuadEdgeMeshWithDual} data structure. This filter generate dual mesh from primal mesh in three phases; first phase is computing

Figure 6: QuadEdgeMeshWithDual data structure

![Diagram of QuadEdgeMeshWithDual data structure](image)

Table 2: Summaries of changes in new data structure

<table>
<thead>
<tr>
<th>Changes</th>
<th>Old Data Structure</th>
<th>New Data Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes</td>
<td>OriginRef Type</td>
<td>Point ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell ID</td>
</tr>
<tr>
<td>Additions</td>
<td>Dual Containers</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Not yet implemented</td>
<td>Dual Data Containers</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

existing data structure by adding two reference pair; primal point to dual cell and primal cell to dual point as shown below. With this design, no look up table is required to maintain the primal and dual references. So it is very efficient approach but not compatible with respect to previous code and test cases.

```c++
typedef GeometricalQuadEdge<
    std::pair<PointIdentifier, CellIdentifier>,
    std::pair<CellIdentifier, PointIdentifier>,
    PrimalDataType,
    DualDataType
> QEPrimal;
```

A summaries of changes in new data structure can be depicted in Table 2
3.3 Primal to primal/dual filter

dual point from primal cells, second phase is computing dual cells from primal points, and in last phase, primal borders edges are used to generate dual border cell.
We also implement a new adaptor for connecting the dual mesh natively to a downward pipeline.

Dual point functor

As explained before, there is no geometrical duality between the primal and the dual. Therefore any formula that compute points that satisfy the criteria of duality detailed in section 2.1 can be use. Not to restrict ourselves to a single option that may limit the application of the filter, a functor is used to compute the dual point. Depending on the case faced, the user is able to choose from the already two existing dual point functor, or use his own functor. Except from the classic ITK macro, typedef definition and constructor/destructor, the functor has only one method where the process is done.

```cpp
template< class TInputMesh, class TOutputMesh=TInputMesh>
class DualPointFunctor
{
    typedef typename TInputMesh::CellsContainer CellsContainer;
    typedef typename CellsContainer::ConstIterator CellIterator;
    ...
    inline OutputPointType
    operator() ( const TInputMesh* primalMesh, CellIterator cellIterator )
    {
        ...
    }
};
```

Barycentre By default, the barycentre of each face is used to compute the location of the dual point. It has the advantage to be relatively straightforward to compute, to compute a dual point which is always located within the face and to work with any kind of face. The following equation is used to compute the centre

$$ M = \frac{P_1 + P_2 + \ldots + P_n}{n} $$

where P_1, P_2, \ldots, P_n are the points retrieve from the current cell.

Circumcentre The circumcentre is a particular dual point of triangle mesh. It is the centre of the circumference circle of a triangle and is determine by the crossing point of the perpendicular bisectors. As such, it is not always within the face, and more costly to compute. The interest of this is in the case of the Delaunay triangulation in order to obtain its dual, the corresponding Voronoi tesselation. The following equation is used to compute the centre

$$ M = P_1 + \frac{|P_3 - P_1|^2 \left[(P_2 - P_1) \times (P_3 - P_1)\right] \times (P_2 - P_1) + |P_2 - P_1|^2 \left[(P_3 - P_1) \times (P_2 - P_1)\right] \times (P_3 - P_1)}{2 \left[(P_2 - P_1) \times (P_3 - P_1)\right]^2} $$

where P_1, P_2, P_3 are the points retrieved from the current triangle, and \times the cross product. In order to simplify the calculus and avoid the use of square roots the edge length are squared and the coordinates of all the point relative to the first point P_1 are used. Due to the floating-point errors such solution may be unstable in the case of the denominator is close to 0. To prevent such case, the exact geometric predicate implemented for ITK [4] is use for the cross product calculation.
Dual borders calculation

As shown in figure 3, the dual of a primal mesh that contain a border is not a closed mesh. The dual edge point obtain from the primal border are not included into any faces of the dual. This representation may be problematic to some other process which may not take into account the `EdgeContainer` that store the edges in the `QuadEdgeMesh` structure, and therefore discard edges that are not part of any face (e.i. Mesh writting filter). If the dual edge point are not compute, the effect still occur but is less important that in the previous case. Another option is to create a border by connecting the dual edge point, however this solution may lead to some flipped triangles in specific configuration. The `SetBorders()` methods allow the user to decide how the filter should manage the borders (Fig. 7). By default the filter will compute the dual edge point and create a border to the dual mesh.

4 Validation

4.1 Test on planer triangular to simplex mesh with and without holes

We create a square triangulated (primal) mesh as shown in figure 8(a). Green color represents primal points and cells. From this primal mesh, we would try to generate dual mesh. First, we generate dual points using the `BarycentreDualPointFunctor` on the primal cells as shown in figure 8(b) with red points. We add these dual points in `m_DualPointsContainer` of `itk::QuadEdgeMeshWithDual` by using `AddDualPoint()`. Second, we iterate around each primal point to form dual cells and add dual cell in `m_DualCellsContainer` of `itk::QuadEdgeMeshWithDual` by using `AddDualFace()`. By doing this we generate all dual cells except boundary cells. Dual cell are represented by red color in figure 8(b).

In order to tackle borders, first we get boundary edges of primal mesh. Select one boundary edge from list; create a new point (dual) in the middle of edge and add in `m_DualPointsContainer` of `itk::QuadEdgeMeshWithDual` by using `AddDualPoint(...)`. In figure 8(c), red points on border lines represent boundary points of dual mesh. Then, find the dual point associated with the face on the left and make an edge between these two dual points. Now iterate along left triangle to form dual cell and add this dual cell into `m_DualCellsContainer` of `itk::QuadEdgeMeshWithDual` by using `AddDualFace()`. In figure 8(c), red cells represent dual cells. The final dual mesh generated from primal mesh is shown in following figure 8(d).

For testing this data structure and filter, we deleted one primal edge and re-run the whole code for getting

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3392]
Distributed under Creative Commons Attribution License
4.1 Test on planer triangular to simplex mesh with and without holes

Figure 8: Primal to dual mesh

(a) Primal mesh
(b) Primal mesh with inner dual cells
(c) Primal and dual mesh
(d) Dual mesh
4.2 Test with Delaunay to Voronoi

Using the `PointSetToDelaunayTriangulationFilter` [5], we tested this data structure on Delaunay mesh to Voronoi diagram. We input a planer Delaunay mesh into new data structure as shown in figure 10(a) and generate the corresponding Voronoi diagram by using `QuadEdgeMeshToQuadEdgeMeshWithDualFilter` and the `CircumcentreDualPointFunctor` as shown in figure 10(b). Later, the Voronoi diagram is shown in figure 10(c) using new adaptor `itk::QuadEdgeMeshWithDualAdaptor`.

4.3 Test on non planar mesh

We perform last test on non-planer mesh. A spherical triangulation mesh can be seen in figure 11(a), generated simplex (dual) mesh along with triangulation (primal) mesh can be seen in figure 11(b) and finally, simplex (dual) mesh generated with new adaptor can be seen in figure 11(c).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3392] Distributed under Creative Commons Attribution License
5 Usage

An example SimplexMesh.cxx is provided with the sources and is used for the tests. The filter QuadEdgeMeshToQuadEdgeMeshWithDualFilter is templated on float and 3 dimensions itk::QuadEdgeMeshWithDual.

```cpp
// Typedef definition
typedef itk::QuadEdgeMeshWithDual< float, 3 > MeshType;
typedef itk::QuadEdgeMeshToQuadEdgeMeshWithDualFilter< MeshType > FillDualFilterType;
typedef itk::QuadEdgeMeshWithDualAdaptor< MeshType > AdaptorType;
typedef itk::VTKPolyDataWriter< MeshType > MeshWriterType;
typedef itk::VTKPolyDataWriter< AdaptorType > DualMeshWriterType;

// Create primal mesh
MeshType::Pointer myPrimalMesh = MeshType::New();
CreateSquareTriangularMesh< MeshType >( myPrimalMesh );

// Create dual mesh
FillDualFilterType::Pointer fillDual = FillDualFilterType::New();
fillDual->SetInput( myPrimalMesh );
fillDual->Update();

AdaptorType* adaptor = new AdaptorType();
adaptor->SetInput( fillDual->GetOutput() );

// Write dual mesh
```

![Figure 11: Non-Planer Mesh containing (Triangulation and Simplex Mesh)](http://hdl.handle.net/10380/3392)
DualMeshWriterType::Pointer writer = DualMeshWriterType::New();
writer->SetInput(adaptor);
writer->SetFileName("TestSquareTriangularSimplexMesh.vtk");
writer->Write();

References

