Modeling Documentation and Instructions for Reproducibility

The Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants

Contents:
Section 1: Data
Section 2: Model Parameters
Section 3: Model Formulation
Section 4: Model Calibration and Validation
Section 5: Online Simulator Platform
Section 1: Data

1.1. Time Series

The system dynamics model is designed to project the patient growth rate and the number of patients in 2018 (Section 4) from historical data—patients requiring knee replacement in the U.S. from 1990 to 2012. Furthermore, the estimated model is used to project the trend through 2026.

Table IR1, and Figures IR1 and IR2 present the summary of the number of patients who have had either primary or revision knee replacement surgeries. These datasets are used in the model to replicate the number of patients and estimate the future trends.

Table IR1: Time series data used in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients undergone primary knee replacement</td>
<td>Figure IR1</td>
<td>Kurtz S., et al. International Survey 2011(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kurtz S., et al. 2005 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inacio M., et al. 2017 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bozic et al. (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wengler et al. (5)</td>
</tr>
<tr>
<td>Number of patients undergone revision knee replacement</td>
<td>Figure IR2</td>
<td>Kurtz S., et al. International Survey 2011(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kurtz S., et al. 2005 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bozic et al. (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wengler et al. (5)</td>
</tr>
</tbody>
</table>

![Figure IR1](image_url): Total number of patients undergone primary knee replacement in the U.S. from 1990 to 2012.
1.2. Cost

Table IR2 provides details on cost variables used in the model.

Table IR2: Cost variables data used in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Cost of Hospital Stay</td>
<td>~$4,000/day</td>
<td>Bill Fay (6) Steven Culler et al.(7)</td>
</tr>
<tr>
<td>Cost of Operation Room</td>
<td>~$1500/hr</td>
<td>Derek A. Haas, Robert S. Kaplan (8)</td>
</tr>
<tr>
<td>Cost of Surgeon</td>
<td>~$1000/hr</td>
<td>Derek A. Haas, Robert S. Kaplan (8)</td>
</tr>
<tr>
<td>OTS Knee Implant Cost*</td>
<td>~$7,000/implant</td>
<td>Robinson J.C. et al. (9)</td>
</tr>
<tr>
<td>Cost of Office Visit for Readmitted Patients</td>
<td>~$500/patient</td>
<td>Healthcare bluebook (10)</td>
</tr>
<tr>
<td>Cost of Entire Revision Procedure</td>
<td>~$40,000/patient</td>
<td>Healthcare bluebook (10)</td>
</tr>
<tr>
<td>Insurance coverage for OTS</td>
<td>0.9</td>
<td>Romualdez I. (11) Lewis S. (12)</td>
</tr>
<tr>
<td>Cost of Hospitalization in Rehab or Nursing Facility for Custom</td>
<td>~$8331/patient</td>
<td>Steven Culler et al. (7)</td>
</tr>
<tr>
<td>Cost of Hospitalization in Rehab or Nursing Facility for OTS</td>
<td>~$11134/patient</td>
<td>Steven Culler et al. (7)</td>
</tr>
<tr>
<td>Cost of Rehabilitation at Home or with Health Care for Custom</td>
<td>~$3776/patient</td>
<td>Steven Culler et al. (7)</td>
</tr>
<tr>
<td>Cost of Rehabilitation at Home or with Health Care for OTS</td>
<td>~$3815/patient</td>
<td>Steven Culler et al. (7)</td>
</tr>
</tbody>
</table>

*The cost of OTS implants is according to 2012 price which has probably decreased by about 25%-30%. Since, in our model, the cost of CIM implants is calculated based on OTS price, therefore, that difference in magnitude would not have a significant impact on the results.
Section 2: Model Parameters

Model parameters are constant during the simulation. Table IR3 presents a summary of the parameters, their values, and resources.

<table>
<thead>
<tr>
<th>Table IR3: Patient Outcome and Time Related Parameters</th>
<th>Parameters</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting Time for Surgery</td>
<td>120 Days</td>
<td>Vickie Oliphant (14)</td>
<td></td>
</tr>
<tr>
<td>Initial Number of Patients at first month of 1990</td>
<td>10750</td>
<td>Kurtz, et al. (2)</td>
<td></td>
</tr>
<tr>
<td>Initial Number of Patients Used Custom Implants (2016)</td>
<td>50000</td>
<td>Conformis Inc. (15)</td>
<td></td>
</tr>
<tr>
<td>Rate of Patients Discharge to Home after OTS Surgery</td>
<td>0.639</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>John O’Halloran (16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derek A. Haas, Robert S. Kaplan (8)</td>
<td></td>
</tr>
<tr>
<td>Rate of Patients Discharge to Home after CIM Surgery</td>
<td>0.712</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td>Time to decide on Home Discharges</td>
<td>2 days</td>
<td>American Academy of Orthopaedic Surgeons (17)</td>
<td></td>
</tr>
<tr>
<td>Time to Recover Completely after OTS Surgery</td>
<td>4 weeks</td>
<td>Samuel Greengard et al. (18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BoneSmart (19)</td>
<td></td>
</tr>
<tr>
<td>Time to Recover Completely after Custom Surgery</td>
<td>2 weeks</td>
<td>Conformis Inc. (2017) (20)</td>
<td></td>
</tr>
<tr>
<td>90 Days OTS Readmission Rate</td>
<td>29.2%</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>William Schairer et al. (21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicholas Ramos et al. (22)</td>
<td></td>
</tr>
<tr>
<td>90 Days CIM Readmission Rate</td>
<td>17%</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>William Schairer et al. (21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicholas Ramos et al. (22)</td>
<td></td>
</tr>
<tr>
<td>3 Year Revision Surgery Rate</td>
<td>5.5%</td>
<td>AJRR (23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NJR (24)</td>
<td></td>
</tr>
<tr>
<td>Initial Orthopedic Surgeons Population</td>
<td>8734</td>
<td>AJRR (25)</td>
<td></td>
</tr>
<tr>
<td>Net Orthopedic Surgeon Population Increase</td>
<td>2% Increase from 2000-2020</td>
<td>Richard Iorio, et al. (26)</td>
<td></td>
</tr>
<tr>
<td>Surgeon to Patient Contact Rate</td>
<td>29 /Month</td>
<td>Mary Rechtoris (27)</td>
<td></td>
</tr>
<tr>
<td>Custom Average Hospital Stay</td>
<td>2.97 days</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td>OTS Average Hospital Stay</td>
<td>3.2 days</td>
<td>Steven Culler et al. (7)</td>
<td></td>
</tr>
<tr>
<td>OTS Range of Motion (ROM)</td>
<td>0.71</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>OTS Axial Rotation</td>
<td>0.22</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>OTS Condyle liftoff (early flexion)</td>
<td>0.357</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>OTS Condyle liftoff (late flexion)</td>
<td>0.143</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>Custom Range of Motion (ROM)</td>
<td>0.77</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>Custom Axial Rotation</td>
<td>0.315</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>Custom Condyle liftoff (early flexion)</td>
<td>0</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>Custom Condyle liftoff (late flexion)</td>
<td>0.25</td>
<td>Ian M. Zeller et al. (28)</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Value</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Time of OTS Procedure</td>
<td>~2 hrs</td>
<td>Interview (29)</td>
<td></td>
</tr>
<tr>
<td>Time reduction during the procedure for Custom</td>
<td>~0.25 hrs</td>
<td>Interview (29)</td>
<td></td>
</tr>
</tbody>
</table>
Section 3: Model Formulation

In this section, the model formulation is presented in the similar format as Vensim software. The equations are listed in two sections as simulation set up and main equations.

Also, the Vensim file can be downloaded from: http://jalali.mit.edu/medical-tech-adoption

3.1. Simulation Set up

1. INITIAL TIME = 0 (Represents the beginning of 2018)
 Unit: Month

2. FINAL TIME = 108 (Represents the end of 2026)
 Unit: Month

3. SAVEPER = TIME STEP
 Unit: Month

4. TIME STEP = 0.0625
 Unit: Month

3.2. Main Equations

5. Total Revision Surgeries =
 Rate of Custom Revision Surgeries in 3 Years + Rate of OTS Revision Surgeries in 3 Years
 Unit: People/Month

6. Readmission ratio =
 Total Readmission/Rate of Incoming Patients
 Unit: Dmnl

7. Revision Surgery ratio =
 Total Revision Surgeries/Rate of Incoming Patients
 Unit: Dmnl

8. Total Readmission =
 Rate of Custom Readmission in 90 days + Rate of OTS Readmission in 90 days
 Unit: People/Month

9. Accumulative Number of Patients Undergone Rev Surgery =
 Custom Patients Undergone Revision Surgery + OTS Patients Undergone Revision Surgery
 Unit: Patients

10. Custom Sales Reps Influence on Surgeons =
 SMOOTH3 (Min (Manufacturer Willingness to Produce Custom, Sales Reps Influence on Promoting OTS), Time for Custom Reps to Adjust)
 Unit: Dmnl
 Comment: Considering the initial value for OTS sales force influence and required time for them to change their interests based on the manufacturers' willingness to produce custom implants. If manufacturers’ willingness passes the OTS sales force influence on promoting, then the OTS sales force promoting would change their interests to promote custom implants.
11. Accumulative Number of Patients Readmitted in 90 days after Primary Surgery=
Custom Patients Readmitted + OTS Patients Readmitted
Unit: Patients

12. Time savings for Surgeons per Month=
Custom Patients*Time reduction during the procedure
Unit: Hour/Month
Comment: Time can be saved per month for surgeons and hospitals if using custom implants

13. Rate of Incoming Patients=
Number of Patients Undergo the Surgery at 2017*(Patient Increase Rate + 1)^Time1
Unit: People/Month
Comment: Exponential growth for incoming patients

14. Custom total recovery cost rates=
Custom Cost of Hospital Stay per Month + Custom Cost of Rehab Stay per Month + Custom Cost of Rehabilitation at Home per Month
Unit: Dollar/Month
Comment: Total cost of custom recovery per month

15. OTS total recovery cost rates=
OTS Cost of Hospital Stay per Month + OTS Cost of Rehab Stay per Month + OTS Cost of Rehabilitation at Home per Month
Unit: Dollar/Month
Comment: Total cost of OTS recovery per month

16. Patients Deciding on Knee Replacement Method= INTEG (Rate of Incoming Patients-Patients Using Custom-Patients Using OTS, Initial Number of Patients at 2017)
Unit: Patients
Comment: Dividing incoming patients into two groups (OTS and Custom)

17. OTS Patients=
Patients Using OTS
Unit: People/Month

18. Custom Patients=
Patients Using Custom
Unit: People/Month

19. Adoption from recommendation=
Surgeons Recommendation Effectiveness on Surgeons for Custom*Contact with adopters
Unit: Surgeon/Month
Comment: It is based on the recommendation effectiveness and contact with the adopters

20. Contact with adopters=
Probability of Contacts with Adopters*Social contact
Unit: Surgeon/Month

21. Surgeons Becoming Interested= IF THEN ELSE (Switch to Block Custom Surgery=1, Adoption from recommendation * Custom Sales Reps Influence on Surgeons, 0)
Unit: Surgeon/Month
22. Surgeon patient contact=
Patients Deciding on Knee Replacement Method*Surgeon to Patient Contact Rate*Probability of Contacts with Adopters
Unit: People/Month

23. Social contact=
Surgeon to Adopters Contact Rate*Surgeons NOT Willing to Adopt
Unit: Surgeon/Month

24. Custom Rate of Discharge to home after Rehab=
Custom Discharged to Rehab or Skilled Nursing Facility/Custom Duration of staying at Rehab
Unit: People/Month
Comment: Custom patients going home after rehab recovery

25. OTS Cost of Hospital Stay per Month=
(OTS Home Recovery Complete + OTS Rate of Discharge to home after Rehab)*Cost of Hospitalization in Hospital for OTS
Unit: Dollar/Month
Comment: Cost per month for hospital stay for OTS implant patients

26. OTS Cost of Readmission per Month=
Price of Office Visit for Readmitted Patients*Rate of OTS Readmission in 90 days
Unit: Dollar/Month

27. OTS Cost of Rehab Stay per Month=
Cost of Hospitalization in Rehab or Nursing Facility for OTS*OTS Rate of Discharge to home after Rehab
Unit: Dollar/Month
Comment: Cost per month for rehab stay for OTS implant patients

28. OTS Cost of Rehabilitation at Home per Month=
Cost of Rehabilitation at Home or with Health Care for OTS*OTS Home Recovery Complete
Unit: Dollar/Month
Comment: Cost per month for home stay for OTS implant patients

29. OTS Cost of Revision Surgery per Month=
Cost of Entire Revision Procedure*Rate of OTS Revision Surgeries in 3 Years
Unit: Dollar/Month

30. Custom Total Cost of the Entire Process=
Custom Accumulative $ of Readmission + Custom Accumulative $ of Revision + Total Recovery Cost of Custom + Custom Accumulative Cost of Procedures
Unit: Dollar
Comment: Total cost including cost of procedure, recovery, readmission, and revision surgery

31. OTS Discharged to Home or Home with Health Care = INTEG (OTS Rate of Discharge to home after Rehab + Rate of OTS Discharge to Home-OTS Home Recovery Complete, 0)
Unit: Patients

32. OTS Discharged to Rehab or Skilled Nursing Facility = INTEG (
Rate of OTS Discharge to Rehab-OTS Rate of Discharge to home after Rehab, 0
\[\text{Unit: Patients} \]

33. Custom Discharged to Home or Home with Health Care = INTEG (Custom Rate of Discharge to home after Rehab + Rate of Custom Discharge to Home-Custom Home Recovery Complete, 0)
\[\text{Unit: Patients} \]

34. Custom Discharged to Rehab or Skilled Nursing Facility = INTEG (Rate of Custom Discharge to Rehab-Custom Rate of Discharge to home after Rehab, 0)
\[\text{Unit: Patients} \]

35. Custom Accumulative Cost of Rehab Stay= INTEG (Custom Rehab $, 0)
\[\text{Unit: Dollar} \]

36. Custom Accumulative Number of Patients= INTEG (Custom Patients, 0)
\[\text{Unit: People} \]

37. OTS Home $= \text{OTS Cost of Rehabilitation at Home per Month}
\[\text{Unit: Dollar/Month} \]

38. Total Recovery Cost of OTS=
\[\text{OTS Accumulative Cost of Hospital Stay + OTS Accumulative Cost of Rehab Stay + OTS Accumulative Cost of Home Recovery} \]
\[\text{Unit: Dollar} \]
\[\text{Comment: Total accumulative recovery cost for OTS} \]

39. OTS Hospital $= \text{OTS Cost of Hospital Stay per Month}
\[\text{Unit: Dollar/Month} \]

40. Percentage of Home Discharge for Custom=
\[100 \times \text{XIDZ (Rate of Custom Discharge to Home, Rate of Custom Discharge to Rehab, 0)} \]
\[\text{Unit: Dmnl} \]

41. Custom Hospital $= \text{Custom Cost of Hospital Stay per Month}
\[\text{Unit: Dollar/Month} \]

42. OTS Accumulative $ of Readmission= INTEG (OTS Readmission, 0)
\[\text{Unit: Dollar} \]

43. Custom Accumulative $ of Readmission= INTEG (Custom Readmission, 0)
\[\text{Unit: Dollar} \]

44. Custom Accumulative $ of Revision= INTEG (Custom Revision, 0)
\[\text{Unit: Dollar} \]

45. Custom Accumulative cost of Home Recovery= INTEG (Custom Home $, 0)
\[\text{Unit: Dollar} \]

46. Custom Accumulative Cost of Hospital Stay= INTEG (Custom Hospital $, 0)
\[\text{Unit: Dollar} \]
47. Custom Accumulative Cost of Procedures=
 Custom Cost of Surgery*(Custom Accumulative Number of Patients) + OTS Product
 Cost*Multiplication of OTS Product Cost for Price of Custom Implants*(Custom Accumulative
 Number of Patients)
 Unit: Dollar
 Comment: Total accumulative procedure cost for custom

48. Percentage of Rev Surgery Custom Patients=
 100* XIDZ (Custom Patients Undergone Revision Surgery, Custom Patients Recovering at Home, 0)
 Unit: Dmnl

49. OTS Accumulative Number of Patients= INTEG (OTS Patients, 0)
 Unit: People

50. Probability of Contact with Custom Patients Discharged to Home=
 XIDZ (Custom Patients Recovering at Home, OTS Patients Recovering at Home + Custom Patients
 Recovering at Home, 0)
 Unit: Dmnl

51. Custom Cost of Rehabilitation at Home per Month=
 Cost of Rehabilitation at Home or with Health Care for Custom*Custom Home Recovery Complete
 Unit: Dollar/Month
 Comment: Cost per month for home stay for custom implant patients

52. OTS Rate of Discharge to home after Rehab=
 OTS Discharged to Rehab or Skilled Nursing Facility/OTS Duration of staying at Rehab
 Unit: People/Month
 Comment: OTS patients going home after rehab recovery

53. OTS Readmission=
 OTS Cost of Readmission per Month
 Unit: Dollar/Month

54. OTS Rehab $=
 OTS Cost of Rehab Stay per Month
 Unit: Dollar/Month

55. Custom Cost of Hospital Stay per Month=
 (Custom Home Recovery Complete + Custom Rate of Discharge to home after Rehab)*Cost of
 Hospitalization in Hospital for Custom
 Unit: Dollar/Month
 Comment: Cost per month for hospital stay for custom implant patients

56. Custom Cost of Readmission per Month=
 Price of Office Visit for Readmitted Patients*Rate of Custom Readmission in 90 days
 Unit: Dollar/Month

57. Custom Cost of Rehab Stay per Month=
 Cost of Hospitalization in Rehab or Nursing Facility for Custom*Custom Rate of Discharge to home
 after Rehab
 Unit: Dollar/Month
 Comment: Cost per month for rehab stay for custom implant patients

58. Custom Cost of Revision Surgery per Month=
Multiplication of OTS Rev Surgery Price*Cost of Entire Revision Procedure*Rate of Custom Revision Surgeries in 3 Years
Unit: Dollar/Month

59. Percentage of Rev Surgery OTS Patients =
100* XIDZ (OTS Patients Undergone Revision Surgery, OTS Patients Recovering at Home, 0)
Unit: Dmnl

60. OTS Accumulative Cost of Rehab Stay = INTEG (OTS Rehab $, 0)
Unit: Dollar

61. Custom Revision =
Custom Cost of Revision Surgery per Month
Unit: Dollar/Month

62. Total Recovery Cost of Custom =
Custom Accumulative Cost of Hospital Stay + Custom Accumulative Cost of Rehab Stay + Custom Accumulative cost of Home Recovery
Unit: Dollar
Comment: Total accumulative recovery cost for custom

63. Insurance Coverage of Total Cost for Custom =
Custom Total Cost of the Entire Process* Coverage of Insurance Bundled Payments for CIM
Unit: Dollar

64. OTS Accumulative Cost of Hospital Stay = INTEG (OTS Hospital $, 0)
Unit: Dollar

65. Custom Home $ =
Custom Cost of Rehabilitation at Home per Month
Unit: Dollar/Month

66. Custom Readmission =
Custom Cost of Readmission per Month
Unit: Dollar/Month

67. Custom Rehab $ =
Custom Cost of Rehab Stay per Month
Unit: Dollar/Month

68. Insurance Coverage of Total Cost for OTS =
Insurance Coverage for OTS*OTS Total Cost of the Entire Process
Unit: Dollar

69. OTS Accumulative $ of Revision = INTEG (OTS Revision, 0)
Unit: Dollar

70. Percentage of Home Discharge for OTS =
100* XIDZ (Rate of OTS Discharge to Home, Rate of OTS Discharge to Rehab, 0)
Unit: Dmnl

71. Percentage of Readmitted Custom Patients =
100* XIDZ (Custom Patients Readmitted, Custom Patients Recovering at Home, 0)
72. OTS Accumulative Cost of Procedures =
 (OTS Accumulative Number of Patients) \times (OTS Cost of Surgery + OTS Product Cost)
 \textbf{Unit:} Dollar
 \textbf{Comment:} Total accumulative procedure cost for OTS

73. OTS Accumulative Cost of Home Recovery = \text{INTEG} \ (OTS \ Home \ $, 0)
 \textbf{Unit:} Dollar

74. OTS Revision =
 OTS Cost of Revision Surgery per Month
 \textbf{Unit:} Dollar/Month

75. Percentage of Readmitted OTS Patients =
 100 \times \text{XIDZ} \ (OTS \ Patients \ Readmitted, OTS \ Patients \ Recovering \ at \ Home, 0)
 \textbf{Unit:} Dmnl

76. OTS Total Cost of the Entire Process =
 OTS Accumulative $ of Readmission + OTS Accumulative $ of Revision + Total Recovery Cost of OTS
 + OTS Accumulative Cost of Procedures
 \textbf{Unit:} Dollar
 \textbf{Comment:} Total cost including cost of procedure, recovery, readmission, and revision surgery

77. Custom Home Recovery Complete =
 Custom Discharged to Home or with Home Health Care/Custome Duration of Recovery at Home
 \textbf{Unit:} Implants/Month

78. Initial OTS Performance =
 OTS Functioning \times (1 - OTS Liftoff)
 \textbf{Unit:} Dmnl
 \textbf{Comment:} Implant liftoff has negative impact on performance

79. OTS Learning Curve Strength =
 \text{LN} \ (1 + \text{OTS Performance Improvement per Doubling of Cooperation})/\text{LN}(2)
 \textbf{Unit:} Dmnl
 \textbf{Comment:} Learning curve formulation, John D. Sterman, Business Dynamics (2000), Chapter 9

80. Effect of Coop on OTS Performance =
 \text{(Surgeon and Mfg Coop on OTS/Initial Number of OTS Implants)}^{\text{OTS Learning Curve Strength}}
 \textbf{Unit:} Dmnl
 \textbf{Comment:} Learning curve formulation, John D. Sterman, Business Dynamics (2000), Chapter 9

81. OTS Duration of Recovery at Home =
 Time to Recover Completely after OTS Surgery \times Effect of OTS performance on Recovery
 \textbf{Unit:} Month
 \textbf{Comment:} Effect of implant performance is considered for home recovery

82. OTS Duration of staying at Rehab =
 OTS Average Rehab Stay \times Effect of OTS performance on Recovery
 \textbf{Unit:} Month
 \textbf{Comment:} Effect of implant performance is considered for rehab recovery
83. Effect of OTS performance on Recovery =
 1 - (OTS Performance - Initial OTS Performance)
 Unit: Dmnl

84. OTS Home Recovery Complete =
 OTS Discharged to Home or with Home Health Care / OTS Duration of Recovery at Home
 Unit: Implants/Month

85. Surgeon and Mfg Coop on OTS = INTEG (OTS Purchase Rate, Initial Number of OTS Implants)
 Unit: Implants

86. Custom Duration of Recovery at Home =
 Time to Recover Completely after Custom Surgery * Effect of Custom performance on Recovery
 Unit: Month
 Comment: Effect of implant performance is considered for home recovery

87. OTS Patient Outcome =
 SMOOTH3 (OTS Performance, Total Duration of OTS Recovery)
 Unit: Dmnl
 Comment: OTS patient outcome considering the duration of recovery

88. Custom Duration of staying at Rehab =
 Custom Average Rehab Stay * Effect of Custom performance on Recovery
 Unit: Month
 Comment: Effect of implant performance is considered for rehab recovery

89. OTS Purchase Rate =
 Patients Using OTS
 Unit: People/Month

90. Custom Performance =
 Min ((Initial Custom Performance) * Switch for Experience Effect on Performance * Effect of Cooperation on Custom Implant Performance
 + (Initial Custom Performance) * (1 - Switch for Experience Effect on Performance) * Effect of Cooperation on Custom Implant Performance, 1)
 Unit: Dmnl
 Comment: Implant performance considering the initial performance and improvement in the performance due to the cooperation of manufacturers and surgeons

91. Initial Custom Performance =
 Custom Functioning * (1 - Custom Liftoff)
 Unit: Dmnl
 Comment: Implant liftoff has negative impact on performance

92. OTS Performance =
 Min ((Initial OTS Performance * Effect of Coop on OTS Performance), 1)
 Unit: Dmnl
 Comment: Implant performance considering the initial performance and improvement in the performance due to the cooperation of manufacturers and surgeons

93. Effect of Custom performance on Recovery =
 1 - (Custom Performance - Initial Custom Performance)
 Unit: Dmnl
94. Effect of Cooperation on Custom Implant Performance =
(Surgeon and Mfg Cooperation on CIM/Initial Number of Custom Implants)^Learning Curve Strength
Unit: Dmnl
Comment: Learning curve formulation, John D. Sterman, Business Dynamics (2000), Chapter 9

95. Surgeon and Mfg Cooperation on CIM = INTEG (Custom Purchase Rate, Initial Number of Custom Implants)
Unit: Implants

96. Surgeon Adoption Ratio =
Surgeon Adopters/Total Orthopedic Surgeon Population
Unit: Dmnl

97. Rate of OTS Discharge to Rehab =
Patients Undergoing OTS Implant*(1-Rate of patients discharge to home after OTS surgery)/Time to Decide on Home Discharges
Unit: Implants/Month
Comment: Rate of patients discharge to either rehab or nursing facility after OTS surgery

98. Time to Decide on Home Discharge from Rehab =
Custom Average Rehab Stay
Unit: Month

99. Rate of OTS Discharge to Home =
Patients Undergoing OTS Implant*Rate of patients discharge to home after OTS surgery/Time to Decide on Home Discharges
Unit: Implants/Month
Comment: Rate of patients discharge to either home or home with health care after OTS surgery

100. Time to Decide on Home Discharge from OTS Rehab =
OTS Average Rehab Stay
Unit: Month

101. Number of Patients Adopting Custom from Surgeons Recommendation =
SMOOTH3 (Surgeon patient contact * Surgeons Recommendation Effectiveness on Patients for Custom, Time to make a decision)
Unit: Implants/Month
Comment: Surgeons recommendation effectiveness and surgeon patient contact rate are two driving factors for patients to adopt the new product from surgeons recommendation

102. Manufacturer Willingness to Produce Custom =
DELAY3 (Ratio of Patient Using Custom, Delay for Manufacturers to React to the Market Share to Adopt the new Technology)
Unit: Dmnl
Comment: Fragmented industry/market is a market that none of the players have enough share to dominate the market. Meaning no major player controlling everything. By increase in the number of patients using custom implants, more manufacturers willing to produce custom after associated time delay

103. Ratio of Patient Using Custom = ACTIVE INITIAL (XIDZ (Patients Using Custom, Patients Using OTS + Patients Using Custom, 0), 0.05)
Unit: Dmnl
104. Percentage of Readmitted OTS Patients to all Readmitted Patients =
\[100 \times \text{IDZ} \times \left(\frac{\text{OTS Patients Readmitted} + \text{Custom Patients Readmitted}}{\text{Custom Patients Readmitted} + \text{OTS Patients Readmitted}}\right)\]
Unit: Dmnl

105. Percentage of OTS Patients Undergone Revision Surgery to all Revision Surgeries =
\[100 \times \text{IDZ} \times \left(\frac{\text{OTS Patients Undergone Revision Surgery}}{\text{Custom Patients Undergone Revision Surgery} + \text{OTS Patients Undergone Revision Surgery}}\right)\]
Unit: Dmnl

106. Percentage of Patients Using Custom =
\[\text{IDZ} \times \left(\frac{\text{100 Patients Using Custom}}{\text{Rate of Incoming Patients}}\right)\]
Unit: Dmnl

107. Percentage of Patients Using OTS =
\[\text{IDZ} \times \left(\frac{\text{100 Patients Using OTS}}{\text{Rate of Incoming Patients}}\right)\]
Unit: Dmnl

108. Rate of Reverting Back to OTS =
\[\text{IF THEN ELSE} (\text{Custom Patient Outcome} > \text{OTS Patient Outcome}, 0, \text{Surgeon Adopters} \times (1 - \text{Relative Performance of Custom over OTS}) / \text{Time to Revert})\]
Unit: Surgeon/Month
Comment: If custom patient outcome is smaller than the OTS patient outcome then larger rate of the surgeons who adopt custom implants before would revert back to OTS.

109. Surgeons Adoption Rate =
\[\text{IF THEN ELSE} (\text{Coverage of Insurance Bundled Payments for CIM} \geq \text{Insurance Coverage for OTS}, \text{Potential Surgeons Adopters} \times \text{Relative Performance of Custom over OTS} / \text{Time to make a decision})\]
Unit: Surgeon/Month
Comment: Insurance policies are one of the driving factors for surgeons to become adopters of the new product. In this case if the insurance coverage for custom becomes equal or greater than the coverage for OTS then surgeons would adopt the new product easier. If the insurance coverage for custom is smaller than the coverage for OTS, then that would impact the surgeons’ adoption. Another driving factor is the relative performance of the new product which would impact the surgeons’ decision on adopting the new product.

110. Custom Purchase Rate =
\[\text{Patients Using Custom}\]
Unit: Implants/Month

111. Total Cost of the Entire System for Both Methods =
\[\text{Custom Total Cost of the Entire Process} + \text{OTS Total Cost of the Entire Process}\]
Unit: Dollar

112. Custom RAR =
\[\text{Readmission Rate} \times (1 - \text{Custom Patient Outcome})\]
Unit: Dmnl
Comment: Readmission Rate (RAR) is based on the rate from literature and patient outcome in such a way if the outcome of patients improves RAR would decrease

113. Custom RSR =
Revision Surgery Rate*(1-Custom Patient Outcome)

Unit: Dmnl

Comment: Revision Surgery Rate (RSR) is based on the rate from literature and patient outcome in such a way if the outcome of patients improves RSR would decrease

114. Patients Using Custom =
DELAY3 (Rate of Incoming Patients*Fraction of Patients Willing to Use Custom, Waiting time)
Unit: Implants/Month

Comment: Rate of patients undergo custom surgery including waiting time delay

115. Patients Using OTS =
DELAY3 (Rate of Incoming Patients*(1-Fraction of Patients Willing to Use Custom), Waiting time)
Unit: Implants/Month

Comment: Rate of patients undergo OTS surgery including waiting time delay

116. Fraction of Patients Willing to Adopt Custom =
XIDZ (Number of Patients willing to adopt Custom, Number of Patients in Waiting List for Knee Replacement + Number of Patients willing to adopt Custom, 0)
Unit: Dmnl

Comment: Relative ratio of patients willing to adopt custom implants to patients in the waiting list for knee replacement

117. Number of Patients in Waiting List for Knee Replacement =
Patients Deciding on Knee Replacement Method/Waiting time
Unit: Implants/Month

118. Fraction of Patients Willing to Use Custom = ACTIVE INITIAL (IF THEN ELSE (Switch to Block Custom Surgery=1, Coverage of Insurance Bundled Payments for CIM*Fraction of Patients Willing to Adopt Custom, 0), 0.05)
Unit: Dmnl

Comment: Fraction of patients willing to adopt custom decide to undergo custom implants surgery based on the insurance policy to cover custom implants

119. Learning Curve Strength =
LN (1+Custom Performance Improvement per Doubling of Cooperation)/LN(2)
Unit: Dmnl

Comment: Learning curve formulation, John D. Sterman, Business Dynamics (2000), Chapter 9

120. Custom Patient Outcome =
SMOOTH3 (Custom Performance, Total Duration of Custom Recovery)
Unit: Dmnl

Comment: Custom patient outcome considering the duration of recovery

121. OTS Liftoff =
(OTS Condyle liftoff in early flexion + OTS Condyle liftoff in late flexion)/2
Unit: Dmnl

Comment: Average of early flexion and late flexion liftoff

122. OTS Functioning =
(OTS Range of Motion + OTS Axial Rotation)/2
Unit: Dmnl

Comment: Average of the range of motion and axial rotation
123. Custom Functioning =
 (Custom Range of Motion + Custom Axial Rotation)/2
 Unit: Dmnl
 Comment: Average of the range of motion and axial rotation

124. Custom Liftoff =
 (Custom Condyle liftoff in early flexion + Custom Condyle liftoff in late flexion)/2
 Unit: Dmnl
 Comment: Average of early flexion and late flexion liftoff

125. Rate of OTS Revision Surgeries in 3 Years =
 DELAY3 (Patients Using OTS*OTS RSR, "3 Year Time period")
 Unit: Implants/Month

126. Rate of Custom Revision Surgeries in 3 Years =
 DELAY3 (Patients Using Custom*Custom RSR, "3 Year Time period")
 Unit: Implants/Month

127. Rate of Custom Readmission in 90 days =
 DELAY3 (Patients Using Custom*Custom RAR, "90 Days Time Period")
 Unit: Implants/Month

128. Rate of OTS Readmission in 90 days =
 DELAY3 (Patients Using OTS*OTS RAR, "90 Days Time Period")
 Unit: Implants/Month

129. OTS RAR =
 (1-OTS Patient Outcome)*Readmission Rate
 Unit: Dmnl
 Comment: Readmission Rate (RAR) is based on the rate from literature and patient outcome in such a way if the outcome of patients improves RAR would decrease

130. OTS RSR =
 Revision Surgery Rate*(1-OTS Patient Outcome)
 Unit: Dmnl
 Comment: Revision Surgery Rate (RSR) is based on the rate from literature and patient outcome in such a way if the outcome of patients improves RSR would decrease

131. Patients Undergoing Custom Implant = INTEG (Patients Using Custom - Rate of Custom Discharge to Home - Rate of Custom Discharge to Rehab, 0)
 Unit: Patients
 Comment: Patients undergo custom surgery

132. Patients Undergoing OTS Implant = INTEG (Patients Using OTS - Rate of OTS Discharge to Home - Rate of OTS Discharge to Rehab, 0)
 Unit: Patients
 Comment: Patients undergo OTS surgery

133. Rate of Custom Discharge to Rehab =
 Patients Undergoing Custom Implant*(1-Rate of patients discharge to home after Custom Surgery)/Time to Decide on Home Discharges
 Unit: Implants/Month
 Comment: Rate of patients discharge to either rehab or skilled nursing facility after custom surgery
134. Rate of Custom Discharge to Home =
Patients Undergoing Custom Implant * Rate of patients discharge to home after Custom Surgery / Time
to Decide on Home Discharges
Unit: Implants/Month
Comment: Rate of patients discharge to either home or home with health care after custom surgery

135. OTS Patients Undergone Revision Surgery = INTEG (Rate of OTS Revision Surgeries in 3 Years, 0)
Unit: Patients

136. Custom Patients Undergone Revision Surgery = INTEG (Rate of Custom Revision Surgeries in 3
Years, 0)
Unit: Patients

137. Custom Patients Readmitted = INTEG (Rate of Custom Readmission in 90 days, 0)
Unit: Patients

138. OTS Patients Readmitted = INTEG (Rate of OTS Readmission in 90 days, 0)
Unit: Patients

139. Cost of recovery for Custom per Patient =
DELAY1 (Cost of Hospitalization in Hospital for Custom + Cost of Hospitalization in Rehab or Nursing Facility for Custom + Cost of Rehabilitation at Home or with Health Care for Custom, Total Duration of Custom Recovery)
Unit: Dollar/Patients
Comment: Total cost per patient for custom implant recovery

140. Cost of Recovery for OTS per Patient =
DELAY1 (Cost of Hospitalization in Hospital for OTS + Cost of Hospitalization in Rehab or Nursing Facility for OTS + Cost of Rehabilitation at Home or with Health Care for OTS, Total Duration of OTS Recovery)
Unit: Dollar/Patients
Comment: Total cost per patient for OTS implant recovery

141. Initial Early Adopters = INITIAL (Total Orthopedic Surgeon Population * Fraction of Surgeons willing
to adopt)
Unit: Surgeon

142. Surgeon Adopters = INTEG (Surgeons Adoption Rate - Rate of Reverting Back to OTS, Initial Early Adopters)
Unit: Surgeon

143. Total Orthopedic Surgeon Population =
(1 + Net Orthopedic Surgeon Population Increase) * Initial Orthopedic Surgeon Population
Unit: Surgeon

144. Probability of Contacts with Adopters =
Surgeon Adopters / Total Orthopedic Surgeon Population
Unit: Dmnl

145. Surgeons NOT Willing to Adopt = INTEG (Rate of Reverting Back to OTS + Surgeons Not Interested-Surgeons Becoming Interested, Initial surgeons NOT willing to adopt)
Unit: Surgeon
146. Potential Surgeons Adopters = INTEG (Surgeons Becoming Interested - Surgeons Not Interested - Surgeons Adoption Rate, 0)
 Unit: Surgeon

147. Initial surgeons NOT willing to adopt = INITIAL(
 Total Orthopedic Surgeon Population*(1 - Fraction of Surgeons willing to adopt))
 Unit: Surgeon

148. Surgeons Not Interested =
 (1 - Relative Performance of Custom over OTS)*Potential Surgeons Adopters/Time to make a decision
 Unit: Surgeon/Month
 Comment: Surgeons not interested in using custom implants due to the relative performance of the implants over the decision time

149. Relative Performance of Custom over OTS =
 Custom Patient Outcome/ (Custom Patient Outcome + OTS Patient Outcome)
 Unit: Dmnl

150. Social Awareness =
 Patient to Patient Contact Rate*(Custom Patients Recovering at Home)
 Unit: Implants/Month

151. Number of Patients Adopting Custom from General Awareness =
 Patients Becoming Interested in Custom*Adoption Fraction
 Unit: Implants/Month

152. Number of Patients willing to adopt Custom =
 Number of Patients Adopting Custom from General Awareness + Number of Patients Adopting Custom from Surgeons Recommendation
 Unit: Patients/Month
 Comment: Total number of patients willing to adopt due to social awareness and surgeons' recommendation

153. Custom Patients Recovering at Home = INTEG (Custom Home Recovery Complete, 0)
 Unit: Patients

154. OTS Duration of Hospitalization =
 OTS Average Hospital Stay
 Unit: Month

155. Custom Duration of Hospitalization =
 Custom Average Hospital Stay
 Unit: Month

156. OTS Patients Recovering at Home = INTEG (OTS Home Recovery Complete, 0)
 Unit: Patients

157. Total Duration of OTS Recovery =
 OTS Duration of Hospitalization + OTS Duration of Recovery at Home + OTS Duration of staying at Rehab
 Unit: Month
158. Cost of Hospitalization in Hospital for OTS=
 \[\text{Average Cost of Hospital Stay} \times \text{OTS Duration of Hospitalization} \]
 \[\text{Unit: Dollar/Patients} \]
 \[\text{Comment: Cost per patient for hospital stay for OTS implant patients} \]

159. OTS Cost of Surgery=
 \[(\text{Cost of Surgeon} + \text{Cost of Operations Room}) \times \text{Time of OTS Procedure} \]
 \[\text{Unit: Dollar/Patients} \]
 \[\text{Comment: Cost of surgery includes cost of surgeon, cost of operation room and time of the procedure} \]

160. Time of Custom Procedure=
 \[\text{Time of OTS Procedure} - \text{Time reduction during the procedure} \]
 \[\text{Unit: Hour/Patients} \]

161. Custom Cost of Surgery=
 \[(\text{Cost of Operations Room} + \text{Cost of Surgeon}) \times \text{Time of Custom Procedure} \]
 \[\text{Unit: Dollar/Patients} \]
 \[\text{Comment: Cost of surgery includes cost of surgeon, cost of operation room and time of the procedure} \]

162. Total Duration of Custom Recovery=
 \[(\text{Custom Duration of Hospitalization} + \text{Custom Duration of Recovery at Home} + \text{Custom Duration of staying at Rehab}) \]
 \[\text{Unit: Month} \]

163. Cost of Hospitalization in Hospital for Custom=
 \[\text{Average Cost of Hospital Stay} \times \text{Custom Duration of Hospitalization} \]
 \[\text{Unit: Dollar/Patients} \]
 \[\text{Comment: Cost per patient for hospital stay for custom implant patients} \]

164. Patients Becoming Interested in Custom=
 \[\text{Probability of Contact with Custom Patients Discharged to Home} \times \text{Social Awareness} \]
 \[\text{Unit: Implants/Month} \]
 \[\text{Comment: Patients becoming interested in custom implants by having contact with patients who previously underwent the custom implant surgery} \]
Section 4: Model Calibration and Validation

While many of the model parameters are obtained from various existing datasets, there are no comprehensive data available for some parameters. In this situation, calibrating the model statistically to data would be a helpful method to estimate the unknown parameters. To do so, partial model calibration method (30) is used to calibrate different parts of the model separately. This method decreases the overfitting chances by providing robust estimates.

For some of the unknown parameters, calibration cannot be done; thus, several assumptions have been made based on empirical knowledge. Therefore, conducting sensitivity analysis is essential to test the sensitivity of the model to our assumptions.

4.1. Unknown Parameters Calibration

Table IR4 provides information on the calibrated model parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Increase Rate</td>
<td>0.0069</td>
<td>Calibration 1</td>
</tr>
<tr>
<td>Revision Surgery Rate</td>
<td>0.0875</td>
<td>Calibration 2</td>
</tr>
</tbody>
</table>

4.1.2. Calibration 1

- **Input:** Rate of incoming patients based on the historical data from different resources on Number of patients undergone primary knee replacement presented in Table IR1 (Section 1).
- **Payoff function:** Maximize the fit between the historical data and the simulation of patients decided to have knee replacement.
- **Result:** Finding the unknown parameter, Patient Increase Rate (Table IR4).

![Sub-Model Structure](image)

a) Sub-Model Structure (Estimated parameter is in green)
4.1.3. Calibration 2

- **Input:** Rate of OTS revision surgeries in 3 years after primary knee replacement. Data is available from different resources on Number of patients undergone revision knee replacement presented in Table IR1 (Section 1).
- **Payoff function:** Maximize the fit between the historical data and the simulation of patients undergone revision procedures.
- **Result:** Finding the unknown parameter, Revision Surgery Rate (Table IR4).

![Diagram of OTS Patients Undergoing Revision Surgery]

a) Sub-Model Structure (Estimated parameter is in green)
4.2. Unknown Parameter Assumptions

Table IR5 provides information on the parameter assumptions. Sensitivity analysis on some of the assumptions is provided in the Supporting Information (section 3).

Table IR5: Assumptions on Time Related and Model Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients Undergo Primary TKA at first month of 2017</td>
<td>110760</td>
<td>Estimated number of patients at 2017 by Kurtz S., et al. (1)</td>
</tr>
<tr>
<td>OTS Average Rehab Stay</td>
<td>4 Days</td>
<td>Rehab stay for patients with OTS implants is between 2 to 7 days. Assumed 4 days.</td>
</tr>
<tr>
<td>Custom Average Rehab Stay</td>
<td>3 Days</td>
<td>Rehab stay for patients with Custom implants is between 2 to 5 days. Assumed 3 days.</td>
</tr>
<tr>
<td>Surgeons Recommendation Effectiveness on other Surgeons for Custom Implants</td>
<td>30%</td>
<td>Presents the effectiveness of recommendation of early adopter surgeons on the surgeons who are becoming interested in using custom implants.</td>
</tr>
<tr>
<td>Fraction of Surgeons willing to Adopt Custom (Early Adopters)</td>
<td>1%</td>
<td>The number of early adopter surgeons assumed as 1% of total surgeons population (<300).</td>
</tr>
<tr>
<td>Surgeons to Adopters (Surgeons) Contact Rate</td>
<td>10/Month</td>
<td>It is assumed each surgeon has contact with 10 adopter surgeons each month.</td>
</tr>
<tr>
<td>Time to Adopt Custom (for Surgeons)</td>
<td>1 year</td>
<td>Presents the time period takes for a surgeon to be convinced and adopt the new technology after comparing patient outcome of the old and new products.</td>
</tr>
<tr>
<td>Time to Revert (from Custom for Surgeons)</td>
<td>6 months</td>
<td>Presents the time period takes for adopter surgeons to revert to the old product when they don’t see any improvements in patient outcome.</td>
</tr>
<tr>
<td>Time for Custom Reps to Adjust (their interests)</td>
<td>3 months</td>
<td>Presents the time takes for sales force to switch to promote new product after manufacturers turned their interests.</td>
</tr>
<tr>
<td>Surgeons Recommendation Effectiveness on Patients for Custom Implants</td>
<td>80%</td>
<td>Presents the effectiveness of recommendation of surgeons on their patients who are going to have knee replacement procedure.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Value</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Patient-Patient contact Rate</td>
<td>5 /year</td>
<td>It is assumed each patient has contact with 5 other patients who have done knee replacement before regarding their procedure outcome each year.</td>
</tr>
<tr>
<td>Adoption Fraction of the Patients due to Awareness</td>
<td>0.05</td>
<td>Presents the fraction of the new patients willing to adopt the new product due to their contacts with other patients who are using the new products.</td>
</tr>
<tr>
<td>Custom Design & Performance Improvement per Doubling of Cooperation</td>
<td>0.05/year</td>
<td>5% improvement is assumed for doubling the CIM implants manufacturers and surgeons cooperation based on the learning curve formulation of Sterman (31, 32).</td>
</tr>
<tr>
<td>OTS Design & Performance Improvement per Doubling of Cooperation</td>
<td>0.025/year</td>
<td>2.5% increase is assumed for doubling the cooperation of manufacturers and surgeons (31, 32). (Half the custom implants improvement rate)</td>
</tr>
<tr>
<td>Multiplication of OTS Product Cost for Custom Implants</td>
<td>1.25</td>
<td>Since the cost of Custom knee implants are very difficult to find, in the model, it is assumed that these implants cost 25% higher than OTS implants (33, 34).</td>
</tr>
<tr>
<td>Sales Reps Influence on promoting OTS (initial value)</td>
<td>0.7</td>
<td>The initial which also includes pricing arrangement between hospitals and producers of OTS implants considered as high (35).</td>
</tr>
<tr>
<td>Delay for Manufacturer to React to the Market Share to Adopt New Technology</td>
<td>3 years</td>
<td>Presents the time period takes for the implant manufacturers to switch to new technology when they see an increase in the market share of the new products.</td>
</tr>
</tbody>
</table>

4.3. Model Validation

In this section, we first validate the model by replicating the historical data for OTS implant procedures. In addition to OTS procedures, to show the model robustness, we added custom implant procedures from 1990-2012 and replicated the historical data one more time under that condition. Furthermore, we used the expected number of knee replacement procedures up to 2026 (3, 36, 37) and tested the model with the estimated data to find the parts of the model that can better represent the reality and the parts that produce more error. Figure IR5 illustrates the simulation results in comparison with historical and expected future data.
a) Availability of OTS only and comparison between incoming patients and simulated outgoing patients

b) Availability of OTS and CIM and comparison between incoming patients and simulated outgoing patients

c) Availability of OTS and CIM and comparison between expected number of incoming patients and simulated outgoing patients
Figure 1R5: a) Comparing historical data and simulation results from 1990 to 2012 when the OTS procedure is the only available option for patients. b) Comparing historical data and simulation results from 1990 to 2012 when the OTS and CIM procedures are both available. Based on the assumption that CIM procedure was available during that time to test the model reliability. c) Comparing expected data and simulation results from 2018 to 2026 when the OTS and CIM procedures are both available.

Concentrating on the physics of the model, which technically is the flow of patients, helped us to replicate the data with high correlation. The simple logical inflows and outflows of the stock variables could officially validate the model.
Section 5: Online Simulator Platform

To make it easier for users to run the model under different policy conditions without any software requirements, an online version of the model is developed using Forio which is accessible at: http://jalali.mit.edu/medical-tech-adoption

The interface of the online simulator is shown in Figure IR6. The online model can be simulated for periods of 1 and 3 years, or it can be simulated at once to the final time (2026). This provides the flexibility to incorporate various dynamic policies (by updating model parameters) midway through the simulation run and observe the results. The reset button returns the model to its initial conditions.

There are five parameters available to change in the online simulator:
1) Coverage of Insurance Bundled Payments for CIM: represents the coverage rate for CIM implants 0 and 90%.
2) Relative price of CIM implants to OTS: represents the magnitude of CIM implant price to OTS. The price of CIM can be changed from 0.5 to 3 times of the OTS price.
3) Percentage of performance improvement by year for either CIM or OTS implants: represents the improvement percentage in either procedure per year between 0 and 20% due to the improvement in the design phase.
4) Timesaving per procedure: represents the hours that can be saved by using CIM implant and instruments in each procedure.

The plots in the online simulator show the impacts of changing parameters above on readmission and revision surgery rates, total cost per patient, cumulative time saved for surgeons and hospitals per month, percentage of CIM adoption, and cumulative total costs for both CIM and OTS procedures.

Figure IR6: Online simulator interface
References