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ORIGINAL ARTICLE

Background: In 2012, the EPA enacted more stringent National 
Ambient Air Quality Standards (NAAQS) for fine particulate mat-
ter (PM2.5). Few studies have characterized the health effects of air 
pollution levels lower than the most recent NAAQS for long-term 
exposure to PM2.5 (now 12 μg/m3).
Methods: We constructed a cohort of 32,119 Medicare beneficiaries 
residing in 5138 US ZIP codes who were interviewed as part of the 
Medicare Current Beneficiary Survey (MCBS) between 2002 and 
2010 and had 1 year of follow-up. We considered four outcomes: all-
cause hospitalizations, hospitalizations for circulatory diseases and 
respiratory diseases, and death.
Results: We found that increasing exposure to PM2.5 from levels 
lower than 12 μg/m3 to levels higher than 12 μg/m3 is associated 
with increases in all-cause admission rates of 7% (95% CI = 3%, 
10%) and in circulatory admission hazard rates of 6% (95% CI = 
2%, 9%). When we restricted analysis to enrollees with exposure 

always lower than 12  μg/m3, we found that increasing exposure 
from levels lower than 8 μg/m3 to levels higher than 8 μg/m3 
increased all-cause admission hazard rates by 15% (95% CI = 8%, 
23%), circulatory by 18% (95% CI = 10%, 27%), and respiratory 
by 21% (95% CI = 9%, 34%).
Conclusions: In a nationally representative sample of Medicare 
enrollees, changes in exposure to PM2.5, even at levels consistently 
below standards, are associated with increases in hospital admis-
sions for all causes and cardiovascular and respiratory diseases. The 
robustness of our results to inclusion of many additional individual 
level potential confounders adds validity to studies of air pollution 
that rely entirely on administrative data.

(Epidemiology 2017;28: 627–634)

To protect public health and welfare against the dan-
gers of air pollution, the US Environmental Protection 

Agency (EPA) establishes National Ambient Air Quality 
Standards (NAAQS). In response to mounting evidence 
demonstrating the harmful effects of exposure to fine par-
ticulate matter, in 2012, the EPA enacted more stringent 
NAAQS for fine particulate matter (PM2.5). As air pollu-
tion standards decrease, regulatory actions are becoming 
increasingly expensive with the annual cost of implemen-
tation and compliance with the NAAQS reaching tens of 
billions of dollars.1,2 Although there are massive benefits 
to reduced air pollution levels3,4 that far exceed their costs, 
research examining the public health benefits of cleaner 
air will be subjected to immense scrutiny due to the poten-
tial costs associated with more stringent regulatory policy. 
Despite a substantial amount of epidemiologic literature 
on the health effects of long-term exposure to air pollu-
tion,5–13 few studies have characterized the health effects 
of air pollution at levels in accordance with or lower than 
the most recent NAAQS for long-term exposure to PM2.5 
(now set at 12 μg/m3). From this point forward, when we 
refer to the NAAQS, we will be referring to the long-term 
standards for PM2.5. Recent studies14,15 have found positive 
associations between short-term exposure to air pollution 
and mortality, whereas another study16 found a protec-
tive association of short-term PM2.5 with exacerbation of 
chronic obstructive pulmonary disorder. Positive asso-
ciations between long-term exposure to concentrations of 
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PM2.5 mostly below 12 μg/m3 and mortality were recently 
reported in a Canadian cohort.17 Additionally, there has 
been little scientific literature examining the effects of 
air pollution in smaller cities, towns, rural areas and areas 
with sparse monitoring. As air pollution levels decrease, 
studies are needed to determine if further reductions will 
lead to substantial improvements in health.

In addition, traditional observational cohorts have mod-
eled the outcome as a function of exposure and confounders. 
Provided that the confounder model is correctly specified 
(including no omitted confounders), such studies provide 
causal estimates of the effect of exposure, conditional on the 
covariates. More recent causal modeling approaches model 
exposure as a function of covariates, and conditional on the 
exposure model being correctly specified, can provide mar-
ginal estimates of the causal effects of exposure on outcome. 
Often this can be advantageous because many predictors of 
health (e.g., alcohol consumption) are not causes of air pollu-
tion, but are indirectly associated with it through a common 
cause, such as socioeconomic status. It may be easier to model 
the effect of income on exposure than the effect of alcohol on 
cardiovascular disease. We have applied one such causal mod-
eling approach to our data.

In this study, we build upon the existing literature in 
several ways: (1) we use inverse probability weighting (IPW), 
enabling us to estimate: (a) the “causal” effects of increas-
ing PM2.5 levels from below 12 μg/m3 to above 12 μg/m3 
and (b) the causal effects of increasing PM2.5 from below 8 
μg/m3 to above 8 μg/m3 but always below 12 μg/m3; (2) we 
use estimates of fine particulate matter (PM2.5) on a 1 × 1 km 
grid to compute exposure at the ZIP code level; (3) we use 
open cohort data from Medicare claims data, which allow us 
to enroll new individuals each year and examine the health 
effects over time as air pollution levels continue to decline; 
(4) we link Medicare claims data to data from the Medicare 
Current Beneficiary Survey (MCBS),18 which provides infor-
mation on an extensive list of individual level behavioral risk 
factors and allows us to control for important confounders 
such as body mass index (BMI) and smoking habits; and (5) 
we assess the sensitivity of our estimates of causal effects with 
respect to several modeling assumptions including the fol-
lowing: (a) restriction of our study population to individuals 
already exposed to low pollution levels (<12 μg/m3) and most 
importantly (b) inclusion/exclusion of a large set of individual 
level behavioral risk factors (such as smoking and BMI) when 
we consider methods for confounding adjustment. Assessing 
the robustness of causal effects of air pollution to the lack of 
adjustment for these individual level behavioral risk factors is 
very important as these factors are generally hard to measure 
and only available from cohort studies.

METHODS
This study was approved by the Institutional Review 

Board from the Harvard T.H. Chan School of Public Health.

Medicare–Medicare Current Beneficiary Survey 
Cohort

We consider all Medicare fee-for-service enrollees who 
reside in the continental United States and participated in the 
Medicare Current Beneficiary Survey (MCBS) from 2002 to 
2010. This allows us to construct an open cohort of N = 32,119 
Medicare beneficiaries residing in 5138 unique ZIP codes. 
The MCBS is a representative survey of the Medicare popu-
lation. It is designed as a rotating panel, where every MCBS 
participant is interviewed three times a year for a maximum of 
four consecutive years. For the purposes of this study, we only 
retained one interview per year, leading to a total of 68,789 
unique patient-years. We defined the reference date to be the 
last interview date in a given year. Figure 2 shows the timeline 
and study design.

We excluded patients not enrolled in Medicare for the 
entire look back period and outcome observation period. 
Specifically, we excluded patients who are not yet enrolled in 
Medicare or ones who are enrolled in a Healthcare Mainte-
nance Organization (HMO). We also excluded patients who 
reside in US outlying territories. Details regarding inclusion/
exclusion criteria are described in Figure 1.

Low Pollution Cohort
We created a “low pollution cohort” that only includes 

those individuals from the full cohort whose exposure to 
PM2.5 is lower than 12 μg/m3 during the 2-year period prior to 
the reference date. This reduces the number of unique subjects 
included in the cohort from 32,119 to 18,144. The purpose 
of constructing the low pollution cohort is to assess if there 
is evidence of a causal effect of air pollution on health out-
comes even among individuals with exposure levels that are 
already below the annual NAAQS. In particular, we will use 
this cohort to examine if there exists a further reduction in 
risk for subjects exposed to PM2.5 less than 8 μg/m3, which 
has been identified by previous work as a level with low risk.19

FIGURE 1.  Inclusion criteria and cohort creation. Medicare 
FFS enrollees residing in continental US participating in the 
MCBS. FFS indicates fee-for-service.
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Study Design
Exposure to PM2.5

To estimate daily levels of PM2.5 for the entire study period 
(2002–2010) and for every ZIP code included in the study, we 
applied a previously developed exposure prediction model.20 This 
model integrates satellite-based aerosol optical depth measurement, 
chemical transport model simulation, meteorologic variables, land-
use terms, and other auxiliary variables. We trained this hybrid 
model to monitor PM2.5 with a neural network. Neural networks 
account for nonlinearity and interactions between variables, thus 
improving model performance. We used the trained neural network 
to estimate daily PM2.5 on a 1 × 1 km grid for the entire continen-
tal United States. We then estimated each individual’s exposure to 
PM2.5 by averaging PM2.5 levels across space (from the 1 × 1 km 
grid to ZIP code of residence) and across time (for the 2 years prior 
to the reference date) (Figure 3). In previous work,20 we reported 
a 10-fold cross validation of R2 = 0.84 for daily measurements, at 
the monitoring sites, for the period 2000–2012, and for the entire 
continental United States. This indicates high correlation between 
predicted and monitored PM2.5. This correlation is anticipated to 
be even higher when we aggregate these values across time (day to 
year) and across space (1 × 1 km grid cells to ZIP code). For further 
details of the exposure assessment, refer to Di et al.20

Outcome Observation Period
We identified a 1-year follow-up period from the refer-

ence date to ascertain health outcomes from the claims data 
(Medicare Provider Analysis and Review [MedPAR] part A). 
We considered the following: (1) all-cause mortality; (2) all-
cause hospitalizations; (3) hospitalizations with a coded circu-
latory disease (International Classification of Diseases, Ninth 
Revision [ICD-9]: 390–459); and (4) hospitalizations with a 
coded respiratory disease (ICD-9: 460–519). Diagnoses, pro-
cedures, and outcomes are defined according to the highest 
level of the ICD-9 hierarchy.

Potential Confounders
Data extracted from multiple sources (listed below) pro-

vide information on a total of 122 potentially confounding fac-
tors. eTable 1 (http://links.lww.com/EDE/B215) summarizes 

the mean and standard deviation of all variables and outcomes 
in the study, separately for exposure higher and lower than 12 
μg/m3, respectively.

MCBS Data
For each enrollee in the MCBS–Medicare cohort, we 

extracted an extensive list of potential confounders from the 
MCBS data that are collected at the reference date. These 
include the following: patients’ functional status (e.g., if they 
have difficulty walking), their behavioral risk factors (e.g., 
smoking status), and their detailed demographics (e.g., mari-
tal status and level of education) among others (P = 73), where 
with P we denote the total number of observed covariates.

Look Back Period
We extracted information from Medicare claims data 

on individual level comorbidity during the 1-year look back 
period. Specifically, from Medicare part A, we constructed 
several binary variables encoding the presence or absence of a 
number of procedures during hospitalization (e.g., operations 
on the digestive system) (P = 27). Basic patient demographics 
(e.g., age, race, gender, and mailing ZIP code) are collected 
from the Master Beneficiary Summary and the Denominator 
files (P = 9).

ZIP Code Level Data
Finally, we gather ZIP code level data including urban-

ization score as estimated by the US Department of Agricul-
ture (USDA) (P = 3) and socioeconomic variables from the 
US Census (P = 10).21

Main Analysis
Throughout, we will be relying on three key assump-

tions necessary for making causal statements: the stable unit 
treatment value assumption, positivity, and the assumption of 
no unmeasured confounding. The stable unit treatment value 
assumption22 assumes that the outcome of a given observa-
tional unit is not affected by the treatment assignment (i.e., 
exposure to high vs. low pollution levels) received by another 
unit. Positivity states that all experimental units have a positive 

FIGURE 2.  Data collection process for a hypothetical 
patient.

http://links.lww.com/EDE/B215
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probability of receiving each level of treatment (i.e., expo-
sure to high or low levels of air pollution). We will assess this 
assumption by looking at propensity score overlap in eFigure 
1 (http://links.lww.com/EDE/B215) and find that it is reason-
able. Finally, no unmeasured confounding implies that our full 
set of available covariates (P = 122) is adequate to adjust for 
residual confounding. This assumption is not testable, but we 
argue that it is unlikely that there exists covariates that are 
uncorrelated with the P = 122 observed covariates and that 
can lead to confounding bias.

We applied inverse probability weighting (IPW)23–26 to 
the full cohort and to the low pollution cohort (LPC) to esti-
mate the causal hazard rate ratio, which can be interpreted 
as the hazard of mortality (or hospitalization) at any time t 
had all subjects been exposed to PM2.5 levels higher than 12 
μg/m3 (in the low pollution cohort: higher than 8 μg/m3, but 
always lower than 12 μg/m3) divided by the hazard of mor-
tality (or hospitalization) at time t had all subjects had been 
exposed to PM2.5 levels lower than 12 μg/m3 (in the low pol-
lution cohort: lower than 8 μg/m3). The estimation of causal 
effects using IPW involves two steps: (1) estimation of the 
inverse probability weights, denoted swi and (2) fitting a Cox 
proportional hazards model26 to the observations weighted by 
swi. Specifically:

Step 1: Inverse Probability Weighting: Let Ti repre-
sent the binary exposure for subject i. More specifically, we 
assumed that Ti = 0 when PM2.5 < 12 and Ti = 1 when PM2.5 > 
12 for the full cohort. In the low pollution cohort, Ti = 0 when 
PM2.5 < 8 or Ti = 1 when 8 < PM2.5 < 12. We denote by Ci  the 
full set (P = 122) of individual level and ZIP code level covari-
ates. For each subject, we estimate swi as follows:

sw
P T t

P T t C ci
i i

i i i i

=
=( )

= = )( |

IPW weighting should produce a weighted sample 
where the distribution of covariates is balanced with respect 
to Ti, and hence allow a causal estimate of the effect of Ti.

Step 2: Cox Proportional Hazards Model: We then fit to 
the data a Cox proportional hazards model where every indi-
vidual observation is weighted by swi. The left tail and the 
right tail of the weights are truncated at the 10th and 90th 
quantiles of the distribution of the standardized weights, to 
mitigate the effect of excessively large or small weights.25,28 
Time to event is calculated as the time from reference date 
until death, the first respiratory, circulatory, or all-cause hospi-
talization (Figure 2). Death dates are censored at the end of the 
1-year outcome observation period. Hospitalization dates are 
censored at the end of the 1-year outcome observation period 
or death, whichever comes first. We calculate 95% confidence 
intervals based on robust, sandwich variance estimators29 
to take into account within-subject correlation induced by 
repeated measures, the standardized weights, and correlation 
between subjects living in the same ZIP code.

To measure the potential public health impact of lower-
ing pollution levels below 12 μg/m3, we calculated the number 
of events attributable to a change in long-term exposure to 
PM2.5 from below 12 μg/m3 to above 12 μg/m3. We used the 
formula A = N × (1 − [1/HR]), where HR is the hazard ratio 
comparing exposure above and below 12 μg/m3, N is the num-
ber of events in the Medicare population, and A is the number 
of events attributable to an increase in PM2.5 from below to 
above 12 μg/m3.

Sensitivity Analyses
We conducted several sensitivity analyses, summarized 

in eTable 2; http://links.lww.com/EDE/B215. First, to directly 
compare our results to the American Cancer Society (ACS) 
Cohort and the Harvard Six Cities studies,5,6,30–32 we analyzed 
the data using a standard Cox proportional hazards model 
with continuous exposure and adjustment for confounding by 
including all the available covariates as linear terms into the 
model (SA1, eFigure 2; http://links.lww.com/EDE/B215 and 
eTable 3; http://links.lww.com/EDE/B215). Second, we per-
formed a Wald test to assess if there is evidence of the non-
linearity of the exposure–response function (SA2, eTable 4; 

FIGURE 3.  Average exposure in the year 2002 for 
each of the 5138 ZIP codes included in the study. 
These are estimated exposures as described in Di et 
al.20

http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
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http://links.lww.com/EDE/B215), and we plotted the result-
ing nonlinear exposure–response curves (SA2, eFigure 3; 
http://links.lww.com/EDE/B215). Third, we ran the analyses 
restricting to subjects living in areas with long-term expo-
sure to PM2.5 less than 12 μg/m3, though we use as an expo-
sure a binary indicator of being below 10 μg/m3 instead of 8 
μg/m3 as done in the main analysis (SA3, eFigure 4; http://
links.lww.com/EDE/B215 and eTable 5; http://links.lww.com/
EDE/B215). Finally, we investigated the sensitivity of the 
results to the exclusion of the behavioral risk factors extracted 
from MCBS data (e.g., smoking, BMI) from the confounding 
adjustment.

RESULTS
Table  1 summarizes the main characteristics of the 

MCBS–Medicare cohort (for both the full and low pollution 
cohorts) in comparison to the characteristics of the cohorts 
from the two original landmark studies—the ACS and Six 
Cities studies.5,6,30–32 Note that in our study, the average level 
of PM2.5 (equal to 12 μg/m3) is substantially lower than what 
was observed in the Harvard Six Cities Study and in the ACS 
Cohort (16.4 and 17.7 μg/m3, respectively).

Figure 3 shows the average PM2.5 exposure in the 5138 
ZIP codes (1067 unique counties) where MCBS enrollees 
resided in 2002. During the 1-year follow-up period from the 
reference date, 4.95% died, 22.2% had one or more hospital-
izations, 19% were hospitalized at least once with a circula-
tory disease, and 9.7% were hospitalized at least once for a 
respiratory disease.

Table 2 summarizes the results of IPW applied to both 
the full cohort and the low pollution cohort. We estimated that 
increasing long-term exposure to PM2.5 from levels lower than 
12 μg/m3 to levels higher than 12 μg/m3 causally increases 

all-cause admissions and circulatory admission hazard rates 
by 7% (95% CI = 3%, 10%) and 6% (95% CI = 2%, 9%), 
respectively. This implies that the total number of all-cause 
admissions and circulatory admissions from 2002 to 2010 in 
Medicare attributable to an increase in long-term average PM2.5 
levels from below 12 μg/m3 to above 12 μg/m3 is estimated to 
be 5,861,028 and 1,417,962, respectively. We did not find evi-
dence of an increase in mortality or respiratory admissions. 
We also estimated that in the low pollution cohort, increasing 
PM2.5 levels from below 8 μg/m3 to above 8 μg/m3 (but always 
lower than 12 μg/m3) causally increases all-cause, circulatory, 
and respiratory admission hazard rates by 15% (95% CI = 8%, 
23%), 18% (95% CI = 10%, 27%), and 21% (95% CI = 9%, 
34%), respectively, and all these effects were statistically sig-
nificant. We did not find evidence of an increase in mortality.

Figure 4 illustrates the sensitivity of the results sum-
marized in Table 2 with respect to omission of all the MCBS 
variables when estimating swi . Each panel summarizes the 
results for a different outcome (all-cause hospitalization, cir-
culatory hospitalization, death, respiratory hospitalization). 
Within each panel, we illustrated the results for both the full 
cohort and LPC. Estimates in red are obtained when we use 
the entire set of all the available potential confounders to 
adjust for confounding (122 potential confounders). Esti-
mates in blue (claims only) are obtained when we exclude 
the MCBS variables (P = 122–73 = 49) in the approach for 
confounding adjustment. The fact that blue and red esti-
mates are highly overlapping, indicate that our conclusions 
are robust to the exclusion of the MCBS variables among 
the confounding variables used for the adjustment.

More generally, results from the sensitivity analyses (SA1, 
SA2, and SA3) mentioned in the Methods section and reported 
in the supplementary material suggest that our estimates are 

TABLE 1.  Summary Statistics of the MCBS–Medicare Full and Low Pollution Cohorts in Comparison to Other Cohorts

Characteristic
MCBS–Medicare Full 

Cohort

MCBS–Medicare Low 
Pollution Cohort (Cohort 

with Annual PM2.5 <12 μg/m3)
American Cancer Society 

Cohort (Pope et al)6,12

Harvard Six Cities Study 
Cohort (Dockery et al5 and 

Laden et al31)

No. individuals 32,119 18,144 ~293,000 ~8,000

Mean age at enrollment 72.0 72.3 58.6 49.7

No. years of follow-up from interview 

date

1 1 18 24

Study period 2002–2010 2002–2010 1982–2000 1974–1998

Time period where exposure was 

measured

2000–2010 2000–2010 1979–1983, 1999–2000 1979–1988, 1990–1998

Spatial resolution for exposure 

assessment

ZIP codes (N = 5,138) ZIP codes (N = 3,079) Counties (N = 50) Cities (N = 6)

PM2.5 during the study period (μg/m3); 

mean (IQRW)

12 (3.41) 10.18 (2.46) 17.7 (3.7) 16.4 (5.6)

No. confounders 122 122 ~50 ~40

Table 1 summarizes the main characteristics of the MCBS–Medicare cohort (for both the full and low pollution cohorts) in comparison to the characteristics of the cohorts from the 
two original landmark studies–the ACS and Six Cities studies.5,6,30–32 Note that in our study, the average level of PM2.5 (equal to 12 μg/m3) is substantially lower than what was observed 
in the Harvard Six Cities Study and in the ACS Cohort (16.4 and 17.7 μg/m3, respectively).

IQRw indicates interquartile range width.

http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
http://links.lww.com/EDE/B215
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largely robust across different statistical methodologies, model 
misspecification, and confounder exclusion. Importantly, as 
summarized in the supplemental material, our analyses using 
a standard Cox proportional hazards model with continuous 
exposure also found significant effects for hospitalizations.

DISCUSSION
We have combined several sources of data and con-

structed the MCBS–Medicare cohort to address the following 
three questions: (1) does increasing the level of PM2.5 from 
below 12 μg/m3 to above 12 μg/m3 causally increase deaths 
and hospitalizations; (2) among individuals with exposure lev-
els below 12 μg/m3, does increasing the level of PM2.5 from 
below 8 μg/m3 to above 8 μg/m3 causally increase deaths and 
hospitalizations; and (3) does exclusion of individual level 
behavioral risk factors materially affect our estimates?

The Harvard Six Cities Study5,31 and the ACS Study6,12 
are two landmark epidemiologic cohort studies that had an 
enormous impact on our understanding of the health effects 

of air pollution. However, these studies have limited statisti-
cal power to detect the effects of low levels of air pollution, 
particularly because most of their subjects reside in urban 
areas where pollution levels tend to be higher. The Six Cities 
Study5,31 and the ACS Study6,12 are also limited by the fact 
that they are closed cohort studies in the sense that they do 
not allow enrollment of new individuals into the cohort. As 
such, these studies are less able to estimate the health effects 
of recent air pollution, nor can they track health effects over 
time. To overcome this challenge, more recent epidemiologic 
studies have leveraged “open” cohort data, such as Medicare 
claims, which permit new enrollees to enter the cohort each 
year. Our study leverages Medicare claims data combined 
with data on individual level behavioral risk factors, an impor-
tant factor missing in previous studies. Including individual 
level behavioral risk factors in our analysis is very important 
as these factors are generally hard to measure and are only 
available from cohort studies. To our knowledge, this is the 
first epidemiologic study that estimates the effects of low 

TABLE 2.  Hazard Ratios Showing the Effect of Living in a High Pollution Versus Low Pollution

 
Full Cohort, Threshold = 12 μg/m3, N = 32,119, 

Person-years = 68,789
Low Pollution Cohort (Cohort with Annual PM2.5 <12 μg/m3), 

Threshold = 8 μg/m3, N = 18,144, Person-years = 34,429

All-cause mortality 0.97 (0.90, 1.04) 1.11 (0.97, 1.28)

All-cause hospitalization 1.07 (1.03, 1.10) 1.15 (1.08, 1.23)

Circulatory hospitalization 1.06 (1.02, 1.09) 1.18 (1.10, 1.27)

Respiratory hospitalization 1.03 (0.98, 1.08) 1.21 (1.09, 1.34)

Hazard ratios are computed using inverse probability weighting. Table 2 reports 95% confidence intervals based on robust, sandwich variance estimators.

FIGURE 4.  Sensitivity to exclusion of MCBS variables: hazard ratios and 95% confidence intervals based on robust, sandwich vari-
ance estimators computed including (red) and excluding (blue) MCBS variables.
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levels of air pollution using claims data augmented with indi-
vidual level behavioral risk factors, thus overcoming the com-
mon criticism that studies that rely entirely on claims data are 
myopic to important potential confounders.

Our study uses inverse probability weighting, enabling 
us to estimate causal effects. The results are consistent with 
existing literature on the adverse health effects of long-term 
exposure to PM2.5. We found robust evidence that increasing 
long-term exposure to PM2.5 (2 years average) from levels 
lower than 12 μg/m3 to levels higher than 12 μg/m3 increases 
all-cause admissions and circulatory admission hazard rates; 
and among individuals with exposure levels below 12 μg/m3, 
exposure to PM2.5 levels above 8 μg/m3 increases all-cause, 
circulatory, and respiratory admission hazard rates. We also 
found evidence that the marginal benefit is increasing at lower 
concentrations: in the low pollution cohort, an increase of 
PM2.5 from below 8 μg/m3 to above 8 μg/m3 led to a 15% 
increase in hospitalization rate, whereas in the full cohort, an 
increase of PM2.5 from below 12 μg/m3 to above 12 μg/m3 
led to a 7% increase in hospitalization rate. This evidence is 
consistent with our previous work.34 Our additional analyses, 
which include the whole Medicare population, have relied on 
much larger statistical power to test this hypothesis.35

Our study has several strengths that can be leveraged in 
future studies. Previous studies assign each subject an average 
exposure aggregated at the county or at the larger metropolitan 
area level, which is a coarse indicator of a subject’s exposure to 
air pollution that lends itself to exposure measurement error.36,37 
For this study, we estimate exposure on a 1 × 1 km grid to com-
pute exposure at the ZIP code level. These estimates, obtained 
from previous work,20,38–41 allow us to directly study the effects 
of low levels of pollution with an unprecedented scale of spa-
tial resolution. Importantly, we also investigated the sensitivity 
of the results when we exclude from the confounding adjust-
ment all of the behavioral risk factors (P = 73) measured in the 
MCBS (e.g., smoking, BMI) and found that the results do not 
change. This finding indicates that claims data combined with 
ZIP code level data on risk factors and socioeconomic data are 
sufficient to rigorously estimate the health effects of air pol-
lution when using ZIP code level exposure data. Thus, results 
from this study indicated that expensive and potentially time 
consuming collection of a large set of individual level behav-
ioral risk factors, although potentially useful for exploring sus-
ceptibility and effect modification, is not critical to adjust for 
confounding bias. Furthermore, the results of this analysis add 
validity to air pollution epidemiologic investigations that rely 
entirely on administrative and therefore publicly available data.

Despite robustness of results, our results have certain 
limitations that will be important to address in future studies. 
Our study population is markedly smaller than the population 
included in the ACS Study (Table 1). To increase our sample 
size, we included all individuals who had an MCBS interview 
at any point during the study period 2002–2010, thus restricting 
the follow-up period to only 1 year. The limited sample size and 

limited follow-up period might be the reason why we did not 
find an effect for mortality, only 4.95% of whom died versus 
22.2% who were hospitalized. In another recent study conducted 
by the same team and that includes the entire Medicare popu-
lation (approximately 60 million participants) with an average 
follow-up of 7 years, we report an association between long-
term exposure to PM2.5 and mortality, even at levels below the 
12 μg/m3.35 Another limitation in our study was analyzing the 
data assuming that exposure is binary and time invariant. These 
are strong assumptions but allow for simple interpretation of the 
results and for visual inspection of the balance across covariates 
before and after stratifying on the estimated propensity score, 
thus substantially increasing the level of confidence in our results 
with respect to proper adjustment for confounding. In addition, 
we conducted analyses using a continuous exposure and a Cox 
proportional hazard model and found the same results.

As more data become available, future studies will be 
able to repeat these analyses routinely and with a longer follow-
up period. In addition, because our cohort is open in the sense 
that it allows for new enrollment every year (US elderly >65 
that enters into fee-for-service Medicare), our findings allow 
for continued monitoring of the health effects as air pollution 
continues to decline. Our analyses can be repeated routinely 
every few years as new claims data become available to track 
the effectiveness of regulatory actions and mitigation strategies 
over time. Also, unlike more traditional closed cohort prospec-
tive studies, this study utilizes publicly available data, which 
permits other entities with access to the Medicare claims data 
to reproduce our results as a validity check.

Results from this study have important implications 
for policymakers. With data from 5138 unique ZIP codes, 
spanning 1067 unique counties over a period of 9 years and 
measuring 122 potential confounders, this work provides 
compelling evidence that substantial public health benefits 
have accrued from compliance with the annual NAAQS. The 
evidence also suggests that further reductions in PM2.5 below 
the current NAAQS would provide additional benefits. The 
number of cases avoided as a result of compliance is large 
compared with most public health measures.
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