Relating ambulatory voice measures with self-ratings of vocal fatigue in individuals with phonotraumatic vocal hyperfunction

Daryush D. Mehtaa,b,c, Jarrad H. Van Stanb,c, Maria Lúcia Vaz Massonb,d, Marc Maffea,c, Robert E. Hillmana,b,c

aMassachusetts General Hospital, Boston, MA; bHarvard Medical School, Boston, MA; cMGH Institute of Health Professions, Boston, MA; dFederal University of Bahia, Brazil

Motivation
Advancements in mobile and wearable technologies continue to enhance ambulatory voice monitoring for the improved assessment and treatment of behavioral-based voice disorders. Phonotraumatic vocal hyperfunction is one common behavior-based voice disorder associated with faulty patterns of chronic vocal behavior that result in vocal fold tissue trauma, such as nodules or polyps. As a result, individuals often exhibit dysphonia and elevated levels of vocal fatigue.

Study Design
This study investigated the relationships between self-ratings of vocal fatigue and ambulatory voice measures in adult patients with vocal fold nodules or polyps. Using a smartphone-based ambulatory voice monitor, self-ratings were provided on a visual analog scale at five-hour intervals during the day, and data were continuously recorded from a subglottal neck-surface accelerometer.

Three vocal status prompts on visual analog scales from 0–100: Difficulty producing soft, high-pitched phonation (D-SHP); Discomfort; and Fatigue:

<table>
<thead>
<tr>
<th>D-SHP</th>
<th>Discomfort</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤15</td>
<td>≤70</td>
<td>≤70</td>
</tr>
<tr>
<td>>15</td>
<td>≤80</td>
<td>≤80</td>
</tr>
</tbody>
</table>

Voice dosimetry metrics and summary statistics of ambulatory voice measures were computed from voiced phrases preceding the self-rating prompts, often including the standardized Rainbow Passage:

- Phonation time (% of voiced frames)
- Cycle dose (cycles)
- Distance dose (m)
- Low-to-high spectral ratio (dB)
- Fundamental frequency (%) of first non-zero spectral peak
- Cepstral peak prominence (dB SPL)
- Sound pressure level (dB SPL)
- Harmonic spectral tilt (dB/oct)
- Subharmonic peak prominence (0–1)
- Autocorrelation peak prominence (0–1)

Results: Example Daily Voice Use Profile

Results: Significant Changes in Self-Ratings of Vocal Fatigue
Given the variance inherent in perceptual judgments, the analysis focused on comparisons between time periods that exhibited clinically significant differences in self-ratings (>19.7 points on a 100-point scale), approximately one standard deviation in patients:

<table>
<thead>
<tr>
<th>Vocal status question</th>
<th>Patients with nodules or polyps</th>
<th>Matched-control subjects with typical voices</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-SHP</td>
<td>43.2 (20.6)</td>
<td>5.8 (7.5)</td>
</tr>
<tr>
<td>Discomfort</td>
<td>36.9 (20.0)</td>
<td>5.0 (6.6)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>42.5 (20.3)</td>
<td>6.4 (8.1)</td>
</tr>
</tbody>
</table>

Conclusion
An initial look at relationships among self-ratings of vocal fatigue and objective, ambulatory voice measures was undertaken. Further study is needed to investigate subject-specific relationships and treatment-related effects due to laryngeal surgery and/or voice therapy. Ambulatory measures of glottal airflow are hypothesized to yield clinically salient measures of the voice source that relate strongly to self-ratings of vocal status.

Acknowledgments
This work was supported by the Voice Health Institute and the National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders under Grant R01 DC011488. Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH or Mass General would like to thank CNPq for the postdoctoral scholarship.