1 General notation

1.1 Sizes and common indexes:

\((i) \) Superscript refers to the \(i \)th training example.

\([l] \) Superscript refers to the \(l \)th layer in the neural network.

\(\{i\} \) Superscript refers to the \(i \)th minibatch.

\(m \) Number of examples in the dataset, or minibatch, depending on context.

\(n_x \) Input size.

\(n_y \) Output size.

\(n_h[l] \) Number of hidden units of the \(l \)th layer.

\(L \) Total number of layers in the network.

1.2 Objects:

\(X \in \mathbb{R}^{n_x \times m} \) Input matrix.

\(Y \in \mathbb{R}^{n_y \times m} \) Label matrix.

\(x^{(i)} \) \(i \)th training example.

\(y^{(i)} \) \(i \)th label.
$W^{[l]}$ Weight matrix of layer l.

$b^{[l]}$ Bias vector of the lth layer.

$\hat{y} \in \mathbb{R}^{n_y}$ Predicted output vector.

1.3 Common forward propagation equations:

- $z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$ Linear combination at layer l.
- $a^{[l]} = g(z^{[l]})$ Output after activation function.
- $g(\cdot)$ Activation function: ReLu, tanh, sigmoid, etc.
- $\hat{y} = a^{[L]}$ Predicted output vector.
- $x = z^{[0]} = a^{[0]}$ Input vector.

1.4 Example of neural network

![Diagram of a neural network with 3 hidden layers and 4 input nodes.](image)

Figure 1: Example of neural network of depth $L = 3$. Weight and offset parameters have been omitted for clarity.
1.5 Convolutional networks

\[n_W^{[l]} \] Width size of the output at the \(l \)th layer.

\[n_H^{[l]} \] Height size of the output at the \(l \)th layer.

\[n_C^{[l]} \] Number of filters (channels) at the \(l \)th layer.

\(f \) Filter size of the convolutional layer.

\(p \) Padding value of the convolutional layer.

\(s \) Stride size of the convolutional layer.

Acknowledgements

The notation used has been heavily inspired from the deeplearning.ai course.