Examples of convolutional neural networks

Javier Zazo

April 12, 2018

Abstract

In this section we will describe some of the famous convolutional networks that have popularized deep learning and their architectures. We will learn from examples the good practices that help implement successful networks. These include LeNet-5, AlexNet, VGG-16 and Inception nets. We will also discuss the the principles that allow to use deeper and deeper layers, describing ResNets, Network-in-network and the Inception networks.

1 Overview of ConvNets

We have seen in class the motivations to use convolutional networks and the different layers that compose them. Some of the reasons to use them are the following:

• They require less parameters (weights) to learn than a fully connected network.

• They are invariant to object translation and can tolerate some distortion in the images.

• They are very capable of generalizing and learning features from the input domain.

Convolutional networks are constituted by convolutional layers, pooling layers and fully connected layers. We describe them briefly.
1.1 Convolutional layers

Convolutional layers are formed of filters, feature maps and activation functions. Filters (or kernels) perform essentially the convolution in the layer, and their size determine the number of parameters to train the network. If the input layer is an image, the filter will convolve with the image pixels. In deeper layers, the filter will convolve with different features.

The feature map is the output of the filter applied to the output of a previous layer. Depending on the stride of the feature map (the number of pixels that the filter moves from one sampling of the output to the next one) and the padding of the input layer (the number of zeros added at input layer to control the size of the convolution), the output size is determined. The formula that governs the output size is the following:

$$n_{\text{output}} = \left\lfloor \frac{n_{\text{input}} - f + 2p}{s} + 1 \right\rfloor,$$

(1)

where \(f\) refers to the filter size, \(s\) to the stride and \(p\) to the padding size. Symbol \(\lfloor \cdot \rfloor\) indicates floor integer rounding.

The convolutional layer may incorporate several channel filters, whose number constitutes a design decision for every layer. In modern networks the design principles recommend that layers increase the number of channel filters and decrease the size of the input layers as we move deeper into the network.

As an example of design sizes, consider an input image of 63 \(\times\) 63 pixels. If we use 8 filters of size \(f = 3\), \(s = 1\) and \(p = 1\), we end up with an output of 63 \(\times\) 63 \(\times\) 8. This called ‘same’ convolution, because the padding helps the output be the same size as the input. If we used 8 filters with \(f = 3\), \(p = 0\) and \(s = 2\), we would have an output of 30 \(\times\) 30 \(\times\) 8. This is called ‘valid’ convolution, and it reduces the input layers size. The number of channels \(n_C = 8\) is decided across layers.

Finally, a convolutional layer normally ends with a nonlinear element-wise activation function. In modern networks these functions are normally ReLu units.

1.2 Pooling layers

The pooling layers generally down-sample the previous layer’s feature maps, normally presenting a stride value > 1. They also normally follow a sequence
of one or more convolutional layers and are intended to consolidate the features learned and expressed in the previous layers feature map. As such, pooling may be considered a technique to compress or generalize feature representations and generally reduce the overfitting of the training data by the model.

Pooling layers are in general very simple, normally taking the maximum or average of the affected inputs. The max-pooling is normally the default choice for pooling.

1.3 Fully connected layers

Fully connected layers (FC) are normal flat feed-forward type of layer. These kind of layers are normally at the end of a convolutional network. To connect these layers with a typical convolutional or pooling layer, their output is normally vectorized, and then connections are established to the subsequent FC layer. These neurons also incorporate nonlinear activation functions typical of feed-forward networks, such as ReLu, sigmoid, tanh or cross-entropy for output validation.

1.4 First example

We consider a very simple convolutional network of four layers. The input to the network 32 × 32 pixel images with single grey channel. After the input follows a convolutional network with filters of size 5 × 5 (f = 5), we apply stride s = 1 and add no padding (‘valid’ convolution). We consider 10 filters
for this layer, which produces $5 \times 5 \times 10 + 10$ with bias weight parameters for this layer. Applying equation Equation (1) the output is $28 \times 28 \times 10$.

The next layer is a max-pooling layer with filter size $f = 2$, stride $s = 2$ and no padding. At this layer we have to use 10 filters because the number of channels is fixed to the input size in pooling layers. This gives an output of size $14 \times 14 \times 10$. There are no parameters to learn in this layer, it is completely defined as it is.

Then, we vectorize the output of the pooling layer and obtain a vector of size 1,960. We add a fully connected layer of 200 neurons, and connect every vector component with every neuron. That incorporates 392,000 weights plus 200 bias terms to be learned at this layer.

The network is completely designed after adding a binary cross-entropy layer, or softmax output neuron for a classification problem. The network is depicted in Figure 2. There are a total of 392,460 parameters that define the network.

Figure 2: A small neural network with a total of 392,460 parameters.

2 Classic Networks

We now present a few neural networks that were successful for certain applications in the deep learning literature. The motivation behind looking at these examples is to help you build your own models learning from successful networks and extrapolate their architectures to your application of interest. A second motivation is to possibly reuse existing architectures and use them in different problems. This is normally regarded as transfer learning, taking a fully trained network and only retraining the last layer to obtain a different
Finally, by recognizing these networks you will be able to evaluate and assimilate other modern networks from the deep learning literature.

2.1 LeNet-5

This network was presented in [1] and introduced a convolutional network to classify hand written digits. It is depicted in Figure 3. Its formulation is a bit outdated considering current practices, but it follows the idea of using convolutional networks followed by pooling layers and finishing with fully connected layers. Furthermore, it also starts with higher dimensional features and reduces its size in deeper layers as well as it increases the number of channels.

This network has in total around 60k parameters. Originally, the final layer did not include a softmax structure but a different classifier, which is now out of use. Additionally, the network did not employ ReLu units as it is now usual. Nonetheless, it is one of the first modern classifiers that presented high accuracy for digit classification. Current benchmarks of famous databases can be found in [2].

2.2 AlexNet

This network architecture was presented in [3] and was trained to classify 1.2 million high-resolution (227x227x3) images in the ImageNet contest from 2010. The classification problem expanded 1000 different classes, and the network achieved minimum error rates at the time of presentation. The architecture is presented in Figure 4.

This network was much bigger than previous ones, with around 60 million parameters to optimize. It also used ReLu units in all layers except on the
output layer, using a softmax unit of size 1000 for the different categories. The paper also included a novel procedure to train the network using parallel GPUs, but these details are no longer needed to train modern networks. It used dropout as regularization procedure, and local response normalization (LRN). LRN aims to normalize the values in the channel dimension, so as to limit the number of activating neurons after the ReLu units. The technique is no longer frequently used, but at the time it was thought to help at training.

2.3 VGG-16

VGG-16 stands for “Visual Geometry Group” from Oxford University, who secured first and second positions at the ImageNet Challenge 2014 in the localization and classification tracks, respectively [4]. The network is formed of 16 layers and presents a very procedural scheme, as we will see. The authors also present VGG-19 with 19 layers but performance is comparable with VGG-16. Their network achieves around 25% error rate in the top-1 classification, and around 10% in the top-5 classification categories. The network is depicted in Figure 5.

The 16 layers are formed by sequential convolutional layers, followed by max-pooling layers, and full connected layers at the end of the network. Pooling layers do not add to the total count of 16 layers. The network is very easy to characterize because it follows very simple rules. Convolutional
layers always use a ‘same’ padding architecture and stride \(s = 1 \). As a consequence, these layers aim to increase the number of channels in deeper layers but do not reduce the size of the features. On the other hand, max-pooling layers are used after several convolutional layers, use a filter size \(f = 2 \) and stride \(s = 2 \). Therefore, they reduce the size of the features by half systematically and hold the number of channels invariant. Finally, the last network layers consist of two fully connected layers of 4096 neurons, and a softmax function of 1000 elements.

This network is a perfect example of a very systematic way to design a network and obtain state of the art performances. The trained weights of these networks are publicly available for use in different set of applications.

3 Residual networks (ResNets)

Residual nets appeared in [5] as a means to train very deep neural networks. Their architecture uses ‘residual blocks’, which bypass a connection from one layer and incorporates it at a subsequent layer several steps ahead in the normal path. The methodology allows to improve the problem of vanishing and exploding gradients in very deep networks. This procedure has helped to successfully train networks over 100 layers.
3.1 Residual block

A plain network with ReLu units has a structure as in Figure 6. The feed-forward equations that govern that structure would be:

\[
\begin{align*}
 a[l] &= g(z[l]) \\
 a[l+1] &= g(z[l+1]) \\
 a[l+2] &= g(z[l+2]),
\end{align*}
\]

where \(g(\cdot) \) would correspond to the non-linear activation function.

The residual block adds a ‘shortcut’ path, or ‘skips’ a connection as shown in Figure 7. The equations in this case become:

\[
\begin{align*}
 a[l] &= g(z[l]) \\
 a[l+1] &= g(z[l+1]) \\
 a[l+2] &= g(z[l+2] + a[l]),
\end{align*}
\]

where now (3e) differs from (2e). The idea is that with this extra connection, gradients can travel backwards more easily, while the block learns other features.
Figure 8: Residual network structure for layers l to $l + 2$.

We can also see that from a learning perspective, the residual block can very easily learn the identity function by setting $W^{l+2} = 0$ and $b^{l+2} = 0$. In such case, $a^{l+2} = g(a^l) = a^l$ for ReLu units, and the extra layer block did not hinder the learning capabilities of the larger network. In fact, it becomes a flexible block that can expand the capacity of the network, or simply transform into a identity function that would not affect training.

3.2 Residual networks

A residual network stacks residual blocks sequentially. The idea is to follow a scheme as in Figure 8. This will allow the network to become deeper without increasing the training complexity. The reason is that when training plain networks, there is a point in which the training error starts to increase after a certain number of layers because of the inefficiency of the gradients. ResNets help to overcome this problem. The idea of the error curve is depicted in Figure 9. Note also that the ResNet curve may reach a plateau after a certain number of layers, because residual blocks start learning the identity function and stop reducing the training error.

These kind of networks implement some of the blocks with convolutional layers that use ‘same’ padding option. This allows the block to learn the identity function. On the other hand, the designer may want to reduce the size of features and ‘valid’ padding. In such case, the shortcut path can implement a new set of convolutional layers that reduces the size appropriately. An example of a network with 34 layers from [5] is shown in Figure 10. In this example, the authors use both types of ‘valid’ and ‘same’ padding. Finally, the error rates achieved with a ResNet network of size 152 layers is on Table 1.
Figure 9: Training error curves vs. the number of layers in plain networks and ResNets.

Figure 10: ResNet of 34 layers proposed in [5] and compared to VGG.
Table 1: Error rates on the ImageNet validation set as presented in [5].

<table>
<thead>
<tr>
<th>method</th>
<th>top-1 err.</th>
<th>top-5 err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG [40] (ILSVRC’14)</td>
<td>-</td>
<td>8.43†</td>
</tr>
<tr>
<td>GoogLeNet [43] (ILSVRC’14)</td>
<td>-</td>
<td>7.89</td>
</tr>
<tr>
<td>VGG [40] (v5)</td>
<td>24.4</td>
<td>7.1</td>
</tr>
<tr>
<td>PReLU-net [12]</td>
<td>21.59</td>
<td>5.71</td>
</tr>
<tr>
<td>BN-inception [16]</td>
<td>21.99</td>
<td>5.81</td>
</tr>
<tr>
<td>ResNet-34 B</td>
<td>21.84</td>
<td>5.71</td>
</tr>
<tr>
<td>ResNet-34 C</td>
<td>21.53</td>
<td>5.60</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>20.74</td>
<td>5.25</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>19.87</td>
<td>4.60</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>19.38</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Figure 11: 1×1 convolution. The filter has size $1 \times 1 \times 32$ elements (weights). The number of filters correspond to the number of channels of the output.

4 Network in network

The concept of network-in-network was proposed in [6] and has been quite influential in the deep learning literature. The operation performed by this layer is also called 1×1 convolution, as we will see shortly. The idea is depicted in Figure 11. In a linear convolution, a filter is used an each element of the input is multiplied element-wise with the filter. If the input had two dimensions, the 1×1 convolution would correspond to a scalar multiplication. However, if the input has a greater number of channels (say, 32), the convolutional filter will have $1 \times 1 \times 32$ elements, which corresponds to a more complicated operation than before. Finally, a rectified linear operation is applied to the output.

This operation can be repeated with several filters, which will correspond to the total number of channels of the tensor in the output. Therefore, the
1×1 convolution operation can be employed to reduce the number of channels of the input, while holding the feature sizes unchanged. An example is given in Figure 12, where the input features are reduced from 192 channels to 32.

A final note regarding the transformation of convolutional layers into fully connected layers. One way to see such transformation is to vectorize the input into a column vector and then use a FC layer as usual. An alternative, is to use a filter of the same size as the input, i.e., if the input is of size 5×5×16, a filter of size 5×5×16 weights would have a 1×1×1 output. If we stack these filters together, we can get an output of 1×1×n_C, equivalent to using a FC with n_C neurons. A 1×1 convolution can be regarded as a fully connected layer if it goes after a standard fully connected layer. These transformations are seen occasionally in the deep learning literature.

5 Inception networks

The motivation behind inception networks is to use more than a single type of convolutional layer at each layer. They were presented in [7]. So the idea is to use 1×1, 3×3, 5×5 convolutional layers, and max-pooling layers in parallel. This complicates the structure of the network, but it performs really well in practice, as we can see in Table 1.

The inception module has the following structure, depicted in Figure 13. It incorporates 64 filters of a 1×1 convolution, 128 filters of a 3×3, 32 filters of a 5×5 convolution, and 32 filters of max-pooling; all of them using ‘same’ padding to obtain a 28×28×256 output image. The authors from [7] refer to this module, however, as the naye implementation. The reason is that having so many convolutions per layer, increases the number of operations significantly and, therefore, propose a computationally less intensive
The idea consists of using intermediate 1×1 convolutions that reduce the size of the channel dimension before performing the convolution with the 3×3 or 5×5 filters. Additionally, the number of channels can vary from the input to the output. After the max-pooling layer, another 1×1 convolution layer is required to adjust the number of channels. The efficient implementation of the inception module is presented in Figure 14.

Finally, the inception network is formed by concatenating other inception modules. Figure 15 shows the GoogLeNet network with complete inception modules, as well as several softmax output units to enforce regularization.
Figure 15: GoogLeNet network with all the bells and whistles [7].
References

Acknowledgments

This manuscript was composed by Javier Zazo inspired by the course on convolutional networks from deeplearning.ai. Figures 3 to 5, 8, 9 and 11 to 13 were adapted from deeplearning.ai. Figure 10 and Table 1 from [5]. Figures 14 and 15 were adapted from [7]. Figure 1 was composed by David Stutz and is licensed under the BSD 3-Clause License.