
SVMs, logistic regression and deep learning

Data Science 2 CS 209b

Javier Zazo Pavlos Protopapas

February 28, 2018

Abstract

In the previous data science course we introduced the use of sup-
port vector classifiers (SVCs) and support vector machines (SVMs).
In this section we will further advance the material of these topics
and relate their use to other classification techniques such as logistic
regression. We will extend kernel methods to the logistic regression
problem, and comment on the improvements and difficulties of this
extension. Finally, we will conclude our exposition describing neural
networks as a promising framework to exploit these difficulties, which
will be further developed in the normal course.

1 Introduction

We will develop the problem formulation of SVMs. First, we introduce the
maximal margin classifier, derive the SVCs and extend the methodology to
SVMs using kernels.

The mathematical definition of a p-dimensional hyperplane is given by

{x | f(x) = β0 + βTx = 0}, (1)

where β = (β1, . . . , βp)
T ∈ Rp and x ∈ Rp. A point x belongs to the hyper-

plane if it satisfies f(x) = 0.
Given N training data pairs (x1, y1), . . . , (xN , yN), with xi ∈ Rp and

yi ∈ {−1, 1}, our goal is to develop a classifier based on this training data.

1

Assuming that the training data can be separated using a hyperplane, it
follows that

yi(β0 + βTxi) ≥ 0 (2)

for every i ∈ { 1, . . . , N }. The result comes from the fact that the hyperplane
divides the space into two halfspaces, and we assign the upper halfspace class
yi = 1 and the lower halspace class yi = −1. The classification process for
data point x is performed simply with y ← sign[f(x)].

2 The maximal margin classifier

The maximal margin hyperplane is the separating hyperplane for which the
margin is largest. It is the hyperplane that has the farthest minimum dis-
tance to the training observations. Figure 1 exemplifies this description by
depicting the optimal maximum margin hyperplane in continuous line, and
margins in dashed lines.

In order to maximize the margin, we can maximize the distance of the
closest points to the hyperplane. The signed distance of any point x to a
hyperplane is given by

D(x) =
β0 + βTx

∥β∥
, (3)

where the formula can be derived from a geometric analysis. Figure 2 helps to
understand this result. To determine the distance from x to the hyperplane,
we calculate the projection of x− x0 onto β∗ = β

∥β∥ . Point x0 corresponds to

any point in the hyperplane, satisfying βT

∥β∥x0 = −−β0

∥β∥ . Equation (3) follows
from these two observations.

We can now formulate the problem and establish our goal as an opti-
mization problem that maximizes the unsigned distance of every point to
the hyperplane |D(xi)|:

max
M,β0,β

M

s.t.
1

∥β∥
yi(β0 + βTxi) ≥M, ∀i ∈ { 1, . . . , N } .

(4)

Since for any β and β0 that satisfies |D(xi)| ≥ M any positive multiple
satisfies them too, we can assign ∥β∥ = 1/M and transform problem (4) into

min
β0,β

∥β∥

s.t. yi(β0 + βTxi) ≥ 1, ∀i ∈ { 1, . . . , N } ,
(5)

2

Figure 1: Separating hyperplane with maximum margin on separable data.

x0 x

β∗
β0+ βT x = 0

Figure 2: Graphical representation of hyperplane and related vectors.

3

which is a more common representation of the maximal margin classifier
(sometimes also called hard margin SVC). Problems (4) and (5) are both
convex, and can be solved using standard or specific solvers. We will discuss
later how the dual problem is formulated, which is usually employed for the
optimization task.

3 Support Vector Classifier (SVC)

Consider now the case in which the classes overlap in the feature space and
there does not exist a positive margin that solves problem (4). One pos-
sibility is to relax the previous constraints and still maximize the margin
while allowing some points violate the hard constraints. We can do that
introducing some bounded non-negative slack variables ξ = (ξ1, . . . , ξN):

min
β0,β,ξi≥0

∥β∥

s.t. yi(β0 + βTxi) ≥ 1− ξi, ∀i ∈ { 1, . . . , N }
N∑
i=1

ξi ≤ C,

(6)

for some positive constant C. The idea is that ξi represents the amount
of violation that a given point xi is allowed to exceed, while being on the
wrong side of the margin. The higher the value of C, the higher amount
of violation that is permitted and the margin widens. On the other hand,
as C becomes smaller, the classifier becomes less tolerant of violations and
the margin narrows. When C = 0 we recover the maximal margin classifier
from Section 2. In practice, C constitutes a hyperparameter that needs to be
established before the classification process. As such, it is normally chosen
through cross-validation.

We are allowing two kind of ‘errors’ in (6): margin violation and misclas-
sification. Margin violation refers to points that are on the correct side of
the boundary but lie inside the margin. They have relative distance ξi to the
margin boundary, with 0 < ξi < 1. Misclassification points appear on the
wrong side of the hyperplane. In this case they have relative distance ξi > 1.
Figure 3 shows these point violations in a soft margin classifier.

Parameter C controls the bias-variance trade-off of the learning technique.
When C has a small value, few points violate the margins and the distance of
the margins to the hyperplane becomes small. Such classifier would try to fit

4

Figure 3: Soft margin classifier representation.

the data strongly, and would present low bias but high variance. On the other
hand, when C is larger, the optimization problem allows more violations of
points on the wrong side of the margin, and the distance between the margins
becomes wider. This amounts to fitting the data less strongly and obtaining
a classifier that is potentially more biased but may have lower variance.

A more convenient form of an SVC is obtained when using the constraint∑
i ξi ≤ C as a penalization term:

min
β0,β,ξi≥0

1

2
∥β∥2 + λ

N∑
i=1

ξi

s.t. yi(β0 + βTxi) ≥ 1− ξi, ∀i ∈ { 1, . . . , N } .

(7)

In this case λ is regarded as an intensity parameter, which affects the kind of
violations allowed in the constraints. There is an implicit relation between
C and λ through duality analysis, but a direct transformation between them
is not straightforward. In practice it is usually easier to tune λ rather than
C, although in terms of relative violations C is easier to interpret. For this
reason, SVCs are normally presented in the form of (7).

5

Finally, small λ penalizes errors less and hence the classifier will have a
large margin. A large λ penalizes errors more and then the classifier will
accept narrow margins to improve classification. Setting λ = ∞ produces
the hard margin solution. As we can see, this paremeter controls the bias-
variance trade-off of the classifier.

3.1 The dual problem of the SVC

Studying the dual problem of a constrained optimization problem has several
benefits. The more immediate one is that duality theory allows to determine
if a candidate solution is optimal (under convexity and strong duality as-
sumptions). Secondly, it also incorporates a set tools to find such optimal
solutions. Additionally, occasionally, the algorithms based on the dual prob-
lem may be more efficient than those on the primal problem. Regarding
SVCs, the sequential minimization optimization algorithm described in [4] is
an example of an efficient algorithm. And finally, the dual problem may also
include some relevant theoretical understanding of the original problem. In
the case of SVCs, they help to visualize which constraints are active whenever
their corresponding dual variable αi ̸= 0.

We will now derive the dual problem of the SVC. If you are not familiar
with constrained optimization techniques, please have a look at the “Intro
to optimization” document that will introduce you into this matter.

In order to formulate the dual problem we first construct the Lagrangian:

L(β, β0, ξ, α, µ) =
1

2
∥β∥2+λ

N∑
i=1

ξi−
N∑
i=1

αi[yi(β0+βTx)−(1−ξi))]−
N∑
i=1

µiξi.

(8)
To obtain the dual function, we need to minimize the Lagrangian with respect
to the primal variables β, β0 and ξ. Setting the respective partial derivatives
to zero we obtain:

β =
N∑
i=1

αiyixi (9a)

0 =
N∑
i=1

αiyi (9b)

αi = λ− µi, ∀i. (9c)

6

We also need to impose complementarity slackness and feasibility conditions:

αi[yi(β0 + βTx)− (1− ξi))] = 0 (10a)

µiξi = 0 (10b)

yi(β0 + βTx)− (1− ξi)) ≥ 0. (10c)

αi ≥ 0, µi ≥ 0, ξi ≥ 0 ∀i (10d)

Partial derivatives equal to zero and requirements derived in (10) constitute
necessary and sufficient conditions for optimality.

Substituting relations from (9) into (8) we obtain the dual problem:

max
0≤αi≤λ

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjx
T
i xj

s.t.
N∑
i=1

αiyi = 0.

(11)

Solving (11) we can obtain the optimal αi. Using equation (9a) we recover
β. From (9c) we recover µi and if µi ̸= 0 we obtain a support vector i such
that ξi = 0 because of (10b). We can then use (10a) to obtain β0. Finally,
we perform classification of a point x with y ← sign[β0 + βTx].

We call support vectors all points for which αi is non-zero, and they
constitute the set of points which are within the wrong side of the margin or
even the wrong side of the hyperplane. From an optimization point of view
αi ̸= 0 indicates that the constraint is active, and that the point is affecting
the result. Whenever αi = 0, the constraint is inactive, and such point is not
affecting the optimization process.

4 Support Vector Machines (SVMs)

Given a training set { (x1, y1), . . . , (xN , yN) } with a single real-valued pre-
dictor, we can view fitting a 2nd degree polynomial model β0 + β1x + β2x

2

on the data as the process of finding the best quadratic curve that fits the
data. But in practice, we first expand the feature dimension of the training
set

xi 7→ (x0
i , x

1
i , x

2
i , x

3
i) (12)

7

Figure 4: Transformation of input space into feature space.

and train a linear model on the expanded data

{ (x0
0, x

1
0, x

2
0, x

3
0, y1), . . . , (x

0
N , x

1
N , x

2
N , x

3
N , yN) } (13)

The key observation is that training a polynomial model is just training a
linear model on data with transformed predictors. In our previous example,
transforming the data to fit a 3rd degree polynomial model requires a map

ϕ : R→ R4

ϕ(x) = (x0, x1, x2, x3)
(14)

where R is called the input space, and R4 is called the feature space. Fea-
ture spaces can be used to compare objects which have much more complex
structure., generalizing the polynomial regression we just described.

The same insight applies to classification: while the data may not be
linear separable in the input space, it may be in a feature space after a
fancy transformation, as in Figure 4. Going into higher dimensions has the
motivation that we will hopefully be able to separate classes linearly in such
domain.

We can have a concrete example of how this works in practice. Consider
the XOR example, where we have variables from R2 arranged in a XOR pat-
tern and would like to classify them using a separating hyperplane. This is
clearly not possible in the original space, but through the following transfor-
mation

ϕ(x) = (x1, x2, x1x2), (15)

8

Figure 5: Transformation of input space into feature space.

we can map the input space into a feature space and perform classification
in the transformed space. Figure 5 shows the result.

As we have seen, whenever we want to apply non-linear boundaries, a
possible solution is the following: map the data into a feature space in which
the classes are linearly separable, and then train an SVC in the new feature
space. This approach has two main drawbacks. The first one is that coming
up with a separable feature space can be difficult, and the second one, if the
feature space is high dimensional computing ϕ can be costly. Instead, we note
that computing ϕ is unnecessary. If we check on the dual problem given in
(11), we observe that we are only interested in computing the inner products
ϕ(xi)

Tϕ(xi) in the feature space, and not the quantities ϕ(xi) themselves.
The inner product between two vectors is a measure of the similarity of

the two vectors. We have the following definition of a kernel:

Definition 1. Given a transformation ϕ : RJ → RJ ′
, from input space RJ

to feature space RJ ′
, the function K : RJ × RJ ′ → R defined by

K(xi, xj) = ϕ(xi)
Tϕ(xj), xi, xj ∈ RJ (16)

is called the kernel function of ϕ.

9

Generally, a kernel function may refer to any positive function K : RJ ×
RJ ′ → R that measures the similarity of vectors in RJ , without explicitly
designing a transformation ϕ.

For a choice of kernel K, we train an SVC by solving

max
0≤αi≤λ

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjK(xi, xj)

s.t.
N∑
i=1

αiyi = 0,

(17)

which is taken from the dual of the SVC with expanded feature maps.
ComputingK(xi, xj) can be done without computing the mappings ϕ(xi),

ϕ(xj). This way of training a SVC in feature space without explicitly working
with the mapping ϕ is called the kernel trick. The extension of SVCs using
kernels as in (17) is called a support vector machine (SVM).

Let’s take an example: define ϕ : R2 → R6 by

ϕ ([x1, x2]) = (1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2) (18)

The inner product in the feature space is ϕ ([x11, x12])
⊤ ϕ ([x21, x22]) = (1 +

x11x21 + x12x22)
2. Thus, we can directly define a kernel function K : R2 ×

R2 → R by
K(x1, x2) = (1 + x11x21 + x12x22)

2. (19)

Notice that we need not compute ϕ ([x11, x12]), ϕ ([x21, x22]) to determine
K(x1, x2). Using a kernel implicitly uses a feature mapping that we do not
necessarily need to know nor calculate. In fact, kernel methods can (and often
do) use infinitely many features, whenever the kernel originates from an infi-
nite dimensional Hilbert space. As long as the learning algorithm is defined
using dot products between features, we can use this kind of representation.
The term “kernel” simply refers to a dot product between features.

These are some common kernels used in the literature:

• Polynomial Kernel

K(x1, x2) = (x⊤
1 x2 + 1)d (20)

where d is a hyperparameter.

10

• Radial Basis Function Kernel

K(x1, x2) = exp

{
−∥x1 − x2∥2

2σ2

}
(21)

where σ is a hyperparameter.

• Sigmoid Kernel

K(x1, x2) = tanh(κx⊤
1 x2 + θ) (22)

where κ and θ are hyperparameters.

5 Relationship to Logistic Regression

SVMs introduced a novel approach on how to classify data using a separating
hyperplane, in combination with the powerful use of kernels to extend the
feature space to accommodate non-linear class boundaries. In that moment
this appeared to be a unique and valuable characteristic of SVMs, but this is
not the case. Kernel methods can be extended to any process in which inner
products between features arise, and further connections between SVMs and
other procedures have been established as well.

We want to present SVMs with an alternative motivation based on the
classical view

min
β

J(X, y, β) + λP (β), (23)

where J(X, y, β) corresponds to a general loss function and P (β) to a reg-
ularizer or penalization function on the values of β. Common functions of
J correspond to the least squares error function, or to the logistic loss (bi-
nary cross-entropy in some contexts). Penalization functions P correspond
to ∥β∥2 in the Ridge case, or to ∥β∥1 in the LASSO example.

We can transform our SVC formulation given in (7) to

min
β,β0

N∑
i=1

max[0, 1− yi(β0 + βTxi)] + λ∥β∥2, (24)

where we can figure out a straightforward correspondence to (23) for loss
function J and regularizer P . Function Ji = max[0, 1 − yi(β0 + βTxi)] is

11

sometimes called hinge loss function. The transformation is easy:

yi(β0 + βTx) = 1− ξi → ξi = 1− yi(β0 + βTx) ≥ 0 (25a)

→ ξi = max[0, 1− yi(β0 + βTx)]. (25b)

We can substitute (25b) in the objective of (7) and obtain (24).
Finally, we want that (24) may incorporate kernels. The first modification

is to use extended feature vectors ϕ(x):

min
β,β0

N∑
i=1

max[0, 1− yi(β0 + βTϕ(xi))] + λ∥β∥2.

Then, we can substitute β derived from the KKT condition (9a), i.e., β =∑N
j=1 yjαjϕ(xj), obtaining:

min
β,β0

N∑
i=1

max[0, 1− yi(β0 +
N∑
j=1

yjαjϕ(xi)
Tϕ(xj))] + λ∥β∥2. (26)

Finally, we only need to substitute the inner product of feature maps with
an appropriate kernel:

min
β,β0

N∑
i=1

max[0, 1− yi(β0 +
N∑
j=1

yjαjK(xi, xj))] + λ∥K1/2α∥2.

This generalizes the SVC to incorporate kernel methods. The loss func-
tion becomes max[0, 1− yf(x)] with f(x) = β0 +

∑N
j=1 αjK(x, xj).

5.1 Review and comparison with logistic regression

The logistic regression problem consists of determining the class to which
some observable belongs to. Given training data X = (x1, . . . , xN), y =
(y1, . . . , yN) with xi ∈ Rp, yi ∈ { 1, 0 }, we can assign a probability based on
the logistic function to each data point for belonging to a specific class:

p = P (y = 1|x) = 1

1 + e−(β0+βT x)
, (27)

where f(x) = β0 + βTx and P (y = 0|x) = 1− P (y = 1|x).

12

For binary classification we use a Bernoulli random variable with proba-
bility mass function given by:

Jl(X, y, β) =
N∏
i=1

P (y = yi|x) =
N∏
i=1

pyi(1− p)1−yi (28)

where p is taken from (27). To find the parameters that best classify the
training data, we consider a maximum likelihood estimator. To simplify the
process we maximize the log-likelihood:

max
β0,β

log(Jl(X, y, β))⇐⇒

min
β0,β

−
N∑
i=1

[
yi log(1 + e−(β0+βT xi)) + (1− yi) log(1 + e(β0+βT xi)

]
, (29)

where (29) is sometimes called binary cross-entropy.
If we depict the binary cross-entropy function log(1 + eyi(β0+βT x)) vs. the

hinge loss function max[0, 1− yi(β0 + βTx)] we obtain figure Figure 6. This
figure strongly suggests that SVCs and logistic regression are strongly related,
as there is a very slight difference in penalization values for both problems.
Due to the similarities between their loss functions, logistic regression and
the support vector classifier often give very similar results. When the classes
are well separated, SVMs tend to behave better than logistic regression; in
more overlapping regimes, logistic regression is often preferred.

We have discussed the relation that exists between SVCs and logistic
regression, but we have not considered the use of kernels within logistic re-
gression. The extension is obtained using the following classification criteria:

f(x) = β0 +
N∑
i=1

αiK(x, xi), (30)

where f(x) has the same form as in the SVM classification. The previous
classifier is motivated by function estimation in reproducing kernel Hilbert
spaces, where the reproductive kernel property is derived.

The regularized kernel logistic regression (KLR) problem becomes:

min
β0,αi

−
N∑
i=1

[
yi log(1 + e−f(xi)) + (1− yi) log(1 + ef(xi)

]
+ P (α), (31)

where P (α) constitutes a regularization term.

13

Figure 6: Hinge loss function vs logistic regression penalty function.

5.2 Advantages and disadvantages of SVMs vs KLR

• Classification performance is very similar.

• KLR provides estimates of class probabilities.

• KLR generalizes naturally to M-class classification, using a multiclass
cross-entropy classifier.

• KLR converges to the maximum margin classifier as λ→ 0.

• KLR is computationally more expensive, in the order of O(N3) vs.
O(N2m), where m is the number of support points. In noisy problems,
m can be large, approx N/2.

• In SVMs many αi are actually zero. This allows some data compression
and faster lookup. In KLR all αi are typically non-zero.

6 Introduction to neural networks (NN)

One of the main open problems in statistical learning is the curse of dimen-
sionality, i.e., the fact that learning becomes more difficult in higher dimen-
sions because the training data do not fill the space densely and it is hard

14

to generalize and learn intricate relations. Kernel methods within SVMs or
logistic regression may have a hard time to solve this problem. The reason
is that when we calculate the α coefficients that multiply the kernel, all fea-
tures generated by the kernel are weighted equally. This makes the task of
learning a specific subspace within a larger space impossible with most used
kernels, and as a consequence the performance of these methods degrade on
higher dimensions.

It turns out that deep neural networks have shown remarkable capacity
to obtain statistical knowledge in high dimensional spaces. In fact, NN will
be trained to uncover a feature space that hopefully allows to separate the
classes with a linear classifier. This uncovered space will be high dimensional,
which we have seen is a beneficial characteristic for linear separability. Notice
however, that for every mapping we can come up with (and has finite length),
there is actually a straightforward kernel K(xi, xj) = ϕ(xi)

Tϕ(xj) that will
be able to perform in such feature map.

For the rest of this course, we will focus on the techniques involved in NN
that disentangle these mappings... Connecting to what you have learned in
this lecture, we present a shallow neural network (of only 1 layer) reproducing
a logistic regression.

As before, we have N training data pairs (x1, y1), . . . , (xN , yN), with xi ∈
Rp and yi ∈ { 1, 0 }. Values x ∈ Rp constitute the input layer to the NN,
and we will use a single sigmoid function as the output layer of the NN.
In this case, the parameters of the neural network are the β weights at
the input and β0 offset. We forward this result to the sigmoid function
and obtain our estimate. Figure 7 depicts these interactions where σ(z) =
1/(1 + exp(−z)). In the next lecture we will learn how to train β and β0

using the back-propagation algorithm. Logistic regression does not have any
hidden layers, as it only has a single output layer. Note that in general the
linear computation and the activation function will be represented by a single
neuron, but here we wanted to emphasize both computations separately.

15

x1
i

x2
i

...

xp
i

zi = β0 + βTxi σ(zi) yi (output)

Input
layer

Linear
function

Sigmoid
function

Figure 7: Neural network representing a logistic regression problem.

References

[1] A. Gretton. Introduction to RKHS, and some simple kernel algorithms.
Technical report, University College London, 2017.

[2] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer Series in Statistics. Springer New York, 2009.

[3] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to
Statistical Learning: with Applications in R. Springer Texts in Statistics.
Springer New York, 2014.

[4] Andrew Ng. Support vector machines. Technical report, Stanford, 2017.

Acknowledgments

Figure 5 has been borrowed from [1]. Figures 1, 2 and 6 from [3]. Figures 3
and 4 from an unknown source.

16

	Introduction
	The maximal margin classifier
	Support Vector Classifier (SVC)
	The dual problem of the SVC

	Support Vector Machines (SVMs)
	Relationship to Logistic Regression
	Review and comparison with logistic regression
	Advantages and disadvantages of SVMs vs KLR

	Introduction to neural networks (NN)

