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For decades, the semiconductor industry has benefited from the technology scaling (i.e., Moore’s law and

Dennard scaling) to make computer chips smaller, faster, and more energy efficient, allowing general-purpose

central processing units (i.e., CPUs) to handle most of our computing needs. However, higher cost (e.g., yield,

reliability and process variation issues), increasing power density, and fundamental physical constraints have

become showstoppers for continued scaling; at the same time, emerging applications like deep learning, AR/VR,

and autonomous driving are increasingly compute-intensive and power-hungry. This has resulted in the adoption

of application-specific computing, in turn creating exciting new research challenges for the hardware industry.

My primary research interests are at the intersection ofmachine learning (e.g., deep learning), computer archi-

tecture, electronic design automation (EDA), and embedded systems. The overarching goal of my research

is to achieve energy-efficient and robust domain-specific computing: from circuits to architec-

tures and systems. I believe in rigorous evaluations via extensive hardware prototypes (including recent chip

tape-outs 1) and in extensive government/industry collaborations; during my Ph.D. I interned with Samsung

Semiconductor and Microsoft Research. At Harvard, I lead our ongoing collaborations with Pacific Northwest

National Laboratory, Intel Labs, and IBM Research. The outcomes of my research have been published at top-

tier architecture, EDA, testing, and embedded systems venues (MICRO, DAC, DATE, ICCAD, ESWeek, VTS,

etc.), and my research internships have resulted in two U.S. patents. My thesis was short-listed for best presen-

tation award at DATE Ph.D. Forum and was the semifinalist in the TTTC’s E.J. McCluskey Doctoral Thesis

Competition.

Energy-Efficient and Reliable Deep Learning Acceleration

Modern System-on-Chip (SoC) designers have embraced custom hardware acceleration to improve energy effi-

ciency by tailoring the architecture to the characteristics of a particular application. Custom accelerators elimi-

nate unnecessary operations needed for general-purpose processors, incorporate more effective use of the memory

hierarchy, and exploit much finer-grained parallelism. Recent examples include Google’s Tensor Processing Unit

(TPU), which utilizes a sizeable systolic array (SA), a tightly-coupled grid of multiply-and-accumulate (MAC)

units at its core to speed up matrix multiplication (or convolutions) for deep neural network (DNN) workloads,

and achieves a 30x - 80x higher performance/Watt than CPU or GPU based solutions; the efficiency comes from

greater amortization of memory accesses and the obviation of complex routing between MAC units in the SA.

Enabling Energy-efficient and Timing Error Resilient Deep Learning at Scale

The Google TPU was released as I was beginning my Ph.D. research. The first question I sought to ask was:

can we make the TPU more energy-efficient? To this end, I proposed the ThunderVolt architecture, a SA

design with architectural support for voltage underscaling based timing speculation that reduces TPU-like deep

learning accelerators’ energy consumption by 2x without hurting throughput and classification accuracy. Timing

speculation (TS) [2] is a powerful technique, first studied by Ernst et al. in 2003 (and a 2021 MICRO Test-

of-Time awardee) that proposes to under-scale a chip’s supply voltage to reduce power consumption. At the

expense of occasional timing errors, which are caught by a specially designed “Razor” flip-flop (FF), TS recovers

the correct computation from Razor FFs by stalling the processor’s pipeline stages. We refer to this as timing

error detection and recovery (TED). The premise of TED is that as long as the timing error rate remains low,

the overall energy efficiency improves.

Given the past success of TED schemes, an obvious question is whether it can be directly applied to increase

the energy efficiency of a TPU? However, I noted that, although the simplicity of SA’s micro-architecture makes

it easy to scale, it requires a strict schedule for all its MAC units to work correctly. That is, any MAC operation

(e.g., TPUv1 has 65,536 MAC units) that goes out-of-sync will nullify the whole array’s computation. Under

1Our DARPA-funded Domain-Specific System on Chip (DSSoC) project EPOCHS [1] is IBM-led, multi-university (Har-
vard/Columbia/UIUC) effort on the future autonomous driving system. We successfully taped out two 12 nm DSSoC chips in
October 2020 and October 2021, respectively. My contributions include accelerator system-level integration, SoC test driver design,
VLSI design flow, gate-level testing and verification, and chip bring-up.
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this constraint, a conventional timing speculation scheme such as TED is not a viable option anymore — TED

would have to stall the whole array to re-execute/recover any single MAC operation with timing errors. Our

detailed gate-level simulation on a 256x256 SA empirically verifies this: timing error rates for large SA under

the TED scheme are very high, so the benefits from TS are not significant. My second idea is based on the

conventional wisdom which suggests that DNNs are inherently error resilient to small bit-flips. If TED incurs

too much re-execute overheads, can we simply let the timing error propagate (TEP)? Unfortunately, I empirically

showed that, for the first time, few timing errors are bad enough to crash the DNN’s classification accuracy.

In fact, timing errors for arithmetic operations typically occur in higher order bits, resulting in potentially large

changes in the value of the partial sum computed by the MAC unit. Instead, these two attempts motivate a

new timing error recovery technique, ThunderVolt [4, 5]. ThunderVolt is an innovative circuit and micro-

architectural solution to drop (or zero out) faulty MAC operations, enabling voltage underscaling TS without

re-execution. Empirically, we observe that ThunderVolt allows to aggressively under-scale the supply voltage of

DNN accelerators (with up to 10% timing errors) without hurting accuracy.

A major roadblock in the ThunderVolt study is that running detailed gate-level timing simulations (GLS) to

predict the timing error behavior of digital logic is prohibitively time-consuming. Since they preserve the view

that most closest to real silicon, GLSs are orders of magnitude slower than functional simulations. For large DNN

accelerators and fast-growing deep learning models, full GLS will quickly be infeasible. In follow-up work, we

mitigate this challenge with FATE [6], a new EDA tool that facilitates timing error simulation, enabling quick

yet accurate exploration of different micro-architecture design choices for timing speculative DNN acceleration.

With abundant ground-truth data obtained in ThunderVolt, I leveraged the powerful deep learning techniques

to estimate the delay of any MAC computation accurately. Given the activation inputs are shared among all

columns of the MAC array, I also proposed to statistical sample only a subset of MAC units for timing simulations

and probabilistically inject errors to the remaining MACs. Our evaluation show that FATE provides more than

two orders of magnitude speed-up against full detailed GLS, while introducing less than 6.2% average prediction

error on the timing error behavior.

ThunderVolt and FATE have been cited across top-tier venues in both the circuits and architecture commu-

nities, and covered in the popular press.

Analyzing and Mitigating the Impact of Permanent Faults on DNN Accelerators

Another important challenge with advanced nano-meter CMOS technology scaling is increased fault rates, in-

cluding both permanent (hard errors) and temporary faults (soft errors). (As a side note, we noticed several

such faults in the recent 12 nm DSSoC tape-out.) Temporary faults might occasionally impact the DNN’s classi-

fications, but their overall impact on classification accuracy is restricted, even at high soft error rates. However,

permanent faults can affect the computation of every DNN execution and significantly reduce the classification

accuracy, as we show for the first time, on a large TPU-like SA [7]. These issues will be further exacerbated

for emerging wafer-scale computing platforms like Cerebras. Unfortunately, redundancy based fault-tolerance

solutions [8, 9] used in general-purpose computing incur high resource and energy overheads for accelerator-rich

SoCs.

Domain-specific computing opens up new fault-tolerance opportunities that are lightweight, customized to

the application and the underlying hardware. For example, systolic array based DNN accelerators often use

weight-stationary dataflow; and permanent faults, at least those that are related to manufacturing defects, can

be identified and located during post-fabrication testing. This observation motivates the design of fault-aware

pruning (FAP) for systolic arrays with manufacturing defects [7, 10]. FAP leverages the static one-to-one

mapping between the DNN weights and MAC units in a weight-stationary SA. With a fault map that tells where

the MACs with defects are, DNN weights that will be mapped to those MACs during execution are also known.

At run-time, FAP implements a simple, low-area overhead circuitry to bypass the faulty MACs’ computation,

mitigating their impact on the final partial sum of the SA. Further, the identified weights are pruned (set to zero)

away, and the remaining weights of the DNN are fine-tuned by incremental re-training to recover classification

accuracy, which we refer to as FAP+T. FAP+T incurs extra training cost for each chip that may have different

defects, but the one-time cost is only in test time, and can be amortized by over the chip’s lifetime. Empirically,

I found that FAP and FAP+T enable DNN accelerators to be used even at relatively high permanent fault rates

with only marginal accuracy loss. In the follow-up work [10], I investigated how different weights-to-SA mapping
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strategies can help improve fault tolerance. I also showed that FAP and FAP+T could be adapted to repair

process variation-induced permanent faults.

FAP received the best paper award nomination at IEEE VLSI Test Symposium (VTS). It is also listed

as the most frequently accessed documents as recorded by IEEE Design & Test. FAP introduced reliability as a

serious concern for DNN acceleration and opened up low-cost fault tolerance opportunities for domain-specific

applications. It motivated the work of several research groups on advanced fault mitigation strategies for deep

learning hardware.

Reducing On-chip Memory Footprint for Efficient Low-power Embedded DNN Acceleration

During my research internship at the Microsoft HoloLens team, I observed that for embedded systolic accelerators

running computer vision models, on-chip memory (SRAM) used to buffer DNN’s activation inputs (or feature

maps) is a significant contributor to total on-chip energy consumption. There are three main reasons: (1)

computer vision models generate a large size of activation data; (2) strict power budget on embedded devices

could only afford small MAC array (e.g., 64x64 SA), thus the activation memory access increases (due to fewer

data reuse); (3) larger capacity is provisioned for on-chip buffers as a design philosophy to amortize the more

expensive off-chip data communication.

To address this, I designed CompAct [11], the first SA-based architecture that enables on-chip compression

of DNN activations. An immediate challenge for CompAct is the choice of the compression scheme. I found that

although sophisticated entropy-based encoding might provide a better compression ratio, the decoding process

of variable-length codewords is hard to meet SA’s data throughput requirement. While a fixed-length encoding

scheme such as run-length-coding (RLC) is fast to decode, it requires a regular data access pattern to ease

the encoding. In CompAct, I discovered a particular DNN activation schedule that makes RLC work on SA,

without performance degradation. I also proposed a lossy RLC scheme with principled approximation on the

activation data to improve the compression ratio. The decoding logic of CompAct only fetches the on-chip buffer

once for each compressed data word, so during the idle cycles, the leakage power of activation buffer can be

further optimized. Building with these ideas, CompAct is able to achieve more than 2x energy reduction on the

activation buffer of the SA-based accelerator. I also showed that CompAct could work synergetically with DNN

pruning, a widely used algorithmic technique that reduces the DNN’s memory footprint. The design of CompAct

has generated two U.S. patents [12, 13] and shed light on Microsoft’s next generation of DNN hardware.

Designing Higher-Quality Machine-Learning-as-a-Service (MLaaS)

At the system level, machine learning (ML) based prediction models, and especially DNNs, are being increasingly

deployed as cloud services to provide inference serving (or predictions) for a range of applications, such as

computer vision, natural language processing, and recommendation. Like other cloud services, MLaaS has the

quality of service (QoS) requirements specified as service level agreements (SLAs) between the users and the

cloud provider. Typical SLAs define the expected response time (i.e., tail latency), throughput and availability,

etc. For ML, in particular, the prediction quality of the service should also be a critical metric but has not

been encapsulated in SLAs for traditional applications.

In a recent collaboration withMicrosoft Research, I characterized a state-of-the-art MLaaS framework (Berke-

ley’s Clipper) on Azure Virtual Machines and found several issues in the presence of a highly dynamic, fluc-

tuating load. Specifically, existing MLaaS systems either drop deadline-missed requests or significantly expand

hardware resources in response to load spikes. In our study [14], we showed that for DNNs, a diverse model

architecture can be pre-trained for the same application; when a specific model is being deployed, computing re-

source allocation on data-level vs. model-level parallelism also plays a role in the tail latency. Model diversity

and different resource allocation strategies carve out a widespread accuracy vs. latency Pareto frontier, opening

new opportunities to deal with load fluctuation. Specifically, I proposed effective accuracy, a new QoS metric

that quantifies users’ expectation on correctly predicted requests within the deadline. Guided by this new metric,

an online Model-Switching engine is designed and implemented within Clipper. During real-time inferencing,

Model-Switching is able to switch to the best model quickly in response to load spikes, providing high-quality

service without the need for over-provisioning the hardware capacity.
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During my post-doctoral research [15], we (with Facebook AI Research) aim to optimize deep learning based

recommendation serving, a specific MLaaS that constitutes an overwhelming fraction of machine learning

cycles in production data centers (e.g., Facebook, Google). Facebook’s data show that production-scale recom-

mendation model sizes grow rapidly (> 10x) in just three years, resulting in a substantial increase in infrastructure

demands. For recommendation service, the end-to-end prediction quality depends not only on the accuracy of the

model but also on the number of ranked items. Ranking all candidate items with the most accurate and complex

models is superfluous because eventually, only a small portion of the items will be recommended to individual

users. Based on this key insight, we proposed RecPipe, a multi-stage recommendation engine that has two com-

ponents: (1) a light-weight, less accurate frontend model that coarsely filters a large set of candidate items; (2)

a heavier, more accurate back-end model refines ranking only on top candidates. We showed that at iso-quality,

RecPipe’s multi-stage ranking can greatly reduce overall compute demand and embedding access compared to

the single-stage recommendation. Furthermore, we found that running multi-stage ranking on exiting heteroge-

neous computing platforms (e.g., CPU-GPU) and the state-of-the-art data center accelerators (e.g., TPU) results

in costly inter-stage data transfer and low resource utilization across stages. For these reasons, I designed and

implemented an on-chip filtering unit that eliminates host-accelerator communication between recommendation

stages; and a run-time reconfigurable systolic array that simultaneously processes multi-stage queries and ex-

ploits data- and model-parallelism at each stage respectively. Overall, RecPipe improves tail-latency by up to

5x and throughput by up to 10x at iso-quality.

RecPipe participated in the first MICRO 2021 Artifact Evaluation and received all three badges (Artifact

Available, Functional, Reproduced). We also open-sourced Model-Switching and RecPipe with Intel Labs, and

are working together to design a better multi-stage model-switching recommendation service system.

Future Research Agenda

In future research, I am excited to collaborate with researchers in the area of ML, system, architecture, VLSI

circuits, as well as engineers at tech companies, like Facebook, Microsoft, IBM, and Intel to generate new ideas,

tools, and methodologies for improving the energy efficiency and reliability of the next-generation computing

platform. Below I outline several directions that I am excited to pursue:

Efficient and Resilient Hardware/Software Co-design for Learning based Autonomous System.

Real-world autonomous systems are composed of a complex computational pipeline that holistically accom-

plishes the mission of the domain. For example, an autonomous machine navigates in an environment may need

perception/sensing (with a camera, GPS, depth sensor, etc.), localization and mapping, communication, and

planning and control. Recent advances in deep learning have empowered many of these sub-tasks, opening up

new challenges and co-design opportunities for hardware. In ongoing work [16], we have recently investigated

AI Habitat, Facebook’s physically realistic simulation platform for Embodied AI research. Specifically, my pre-

liminary profiling shows that each sub-module of the robot has its unique compute and memory demands for

navigation tasks, suggesting a careful architectural design under the power, performance, and area constraints.

One interesting question could be: should we design many fixed-function accelerators that map to each sub-module

of the complex system, or how beneficial is programmability in domain-specific architectures? To improve the

utilization of the on-chip resources, an efficient scheduler and run-time resource management are also worthy of

further research. In addition, a learning-based system can offer greater efficiency by various co-design techniques

across the computing stack, such as DNN pruning and compression, reduced precision and quantization, and

approximate computing. I plan to evaluate this further by discovering the trade-off between every single module’s

accuracy and the overall system’s efficiency.

The reliability of autonomous vehicles is another critical topic. Unlike single ML-based applications that use

simple prediction accuracy as the metric, it is crucial to analyze the impact of faults vertically (across the stack)

and horizontally (end-to-end) for the complex system. I believe identifying the correct metric to evaluate the

system’s fault tolerance is the way to design efficient application-specific resilient techniques. At Harvard, I made

key contributions to the DARPA-funded DSSoC project for the future autonomous driving system. Our chip

tape-outs set up an invaluable stage to answer the above research questions and motivate a new set of practical

innovations.

Agile Hardware Design and Integration, Robust Design-time and Run-time Optimization. The

complexity and heterogeneity in large SoCs stress the traditional “waterfall” hardware development process.
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DSSoC deserves a better design automation tool to reduce the design time and cost. For this reason, I’m

currently working with researchers at Pacific Northwest National Laboratory to design an open-source domain-

specific application-to-hardware synthesizer based on Google’s Multi-Level Intermediate Representation (MLIR)

infrastructure [17, 18]. I’m also an external contributor to Columbia’s open-source heterogeneous SoC platform

(ESP) 2, which our own DSSoC tape-outs relied on. In the future, I plan to continue building more compre-

hensive EDA tools to support emerging technologies and applications. For example, advanced 2.5D packaging

technologies enable multi-chip-module (MCM) integration, where smaller chiplets can be connected together

post-fabrication via low-latency and high-bandwidth interconnects. However, MCM integration also comes with

an enormous design space challenge: How to optimally select which chiplets to build up for a given application?

Other emerging technologies include: embedded nonvolatile memory (eNVM) with multi-level cell (MLC) is a

promising alternative storage solution for large deep learning models; Processing-in-Memory (PIM) is another

attractive solution for deep learning since it reduces the need for data movement and can perform several fun-

damental deep learning operations such as dot products and non-linear activations at a low cost. However,

both MLCs and PIM (e.g., ReRAM devices) are inherently noisy and error-prone, requiring a principled tool

to investigate. Furthermore, various run-time techniques can enable better-than-worst-case design opportunities

that jointly optimize accuracy, performance, energy-efficiency, and reliability for ML-based applications, such

as DNNs [19] and hyperdimensional computing [20]. Together, I foresee an expended co-design space at both

design-time and run-time to explore where traditional heuristics may be sub-optimal. My prior experience ap-

plying mathematical optimizations (e.g., linear programming, dynamic programming) [21, 22] and ML methods

(e.g., reinforcement learning) [23, 24] to design and optimize multiple computing systems will help tackle some

of these challenges more efficiently.

MLaaS vs. On-device Personalized AI. With the increasing research and development efforts on domain-

specific hardware, data centers nowadays have a heterogeneous fleet of backend computing resources, e.g., CPUs,

GPUs, and accelerators. On the other hand, MLaaS at the data center adopts different types of ML models

for various application tasks. These ML workloads show distinct memory-bandwidth or compute-bound charac-

teristics across their DNN layers and have different SLA targets (e.g., tens to hundreds of milliseconds latency

requirement). MLaaS also needs to serve billions of users with fluctuating capacity demand over time. There-

fore, the availability and flexibility of computing resources are important. Serving a mixed ML workload with

multi-tenancy can improve resource utilization but is also challenging in practice. To this end, I plan to design a

better system infrastructure for MLaaS — that is self-aware and can adapt its workload scheduling/mapping and

resource allocation strategies dynamically in response to the environment change without violating the SLAs.

To improve the service quality, data center often scales up the ML model size and performs frequent incre-

mental training on newly generated data samples daily or weekly. However, training large ML models generates

an enormous carbon footprint which is not sustainable. Moreover, a centralized model trained on the aggregated

user data suffers from the long tail accuracy issue — i.e., long-tailed training samples from minorities induce

the model bias. I envision over billions of ubiquitous mobile devices around the world unlock new opportunities

for personalized AI. Running ML on the device can improve user experience with reduced service response time,

make the service less dependent on network connectivity, and, more importantly, enable access to abundant

private, contextual features only available locally. In the long term, I plan to look into the system support for

device-cloud collaborative learning, where the cloud maintains a general centralized model, and at the same time,

end-users have their customized models trained cooperatively with the cloud for better generalization. Each

end user’s model architecture can be tailored to the unique capabilities of their own mobile devices, and be

trained over the local data, achieving deep personalization. I will devise system-level solutions that account for

the performance variability of the device, network bandwidth and connectivity, and improve the overall energy

efficiency of the personalized collaborative learning.

2https://github.com/sld-columbia/esp/blob/master/CREDITS.md
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