The Crafting of Intellectual Property
Implications for Trolls, Litigation, and Innovation

Josh Feng1 and Xavier Jaravel2

1Harvard University
2LSE

BU IP Day 2017
It is critically important that the USPTO issues patents that are both **correct** and **clear**. [It] can help **stimulate future innovation** without resorting to **needless high-cost court proceedings**.

Michelle Lee, USPTO Director
Research Questions

How much does the patent system affect innovation?

–> Patents: a mix of idea and legal construction
–> Examiners are involved in construction process
 – An understudied channel
–> Lee: examination quality affects both litigation and innovation
 – If effects are big: USPTO as a policy lever (vs. statutory reform)

How responsive are non-practicing entities (NPEs) to the legal construction of patents?

–> Accusation: purchasers and enforcers of weak patents (“needless court proceedings”)
–> Do they purchase patents granted by a specific set of examiners?
–> If so, do these examiners tend to grant weak patents?
Research Questions

- How much does the patent system affect innovation?
 - Patents: a mix of idea and legal construction
 - Examiners are involved in construction process
 - An understudied channel
 - Lee: examination quality affects both litigation and innovation
 - If effects are big: USPTO as a policy lever (vs. statutory reform)

- How responsive are non-practicing entities (NPEs) to the legal construction of patents?
 - Accusation: purchasers and enforcers of weak patents (“needless court proceedings”)
 - Do they purchase patents granted by a specific set of examiners?
 - If so, do these examiners tend to grant weak patents?
Research Design and Findings

Research design: use variation across examiners in post-grant outcomes to quantify the impact of legal construction

- Leverage quasi-random assignment for causal interpretation
 - Refinements: IT-only, docket instrument, random last digit units
- Focus on pool of granted patents
 - Control for selection on idea quality in order to isolate legal construction variation
- Use shrinkage methodology to deal with rare and noisy outcomes

Findings

- Examiners have large causal effects on important outcomes
 - NPE purchase, litigation, late-term private value, future patenting
- NPE purchase, litigation very sensitive to legal construction
 - Purchase from lenient examiners who force fewer additions to claims
- Lenient, high-NPE examiners grant more weak patents
 - Patents more likely to be re-issued, instituted in inter-partes review
Related Literature

- **Effect of patent system on innovation**
 - Patent laws: Nordhaus (1969); Klemperer (1990); Gilbert and Shapiro (1990); Sakakibara and Branstetter (2001); Moser (2006); Lerner (2009)
 - Patent grants: Williams and Sampat (2016); Farre-Mensa, Hegde and Ljungqvist (2017); Righi and Simcoe (2017)
 - *This paper: effect of patent examination process*

- **NPEs and innovation**
 - *This paper: effect of patent examiners on NPE activities*
Simple Relationships - Examiners and NPEs

NPE Purchase Rate (%) vs. Leave-One-Out Grant Rate

Feng, Jaravel (Harvard/LSE)
Examiners and Renewals

Feng, Jaravel (Harvard/LSE)

Crafting IP

BU IP Day 2017
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
Data Overview

Core sample

- USPTO PatEx plus data on claims examiner blocking actions
 - Frakes and Wasserman; Juristat
- 1.27 million non-continuation granted patents from 2001 to 2012
 - 2/3 continuation applications assigned to same examiner
- 11,401 patent examiners in 643 art units
 - Average tenure: 7 years
 - Average applications reviewed per year: 16

Subsequent outcomes

- 20% of sample is purchased by non-NPEs
- 1% of sample is purchased by NPEs
- 0.65% of sample is litigated by non-NPEs
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
Estimating Examiner Effects on Post-Grant Outcomes

• Quasi-random assignment \rightarrow interpret post-grant outcome differences as caused by examiners
 $\quad\rightarrow$ Address potential threats later (Righi and Simcoe 2017)

• Why not compare raw average outcomes across examiners?
 $\quad\rightarrow$ NPE and litigation outcomes are rare
 $\quad\rightarrow$ Simple approach overstates magnitudes
 \quad e.g. 8 times too large for NPE

• Solution: look for persistent differences across examiners
 1. Bayesian shrinkage methodology
 2. Shrink raw averages by a signal to noise ratio

• End up with estimates of the right magnitude (split sample)
Estimation of Examiner Effects on Post-Grant Outcomes

Methodology

Extracting Residuals

\[T_{ijt} = X_i \beta + a_{ut} + v_{ijt} \]
\[v_{ijt} = \mu_j + \epsilon_{ijt} \]

- \(i \) indexes the patent, \(j \) the examiner, \(u \) the art unit

Data variables

- \(T \): outcome (e.g. NPE purchase, litigated, 103 blocking action)
- \(a_{ut} \): art unit-year fixed effect (random assignment level)
- \(X_i \): observable application characteristics (assignee, applicant history, number of claims at application)

Other variables

- \(\mu_j \): examiner causal effect
- \(\epsilon_{ijt} \): idiosyncratic noise
Shrinkage Using the Residuals

1. Aggregate residuals at examiner x year level:

\[
\bar{v}_{jt} = \frac{1}{n_{jt}} \sum_i v_{ijt} \left(= \mu_j + \frac{1}{n_{jt}} \sum_i \epsilon_{ijt} \right)
\]

2. Compute correlation of residuals across years (variance of examiner effect distribution):

\[
\hat{\sigma}_\mu^2 = \text{cov}(\bar{v}_{jt}, \bar{v}_{j(t+1)})
\]

3. For each examiner: shrink raw average residual by signal-to-noise ratio to recover estimate with same scale as \(\mu_j\):

\[
\text{ExaminerEffect}_j = \bar{v}_j \frac{\hat{\sigma}_\mu^2}{\text{Var}(\bar{v}_j)}
\]
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
Results

Causal Examiner Effects on Post-Grant Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}/$Baseline Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE Purchase</td>
<td>50.97%</td>
</tr>
<tr>
<td></td>
<td>[33.7%, 60.7%]</td>
</tr>
<tr>
<td>Non-NPE Litigation</td>
<td>62.1%</td>
</tr>
<tr>
<td></td>
<td>[42.62%, 71.99%]</td>
</tr>
<tr>
<td>Non-NPE Purchase</td>
<td>14.01%</td>
</tr>
<tr>
<td></td>
<td>[10.70%, 14.47%]</td>
</tr>
</tbody>
</table>
Causal Examiner Effects on Post-Grant Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}_\mu$/Baseline Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment of 4th-Year Maintenance Fees</td>
<td>3.69%</td>
</tr>
<tr>
<td>Payment of 8th-Year Maintenance Fees</td>
<td>6.46%</td>
</tr>
<tr>
<td>Payment of 12th-Year Maintenance Fees</td>
<td>9.02%</td>
</tr>
<tr>
<td>Log patents by Assignee (within 5 years)</td>
<td>13.03%</td>
</tr>
</tbody>
</table>
Causal Examiner Effects on Post-Grant Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}_\mu$/Baseline Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Total Citations</td>
<td>24.07%</td>
</tr>
<tr>
<td>External Patent Citations (0-3 years)</td>
<td>18.56%</td>
</tr>
<tr>
<td>Internal Patent Citations (0-3 years)</td>
<td>21.84%</td>
</tr>
</tbody>
</table>
Results Recap

- Largest examiner causal effects on legal-related outcomes
 - NPE purchase, litigation, inter-partes review filing
 - Focus of our second research question

- Smaller but sizable effects for innovation outcomes
 - Citations, future patenting
 - Late-term private value more sensitive than early-term
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
Random Assignment Issues

- Previous research: random assignment mechanisms
 - Taking from the top of the pile
 - Random by last digit

- Worry: specialization even within art units
 - New evidence from Righi and Simcoe (2017)
 - Specialization of examiners
Workarounds

1. Focus on IT (tech centers 21, 24, 26)
 -> Righi and Simcoe (2017): specialization in other areas
 -> Recover similar results

2. Busy-ness instrument
 -> Exploit variation in busy-ness of lenient examiners
 -> Examiners with recent disposed applications → more likely to be assigned docketed application
 -> Instrument leniency with busy-ness weighted leniency across all examiners
 -> Recover similar relationships between outcomes and leniency

3. Identify units that randomize by last digit
 -> Chi-square statistic by examiner and last digit
 -> About 1/3 of applications in units that have p-value < 0.01
Estimation of Examiner Effects on Post-Grant Outcomes

Random Assignment and Selection

IT Only

NPE Purchase Rate (%) vs. Leave-One-Out Grant Rate

Feng, Jaravel (Harvard/LSE)
Workarounds

1. Focus on IT (tech centers 21, 24, 26)
 -> Righi and Simcoe (2017): specialization in other areas
 -> Recover similar results

2. Busy-ness instrument
 -> Exploit variation in busy-ness of lenient examiners
 -> Examiners with recent disposed applications → more likely to be assigned docketed application
 -> Instrument leniency with busy-ness weighted leniency across all examiners
 -> Recover similar relationships between outcomes and leniency

3. Identify units that randomize by last digit
 -> Chi-square statistic by examiner and last digit
 -> About 1/3 of applications in units that have p-value < 0.01
Busy-ness Instrument

(a) Allocation

(b) Reduced Form
Workarounds

1. Focus on IT (tech centers 21, 24, 26)
 → Righi and Simcoe (2017): specialization in other areas
 → Recover similar results

2. Busy-ness instrument
 → Exploit variation in busy-ness of lenient examiners
 → Examiners with recent disposed applications → more likely to be assigned docketed application
 → Instrument leniency with busy-ness weighted leniency across all examiners
 → Recover similar relationships between outcomes and leniency

3. Identify units that randomize by last digit
 → Chi-square statistic by examiner and last digit
 → About 1/3 of applications in units that have p-value < 0.01
Random Last Digit Unit Analysis

- Examiners’ signal SDs are similar in subsample of art units that randomize by last digit

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}_\mu$/Baseline Rate</th>
<th>Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE Purchase</td>
<td>38.16%</td>
<td>50.97%</td>
</tr>
<tr>
<td>Non-NPE Litigation</td>
<td>41.85%</td>
<td>62.10%</td>
</tr>
<tr>
<td>Non-NPE Purchase</td>
<td>14.52%</td>
<td>14.01%</td>
</tr>
</tbody>
</table>
Selection

- Additional concern: examiners selecting based on quality of idea

 Variation is not about differences in legal construction

- Workaround

 Control flexibly for grant rate in outcome regression

 - Compare examiners with same grant rate

 - Assumption: idea quality is vertical (grant same ideas)

 - Remaining difference is due to legal construction differences

 - Similarly large differences in examiner effects remain

 Address remaining variation in selection (given grant rate)

 - Add additional controls: similar application, similar examiner

 - Inventor, assignee, and application characteristics at filing

- Alternative: Heckman correction (non-linear)
Examiners’ signal SDs are similar when controlling for (leave-one-out) examiner grant rate

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}_\mu$/Baseline Rate</th>
<th>Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE Purchase</td>
<td>62.64%</td>
<td>50.97%</td>
</tr>
<tr>
<td>Non-NPE Litigation</td>
<td>63.06%</td>
<td>62.10%</td>
</tr>
<tr>
<td>Non-NPE Purchase</td>
<td>14.31%</td>
<td>14.01%</td>
</tr>
</tbody>
</table>
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
How Do High-NPE Examiners Behave?

- NPEs buy disproportionately from a specific set of examiners
- Use prosecution behaviors of high NPE effect examiners to understand nature of NPE-purchased patents
 -> Note: not causal

Methodology
- Compute leave-one-out examiner effects for various prosecution behaviors
- Predict patent outcomes using these measures (\hat{E}_j)

$$NPE_{ijt} = \beta \hat{E}_j + \epsilon_{ijt}$$
Examiner Prosecution Behavior

- Examiner blocking action usage by type:
 - 101: not patentable subject matter, lacking utility
 - 102: not novel
 - 103(a): obvious
 - 112(a): unclear technological disclosure
 - 112(b): unclear claims language

- Claims text changes between application and grant
 - Edits in response to examiner blocking action critiques
NPE Purchase and 103(a) Usage

Which examiners drive the effect?

Feng, Jaravel (Harvard/LSE)
Formal Analysis - Pairwise Correlations

<table>
<thead>
<tr>
<th></th>
<th>NPE Purchase</th>
<th>Non-NPE Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>103(a) - Obviousness</td>
<td>-0.099***</td>
<td>-0.039**</td>
</tr>
<tr>
<td>(0.023)</td>
<td>(0.017)</td>
<td></td>
</tr>
<tr>
<td>112(b) - Unclear claims</td>
<td>-0.047**</td>
<td>-0.040**</td>
</tr>
<tr>
<td>(0.023)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Δ Words/Claim</td>
<td>-0.148***</td>
<td>-0.061***</td>
</tr>
<tr>
<td>(0.021)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1,269,623</td>
<td></td>
</tr>
</tbody>
</table>

* p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01
Addressing Extensive Margin Selection Effects

Regression Coefficient, Controlling for Examiner Allowance Effect

Regression Coefficient, No Controls for Examiner Allowance Effect

Coeff. 1.13*** (s.e. 0.139), R2=0.94
Summary

- Main finding: examiners with high NPE and non-NPE litigation effects are “lenient”:
 - Use specific blocking actions less often: 103(a), 112(b)

- Why might these patents be useful to NPEs?
 - *Obviousness*: higher likelihood others take this step when developing products
 - *Vague claims language*: many possible interpretations which can be used flexibly to read on subsequent technology

- Remaining questions
 - Are they buying weak patents?
 - Can other NPE purchasing mechanisms explain the data?
Road Map

1. Data

2. Estimation of Examiner Effects on Post-Grant Outcomes
 - Methodology
 - Results
 - Random Assignment and Selection

3. NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior
Weak Patents

Definition: patents that may well be invalid, but require conclusive litigation to find out

→ NPEs accused of asserting weak patents

Ideal data

→ Have courts rule on all granted patents

Our evidence

→ Examiner errors: re-issuance filings
 - 35 U.S.C. 251: ask for re-issuance if patent deemed wholly or partly inoperative or invalid through error
 - Much higher rate for lenient examiners

→ Inter-partes review institution (conditional on filing)
 - Lenient examiners more likely to have patents challenged
 - AND found to be likely invalid conditional on filing
Examiner Errors

The graph shows a scatter plot with a trend line. The x-axis represents the Examiner Leave-One-Out Grant Rate, ranging from 0.4 to 1.0, and the y-axis represents the percentage of Re-Issued patents, ranging from 0.16 to 0.24. The trend line indicates a positive correlation between examiner errors and the rate of re-issuance.
Invalidity Rulings

![Graph showing the relationship between IPR Institution Rate and Examiner Grant Rate Effect (SDs).]
Targeted Purchases

- NPEs also target patents within firm portfolios
 - \(\rightarrow \) Results hold after controlling for assignee fixed effects

- Rules out purchasing behavior based solely on characteristics of original firm
 - \(\rightarrow \) Supply-driven: NPEs buy whole portfolios during fire sales
 - Struggling firms hold weaker IP
 - \(\rightarrow \) NPEs buy based on firm attribute: e.g. small firms or individuals
 - Lenient examiners grant more small entity patents

- Another possible form of targeting: buy patents on the best ideas in the pool of weak patents
 - \(\rightarrow \) Use an independent signal of idea quality: EPO decisions
EPO Evidence

Table: NPE Purchase vs. EPO Decision

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO Grant</td>
<td>-0.461***</td>
<td>-0.211***</td>
<td>-0.199**</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.057)</td>
<td>(0.059)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Artunit-Year F.E.</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Examiner F.E.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignee F.E.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>218,867</td>
<td>218,867</td>
<td>217,491</td>
<td>197,919</td>
</tr>
</tbody>
</table>
EPO Evidence

<table>
<thead>
<tr>
<th></th>
<th>NPE Purchase</th>
<th>Non-NPE Purch.</th>
<th>Non-NPE Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO Grant</td>
<td>-0.2144**</td>
<td>0.0037</td>
<td>-0.0831</td>
</tr>
<tr>
<td></td>
<td>(0.1001)</td>
<td>(0.0133)</td>
<td>(0.1074)</td>
</tr>
<tr>
<td>Examiner F.E.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignee F.E.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artunit-Year F.E.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>109,383</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: patents of examiners with above median NPE Effect
Conclusion

Core results

→ Examiners have sizable causal effects on the nature and subsequent usage of patents

→ Biggest impacts on legal outcomes, but general effects on private value and follow-on innovation

NPE behavior

→ Highly dependent on examiner behavior

→ Likely to be selectively purchasing weaker patents
Examiners’ signal SDs are similar when controlling for (leave-one-out) examiner allowance effect, and inventor’s and assignee’s past applications, grants and citations.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$\hat{\sigma}_\mu$/Baseline Rate</th>
<th>Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE Purchase</td>
<td>75.94%</td>
<td>50.97%</td>
</tr>
<tr>
<td>Non-NPE Litigation</td>
<td>90.32%</td>
<td>62.10%</td>
</tr>
<tr>
<td>Non-NPE Purchase</td>
<td>17.04%</td>
<td>14.01%</td>
</tr>
</tbody>
</table>