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Abstract

The apparent early success in China’s large-scale intervention to control the COVID-
19 epidemic has led to interest in whether other countries can replicate it as well as
concerns about a resurgence of the epidemic if or when China relaxes the interventions.
In this paper we look at the impact of a single short-term intervention on an epidemic.
We see that if an intervention cannot be sustained long-term, it has the greatest im-
pact if it is imposed once infection levels have become large enough that there is an
appreciable number of infections present. For minimising the total number infected
it should start close to the peak so that there is no rebound once the intervention is
stopped, while to minimise the peak prevalence, it should start earlier, allowing two
peaks of comparable size rather than one very large peak. In populations with distinct
subgroups, synchronized interventions are less effective than targeting the interventions
in each sub-population separately.

We do not attempt to clearly determine what makes an intervention sustainable or
not. We believe that is a policy question. If an intervention is sustainable, it should
be kept in place. Our intent is to offer insight into how best to time an intervention
whose impact on society is too great to maintain.

1 Introduction

The Influenza pandemic of 1918 was one of the deadliest epidemics of infectious disease the
world has ever seen. In response, many cities introduced widespread interventions intended
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to reduce the spread. There is evidence [3] that those cities which implemented these inter-
ventions later had fewer deaths. This seemingly counter-intuitive observation suggests that
those cities which were slow to respond were the most successful.

A similar pattern can be observed for the 2009 H1N1 influenza pandemic. When it was
first recognized, there were many cases present in Mexico City. After a 2 week school closure
with many additional interventions in place, the number of cases in Mexico City dropped
dramatically and did not significantly increase after relaxing the controls.

As the disease was introduced into other geographic regions, many schools closed in
response to the first observations of infection. Once these schools reopened, they were likely
to eventually have a new introduction. The remaining susceptible population was almost as
large as at the outset, so new epidemics were likely to be as large as the original epidemics
would have been. The school closure provided increased time to prepare, but the overall
epidemic was very similar.

We can understand these historical patterns by observing that some of the most dras-
tic social distancing interventions are unsustainable. We will refer to these as “one-shot”,
meaning that the intervention cannot be maintained indefinitely or repeated. The theoreti-
cal work contained in [3] showed that if an intervention was only temporary, it was generally
more effective if introduced later in the epidemic (but not too late).

The phenomenon can be explained by noting that epidemics rely on two things to spread:
infected individuals and a supply of susceptible individuals. If the intervention is too early,
the number infected may fall, but there will be enough susceptibles available that it can
re-establish and grow again; the intervention only delays the spread. However, if the in-
tervention occurs once the susceptible population has been noticeably depleted, then the
number of infections falls quickly and it may not be able to rebound.

In the ongoing COVID-19 epidemic, China has introduced drastic control measures.
These appear to have significantly reduced transmission, apparently reducing the effective
reproduction number (the number of new infections per infected individual) very close or
below one [6, 10], although there is still a lot of uncertainty about the effectiveness of control
measures [5].

Similarly, in response to observed infections in some regions Japan has turned to widespread
school closures. Other counties are implmenting or considering similar interventions. Some
of these control measures are likely unsustainable. So they will be relaxed eventually. It
is unclear what will happen if or when the interventions are relaxed. China, in particular,
faces a challenge. It may be that in Wuhan, the epicenter of the initial spread, the sus-
ceptible fraction is sufficiently depleted that the disease is unable to return (although the
apparent fraction infected thus far is quite small, so this seems unlikely). In other regions of
China which have apparently been quickly brought under control with only a small number
of transmissions it seems likely the the disease may easily return if the measures are relaxed
fully.

Motivated in part by current decisions facing policy makers for the COVID-19 epidemic,
we develop mathematical models which allow us to explore how to time short-term interven-
tions in response to an emerging epidemic. We are particularly interested in how the timing
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of the intervention might affect the total fraction infected and the peak prevalence, but we
are also interested in the resulting delay of the epidemic.

We model an infection introduced into a fully susceptible population. We make an
assumption that is appropriate for an established pandemic that eliminating infection soon
after it is introduced to the population will not prevent future reintroductions. So we do
not focus our attention on the possibility of eliminating the disease. We will investigate the
impact of intervention on the timing of epidemics, the peak fraction infected, and the final
fraction infected (in the absence of additional interventions).

Our results have important implications for the ongoing COVID-19 epidemic. If an
intervention definitely cannot be sustained for an extended period of time, then it is best if
it is “held in reserve” until depletion of susceptibles has reduced the effective reproductive
number enough that the one-shot intervention will have maximal impact. However, we must
exercise care in determining that an intervention cannot be sustained. The uncertainty
about the case fatality rate remains high [9], and at the higher end of the plausible values,
the tolerance of the population for drastic interventions may be significant. Thus what might
appear to be an unsustainable intervention may in fact be sustainable if we have a better
understanding of the case fatality rate. An additional consequence of our results which is
applicable to sustainable interventions is that the expression “better late than never” applies
quite strongly for interventions.

In this paper, we first introduce the mathematical models we use to explore the impact
of a one-shot intervention against an infectious disease in a single well-mixed population
and a metapopulation made up of several distinct sub-populations. Then we discuss results
from those mathematical models. Finally we discuss the implications of these results. A
particularly important point to raise is that for an infection like COVID-19 with a relatively
high proportion of severe cases, we need to think carefully about an intervention before we
decide that it is not sustainable. In the Appendix we develop some mathematical theory
explaining the mechanism underlying the effect in more detail.

Our goal is not to provide specific predictions for a specific population, but rather to
demonstrate the generic impact of delaying a one-off intervention and to show its robustness.

2 Methods

In this section we introduce mathematical models for an “SIR” (Susceptible–Infected–Recovered)
epidemic in a single well-mixed population and in a metapopulation made up of several sub-
populations. We assume that the intervention is initiated at a specific time t∗ (typically once
the cumulative number of infections I + R reaches some threshold), and that the interven-
tion lasts for a fixed duration D. In the metapopulation model, we compare outcomes when
the intervention is implemented in all populations at the same time or in each individual
population separately.

3



2.1 Well-mixed population

To study an intervention in a well-mixed population, we use the standard SIR model [1].

Ṡ = −βIS,
İ = βIS − γI, (1)

Ṙ = γI,

where S, I, and R denote the susceptible, infected and recovered fractions of the population
with S + I +R = 1. There are a few important quantities to consider.

• The basic reproduction number R0: The typical number of infections an infected indi-
vidual causes early in the epidemic in the absence of intervention and the absence of
any depletion of susceptibles. This is R0 = β/γ.

• The effective reproduction number Re: As depletion of susceptibles occurs or inter-
ventions are put into place, the number of infections an infected individual causes is
reduced. When Re < 1, the number of infections declines.

If R0 > 1 the typical behavior of an epidemic without an intervention is that at t = 0 we
have S ≈ 1, I is very small and R = 0. As time increases, I and R grow and S decreases.
The reduction in S reduces the effective reproduction number: Re = R0S. Once S < 1/R0,
I begins to fall as well as recoveries outweigh new infections: I → 0. Some fraction remain
uninfected: S(∞) > 0 and R(∞) = 1− S(∞), see figure 1 for typical profiles of S, I and R
in time. We will measure time in multiples of the typical infection duration. Making this
assumption means that γ = 1 and β = R0.

We assume that at some time t = t∗, a social distancing intervention is introduced
with duration D. The intervention reduces β by some factor c. So from time t = t∗ to
time t = t∗ + D the transmission rate β = R0 is replaced by β = (1 − c)R0. During the
intervention, the effective reproduction number is Re = S(1− c)R0. After time t = t∗ + D
the transmission rate returns to β = R0, and Re = SR0.

We will typically assume that t∗ is chosen based on the cumulative number of infections
I(t) +R(t) crossing some threshold.

We will measure three quantities of interest:

• the attack rate or total fraction infected R(∞),

• the peak prevalence or maximum value of I(t), and

• the time of peak, or tp at which I is maximized.

In general the goal of our intervention is to reduce R(∞), reduce I(tp), and increase tp.
One detail that needs attention in interpreting later results is that if an intervention is put

into place before S = 1/R0, but after the number of infections is large, it may happen that
the intervention causes an immediate decline in I, and that I never recovers to the level it

4



0 5 10 15

t

0.0

0.2

0.4

0.6

0.8

1.0
S
(t
),
I
(t
),
R
(t
)

(a)

0 2 4 6 8 10

t

(b)

Figure 1: The time-evolution of S, I and R for epidemics with no control. (a) R0 = β = 2
and (b) R0 = β = 4 with γ = 1 in both. Horizontal and vertical dashed black lines indicate
the peak prevalence Imax and time of the peak tp, respectively, while green dashed horizontal
lines show the attack rate R(∞) found by numerically solving R(∞) = 1− S(0)e−R0R(∞).

was at before the intervention. In this case, we would see that tp = t∗, which corresponds to
an earlier peak. This seeming acceleration in the time of the peak is actually a consequence of
the intervention reducing or eliminating the later peak prevalence. We should not interpret
a reduction in tp due to this effect as a failure of the intervention.

2.2 Metapopulation model

We will also investigate the effectiveness of interventions in a metapopulation made up of
distinct sub-populations. We are particularly interested in whether it is better to time the
intervention to each sub-population separately or whether it is best for the intervention to
be synchronized.

It is well-known that if the sub-populations have strong enough coupling, the epidemics in
all sub-populations are effectively synchronised [2, 4]. In this case the time-evolution of the
outbreaks in the various sub-populations are similar to that of the fully mixed population,
and there is little distinction between interventions based on individual sub-population or at
the global-level.

Thus to compare whether a global intervention is comparable to an individually targeted
intervention and understand the magnitude of the difference, we need to explore a population
with weak coupling. The model we will use is a standard meta-population model [1], allowing
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most transmission to be within a sub-population and some cross interactions between the
sub-populations.

Ṡj = −
∑

βijIiSj,

İj =
(∑

βijIiSj

)
− γIj,

Ṙj = γIj,

where 0 ≤ Si ≤ 1, 0 ≤ Ii ≤ 1 and 0 ≤ Ri ≤ 1, with (Si + Ii + Ri)(t) = 1 for all t ≥ 0,
represent the fraction of susceptible, infected and infectious and recovered individuals in
sub-population i, where i = 1, 2, . . . , N .

To simplify the presentation, all sub-populations are of equal size. The recovery rate
γ is identical for all populations. As before we measure time in multiples of the typical
infectious period, so we set γ to 1. The cross-infection between sub-populations is modelled
by B = (βij)i,j=1,2,...N , where βij represents the rate at which infectious contacts are made
from sub-population i towards susceptible individuals in sub-population j.

We implement a weak coupling by joining the population in a linear fashion: population
i is only connected to population (i − 1) and (i + 1). The first and the last populations
only connect to the second and the pen-ultimate population, respectively. The entries for
the coupling/mixing matrix are generated as follows. On the main diagonal, the βii values
are set to 2 + (Unif(0, 1) − 0.5). Off-diagonal entries are set to Unif(0, 1)(β∗ii/10) (β∗ =
maxi=1,2,...,N βii) and represent a scaled and randomised version of the largest entry on the
main diagonal. This yields an R0 above 2, comparable to current estimates for COVID-
19 [6, 7].

We will use this model to explore whether it is better to implement an intervention in
a synchronized fashion across all sub-populations or whether it is better to implement it in
each sub-population. In particular, we will consider the following scenarios:

• track (Ii +Ri)(t) in each sub-population and as soon as (Ii +Ri)(t) > Tri, a one-shot
control is deployed in the corresponding sub-population,

• track (I + R)(t) = 1
N

∑N
i=1(Ii + Ri)(t) globally and as soon as (I + R)(t) > Tr, a

one-shot control is deployed across all sub-populations, and

• track each sub-population and deploy the one-shot control is deployed across all sub-
populations as soon as threshold for (I + R)(t) is breached in any of the individual
epidemics.

One-shot control in a sub-population is understood to mean reduction in the internal, in-
coming, and outgoing rates of infection with a factor of (1− c), where 0 ≤ c ≤ 1 denotes the
efficiency of the intervention in sub-population i. This reduction lasts for a duration D and,
as soon as the control is over, the transmission rates for that sub-population are restored to
the starting levels.
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3 Results

We use our mathematical models to demonstrate how the timing of an intervention can
impact

• total attack rate,

• peak prevalence, and

• time of peak.

These are expected to be good measures of the total impact on the population or the burden
on the health services.

We find that one-shot interventions that begin at the first sign of infection have little
effect on the final outcome beyond delaying it. This is because the intervention blocks few
transmissions because only a few individuals are infected when the intervention is imple-
mented. When the restrictions are lifted, the disease eventually spreads again in an almost
fully susceptible population, and its trajectory is for all practical purposes the same, just
delayed. In contrast if the intervention is delayed to start closer to the peak of the epidemic
it will be more effective.

For a weakly-coupled metapopulation model, the subgroups are likely to have somewhat
asynchronous epidemics. In this case it is better to implement the one-shot interventions
based on a local threshold rather than a global threshold. If the coupling is stronger, the
epidemics are closely synchronized and there is little difference between the strategies.

3.1 Well-mixed population

For a well-mixed population we find that the timing of a one-shot intervention has an im-
portant impact on the effectiveness of an intervention the peak prevalence and total fraction
infected. If the intervention is put in place early, then the impact on the peak is to delay it.
If the intervention is put into place later, then the we may artificially see that the time the
intervention is implemented becomes the new peak since the later peak is either dramatically
reduced or eliminated altogether.

Figure 2 shows the impact of an intervention in a population with R0 = 2.5 and an
intervention of strength c = 4/5 (it prevents 4 of every 5 transmissions), and duration 2
(time units measured in multiples of the typical infection duration). The figure focuses on
the impact of varying the threshold value of I +R at which the intervention is introduced.

Figure 3 shows how the optimal threshold changes as the parameters of the disease or
intervention change.

3.1.1 Impact on attack rate

If the intervention is introduced early on, it will have an immediate impact. However,
when the intervention is lifted, there are still many susceptibles around, so the epidemic can
rebound. Even if the disease is eliminated locally, in a pandemic setting it will eventually
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Figure 2: Illustration of the impact of one-shot intervention in a population with R0 = 2.5.
The intervention has c = 0.8 for a duration of D = 2 time units. This intervention is
introduced at different times as determined by a range of Threshold values. The impact
of the threshold I + R for implementing the intervention is shown for (a) the attack rate
R(∞); (b) S(t); (c) time of the peak prevalence; (d) I(t); (e) time of peak; and (f) plots
of I(t) + R(t). In (b,d,f), the no-control case is plotted as a dashed line. The vertical
lines in (a,c,e) correspond to the threshold for cumulative infections I + R which yields the
intervention leading to the corresponding color in (a,c,e).

return to the population. The models predict an almost identical epidemic curve once it
rebounds, except with a shift to later time. So an early intervention has little impact on the
attack rate R(∞).

In Figure 2(a) we see that the intervention is introduced later, we see a clear improvement
in R(∞), up to a threshold of I+R of 0.6, which is close to where the peak prevalence in the
epidemic without intervention. As a general rule of thumb to reduce the attack rate R(∞),
the intervention is most effective if it eliminates as many transmissions as possible. So we
want to time the epidemic to maximize the number of infected individuals present during
the intervention (Mathematically we want to maximize

∫ t∗+D

t∗
I(τ)dτ given D, c, and R0).

Thus the ideal timing is not at the first hint of infection (when there are not enough
infected individuals to cause many transmissions), but rather, close to the peak. This sug-
gests that the more effective an intervention is, the closer we should be to the peak before
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Figure 3: Contour plots for R(∞), Imax and surface plots for tp as a function of parameters for
the well-mixed population. We explore different threshold values of I+R for the intervention
to start, from a minimum of 0.05 to a max of 0.9. The first row investigates impact of duration
from D = 0.1 to D = 6, holdingβ = 2.5 and c = 0.8. On the second row, intervention
duration is D = 4 and the c ranges from 0.2 to 0.9. Finally, on the third row, c = 0.8 and
D = 4, and the values of β = R0 vary from 1 to 4. In all cases γ = 1.
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implementing it. It also suggests that for a longer duration intervention, we can implement
it somewhat sooner, but not significantly sooner. If the infectiousness of the disease goes up,
the need to begin the intervention near the peak implies that the threshold value of I + R
will need to be larger (though the time t∗ at which it is implemented is smaller).

These predictions are borne out by observations of the first column of Figure 3 which
shows how the optimal threshold value of I + R for implementing the intervention changes
as the the efficiency c, the duration D, or the reproductive number R0 change.

3.1.2 Impact on peak prevalence

As in the attack rate case, an early intervention only delays the epidemic curve. It does not
significantly alter the shape. Thus the peak prevalence remains effectively the same.

If the susceptible population has been significantly depleted prior to the elimination of the
intervention, then once the intervention is stopped, the epidemic rebound will be significantly
muted. Moving the intervention later makes the rebound smaller. However, it means that
the number of infections prior to the intervention is larger. There comes a point at which
it can no longer rebound to the level of infection prior to the intervention. Delaying the
intervention past this value results in a larger pre-intervention peak.

Figure 2(c) shows the optimal threshold to reduce the peak prevalence occurs sooner than
to reduce the attack rate. For optimizing peak prevalence, having a moderate sized rebound
is less of a concern than for optimizing the attack rate. For the purpose of reducing peak
prevalence, the optimal time to introduce the intervention is when the current prevalence
matches the peak prevalence that would occur once the disease rebounds.

We can crudely estimate the threshold necessary for minimizing the peak prevalence.
If we know a population’s reproductive number R0 and its initially immune fraction R∗

and susceptible fraction S∗ = 1 − R∗, we can determine the peak prevalence.1 In the limit
of a very long (D → ∞) and strong intervention (c → 1), at the end of the intervention
S(t∗+D) ≈ S(t∗) and R(t∗+D) ≈ I(t∗) +R(t∗). This will be a reasonable estimate as long
as D is longer than a typical infection, even if c is not very close to 1.

We can use this to estimate when I(t∗) will approximate the rebound. As this is not
strongly dependent on duration, or c, this explains why the optimal threshold for peak size
does not vary much in Figures 3(b) and (e). We do not currently have an explanation for
the fact that it remain similar as R0 changes in Figure 3(h).

3.1.3 Impact on timing of epidemic

As we noted for the attack rate and the peak prevalence discussions, an early intervention
simply shifts the epidemic curve to later, which increases tp. For very early interventions,
the shift in the peak time is the regardless of the threshold2. However, as the threshold

1There is actually an analytic formula for this 1− 1
R0
− R∗ − lnS∗R0

R0
but for our purposes we just need

to recognize that R0, R∗ and S∗ are sufficient to determine the peak prevalence.
2of course if the disease is eliminated locally which is more likely with a small threshold, then the prediction

of the next peak depends on frequency of reintroduction. We do not consider this here
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increases and we start to see an impact on R(∞) and Imax, there is also an impact on tp.
As with the other targets, a later intervention tends to have an increased impact. The peak
time tp moves later as the start time increases.

There is an abrupt change that occurs for later interventions when the epidemic is no
longer able to rebound to the same number of infections seen prior to the intervention. In
this case, the peak becomes the time at which the intervention is implemented. This appears
in Figure 2 as a an abrupt drop in tp. It rises again and eventually settles to a constant
value, corresponding to the intervention being introduced after the natural epidemic peak.

In a real-world context, we anticipate that the model may overstate the delay from a very
early intervention if there is significant transmission outside the population of interest. In a
setting where the disease is spreading well outside the population, the reduction of infections
within the population during the intervention is immediately negated by new transmissions
from outside, so the delay of the peak is effectively equal to the duration of the intervention.
However, in a setting where the disease is not yet well-established outside the population
(as occurred in China early in the COVID-19 epidemic), a major effort at early time may
significantly delay the eventual epidemic.

3.2 Metapopulation model

We now consider a more realistic population which consists of coupled sub-populations,
so effectively a metapopulation model. The most obvious reason for this setup could be
location/geographic or by age, but other alternatives exist including religion, ethnicity or
socio-economic status. We again consider one-shot interventions that either target the entire
population at once or that target individual sub-populations at different times. A typical
plot of the prevalence level in each sub-populations is shown in figure 4 in the absence of
intervention. The epidemic starts in sub-population two but it then spreads to all the other.

The overall impact of these interventions is qualitatively similar to that of the single-
population model. We find that if the epidemics in the sub-populations are not synchronous
(as occurs if the coupling is small [2, 4]) then interventions acting at different times for each
sub-population are substantially more effective than interventions responding to a global
threshold. If the coupling is larger so that epidemics are synchronized, then there is no
distinction between these strategies.

As before we consider the impact of intervention on attack rate, peak prevalence, and peak
timing. We find that an intervention which is targeted at each sub-population individually
significantly outperforms synchronized interventions that either begin when the first sub-
population reaches a threshold or the global infection crosses a threshold.

3.2.1 Impact on attack rate

The smallest values of the attack rates are achieved when control acts independently in
each sub-population meaning that as soon as (Ii + Ri)(t) is larger than the threshold, the
one-shot control is switched on in sub-population i. This is true independently of whether
the efficacy or duration of control is kept fixed, while the other is varied, see figure 5(a,d).
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Figure 4: Example of an epidemic spreading across 9 identical populations with different
contact rates, see Appendix for the precise mixing matrix B). The epidemic starts from
sub-population 2 and it is run for T = 35 units of time. γ = 1 for all sub-populations. With
no control the attack rate or final epidemic size is 0.744.

The impact of the threshold is qualitatively similar. Typically, as in the case of a single
population, there seems to be a clear optimal threshold value which leads to the smallest
final epidemic size. Applying the control too early or too late leads to higher attack rates.
Fixing the threshold value and increasing the duration of control, see Figure 5(a), or the
efficacy of control [Figure 5(d)]leads to smaller attack rates. Both these effects are nullified
if the intervention is too early or too late.

The impact of the intervention based on the global level of (I + R)(t) [see figure 5(b,e)]
or on the first sub-population to reach a threshold [see figure 5(c,f)] are similar, but qual-
itatively different compared to the individually-targeted intervention. First of all, there a
is a monotonic but slow decrease in the attack rate with increasing values of the threshold,
duration of control and efficacy. However, the decrease is modest and this is due to the fact
that when control is deployed the epidemics in some sub-populations may have effectively
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Figure 5: Contour plots showing the attack rate (final epidemic size) under different con-
ditions. In the first row c is fixed and the duration of control varies on the vertical axis,
while in the second row duration is fixed and c varies. Each column corresponds to one of
the three strategies: (a,d) intervention in each sub-population, (b,e) global intervention at
global threshold, and (c,f) global intervention when the first sub-population breaches the
threshold) for a population consisting of 9 sub-populations. In each plot, the x−axis shows
the values that the threshold for intervention can take (from a minimum of 0.05 to a maxi-
mum of 0.8). In the first row c = 0.8 is constant, while the duration of control varies from
a minimum of T = 1 to a maximum of T = 10. On the second row instead, the duration of
control is kept fixed at T = 2, and the values of c varies from c = 0.1 to c = 0.9. The mixing
matrix B is given in the Appendix, and γ = 1 for all sub-populations.

finished or not even started (see the asynchrony in Figure 4). The situation is very similar
when control is based on the first population to reach a threshold, see figure 5(c,f). Finally, it
is clear that the biggest impact on the attack rate still comes from the value of the threshold.
Larger values of the threshold mean that control is more likely to hit more of the individual
epidemics as they become established at different times. The duration of control and its
efficacy only really matter at lower values.

Finally, in figure 6 we show how the best one-shot control works when the optimal
threshold for fixed control efficacy and duration is implemented. As expected, this plot
confirms that intervention happens close to the peak of the epidemic in each sub-population
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and secondary waves of infection do not occur.
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Figure 6: Illustration of best control strategy (i.e. smallest attack rate) (controlling sub-
populations individually but using the same threshold for each) when efficacy and duration
of control are fixed at c = 0.8 and D = 2, respectively. It turns out that the optimal
threshold is close to (0.4). This combination represents the point (0.4, 2) in Fig 5 panel
(a), or equivalently the point (0.4, 0.8) in panel (d). With this strategy, we find that R(∞)
goes from R(∞) = 0.75 to R(∞) = 0.63. If we increase control duration from 2 to 10 we
would achieve a further reduction to R(∞) = 0.44. The vertical black line show the onset
of control.

3.2.2 Impact on peak size

Here we look at the effect of the intervention in terms of the peak prevalence, that is the
maximum value achieved by I(t) = 1

N

∑
i Ii(t) during the time course of the epidemics.

Perhaps not surprisingly, figure 7 is qualitatively similar to figure 5. In figure 7 (a,d) the
optimal threshold for intervention is evident and is shifted to the left, this is in line with the
trend observed in figure 2 for the one single population case. Here we notice that different
strategies lead to different optimal choices for intervention, as we observed when we studied
the attack rate. If each sub-population is followed locally and the reduction in peak is the
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main target then it is best to start the intervention with some delay, rather than immediately
enforce it as soon as a few cases emerge. This is contrary to our other two strategies where
following the global epidemic or the first local outbreak means that in many other sub-
populations the intervention will be too early to have a significant impact. Thus, in line
with our previous observation when looking at reduction in the attack rate, targeting each
sub-population locally appears to be the overall best strategy to reduce the peak prevalence.
We also notice that, if interventions are global, the duration of control has a limited impact
on the overall peak, unless it is started at a later stage of the epidemic. Finally, in all the
cases it appears that the strength of control is not as significant as its duration.
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Figure 7: Contour plots of the peak prevalence, Ipeak, that is the maximum value achieved
by I(t) = 1

N

∑
i Ii(t) during the time-course of the epidemic. Control strategies and setup

the same as in figure 5.

3.2.3 Impact on timing of epidemic

In the spirit of last subsection, we can also notice how different control strategies affect the
peak prevalence time. The most striking feature emerging from simulations is that a control
strategy tailored to the needs of each sub-population, figure 8(a)-(d) can delay the time of
the peak by quite a margin, in accordance to what is observed in the single population case.
When the intervention acts on a global level, the effect of control on peak-time appears to be
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more regular, being proportional to the duration of the intervention being mildly affected by
the threshold at which intervention happens. This is due to the fact that if the intervention
is not perfectly timed on each epidemic curve, the peaks do not change by much, exactly as
discussed in the single population case. The lower peak observed in panel (d) happens for
c→ 1 and a threshold lower than 0.2 in a sub-population based approach, and it means that
as soon as control is triggered, the epidemic is completely stopped for a duration D and it
cannot return to values higher than the ones that triggered intervention.
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Figure 8: Surface plot of the time at which peak prevalence in the global epidemic happens,
i.e. the maximum point in

∑
i Ii. In terms of control strategies and parameter values the

same setup as in figures 7 and 5 are used.

4 Discussion

Our analysis shows clearly that a one-shot intervention is much more effective if implemented
once the number of infections is reasonably large. This pattern is consistent for well-mixed
populations and for metapopulations. In the metapopulation model, the intervention is
significantly more effective when the timing in each subgroup is based on the infection levels
in that group as opposed to synchronized across the population. Our analysis also shows that
if a sustainable transmission-reducing intervention has not yet been implemented once the
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disease is already established, then there is still significant benefit even if the introduction
is delayed.

There is some difference in the optimal threshold to use for the intervention based on
whether the goal is to control peak prevalence (thus reducing the maximal load on the health
care system) or reducing the total number infected. However in both cases the optimal
threshold is well after the disease is established.

So for a one-shot intervention, it is clear that delaying the intervention until infection
levels have become relatively large is optimal. However, we must think critically about what
constitutes a one-shot intervention. Obviously an intervention that prevents the population
from getting food cannot be maintained. But what about other interventions?

We find that in the metapopulation model, the targeted one-shot intervention achieves
significant improvements over a synchronized one-shot intervention. This is because the in-
herent asynchrony of the epidemics means that many communities have an epidemic either
before or after the intervention. Our results offer strong support for targeting the inter-
ventions if they cannot be maintained for a long period. We have ignored the logistical
challenges that might be associated with implementing the intervention separately for each
sub-population. On a large scale (states within a country) we anticipate that this is logisti-
cally feasible, while on a small scale (suburbs in a city) it is more likely that the epidemics
will be synchronized.

Current estimates of case fatality rate (not to be confused with infection fatality rate)
range from 0.7% in China outside of Hubei province to around 2% in much of the world, to
around 5.8% in Wuhan [8]. These estimates may depend on what proportion of cases are
identified, and whether the health system is over capacity. With such high fatality rates,
our tolerance for drastic interventions should increase. Thus an intervention that would be
considered one-shot for the 2009 H1N1 pandemic which had a low fatality rate might be
considered sustainable for the COVID-19 epidemic.

In deciding whether an intervention is sustainable policy maker could formulate an answer
to this question: “if infection rates are the same or higher at some future time, and would
increase if they were dropped, would you be willing to maintain the intervention in place?”
If so, then the intervention is sustainable. If the answer is “no”, and the intervention will be
abandoned at some future time regardless of the new infection profile, then this is a one-shot
intervention, and it should be held in reserve until it will have more impact.

A Mathematical Analysis

In this section we provide mathematical analyses of the single population model to support
our results for reducing attack rate and peak prevalence.

A.1 A Phase-plane based analysis

Because S + I + R = 1, we can fully specify the current state and the future dynamics by
knowing S and R, in which case I = 1− S − R. It will be useful to use this to explore the
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Figure 9: We plot S(t) versus R(t) for R0 = 0.5 (a), 2 (b), and 4 (c). For given S(t) and
R(t), the proportion infected is I(t) = 1−S(t)−R(t), which equals the vertical or horizontal
distance from the point (R(t), S(t)) to the line S +R = 1. The curves and arrows show how
a solution to System (1) evolves in time. At points S > 1/R0 (which occurs only for R0 > 1)
orbits move farther from the diagonal, representing an increase in I. Note that the velocity
an orbit is traversed varies depending on location, and goes to zero close to S +R = 1. Red
dots in panel (b)-(c) indicate the point (S = 1

R0
, I = 0, R = 1− S).

dynamics of an epidemic and the impact of an intervention.
In Figure 9 we show how S(t) and R(t) evolve together in time for three values of R(0)

(0.5, 2, and 4) and for several different initial conditions. For a given point (S0, R0), the
value of I at that time is given by the horizontal (or vertical) distance to the diagonal line
S +R = 1.

In the figure, we can see that if S > 1/R0 (which is only possible if R0 > 1), then the
horizontal distance from the orbit to the S + R = 1 line is increasing as the orbit moves
forward. In other words, I is increasing. Once S < 1/R0, the distance decreases and
eventually goes to 0.

Using these orbits, we can investigate the impact of an intervention, as shown in Figure 10.
We follow S and R along an orbit. When we turn on the one-shot intervention at time t∗,
it no longer follows the original curve. Instead the change in S and R follows the paths we
would find for (1 − c)R0, starting from the point (R(t∗), S(t∗)). It follows this curve until
reaching (R(t∗ + D), S(t∗ + D)) when the intervention is halted. It then follows the curves
for the original R0, but starting from this new point.

Note that there is a point (R, S) = (1 − 1/R0, 1/R0) at which separates the points on
the line R + S = 1 from which an epidemic could start from the points at which epidemics
finish. The closer an orbit is to this point, the smaller the final size.

So for R0 = 2, a temporary intervention gives us a way to move from one of these curves
in the R0 = 2 plot to another. We see this in figure 10. The timing of the intervention
determines which of the orbits the system lands on.

In this context the goal of reducing the attack rate is equivalent to ensuring that the
intervention shifts the curve to an orbit as close as possible to (R, S) = (1−1/R0, S = 1/R0).
Reducing the peak prevalence is equivalent to ensuring that the orbit remains as close as
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Figure 10: (S,R) phase portrait (arrows indicate growing time) based on an SIR model in
a single population with β = 2, γ = 1 (giving R0 = 2) and initial condition I(0) = 0.01.
The plot shows a trajectory with no control (continuous red line) as well as three other
trajectories where β = 0.5 for a time period of length D = 2 but with the intervention
setting in only once (I + R)(t) goes past 0.1 (partially dotted line), 0.3 (partially dashed
line) and 0.5 (continuous broken line), respectively. Control for the three different scenarios
sets in at the points denoted by A, B and C and control ends at A’, B’ and C’, respectively.

possible to the line S +R = 1.

A.1.1 Attack rate

If our goal is to minimize the number of infections, we accomplish this by having the curve
(R(t), S(t)) land on an orbit that is as close to (R, S) = (1− 1/R0, 1/R0) as possible given
the constraints on the intervention.

Typically we have to wait until the curve has moved closer to the desirable orbits before
implementing the intervention. Implementing the intervention early, see the dotted line in
figure 10 means that at the end of the intervention there is still a large pool of susceptibles
which are at risk of becoming infected. Crossing from A to A’ simply puts the epidemic on
a slightly different trajectory but the final size is very close to the case with not control. An
intervention at a later stage, see dashed line, improves the final outcome resulting in a final
size that is smaller when compared to the case on no-control. Finally, the continuous broken
line shows an almost optimal intervention with a further small reduction in the final fraction
infected.

In general, the intervention that will get us closest to the optimal value occurs when the
original curve is close to, but has not yet reached, the largest value of I, which occurs when
S = 1/R0. As the effectiveness of the intervention increases, the orbits it follows during
the intervention become more horizontal. For very effective interventions, this suggests we
should wait until very close to the epidemic peak, while for less effective interventions (which
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will slope downwards more), we will want to implement them somewhat sooner.

A.1.2 Peak prevalence

For peak prevalence, the goal is to keep the curve as close as possible to S + R = 1. The
longer we wait to implement the intervention, the closer the final orbit is to S +R = 1, but
the farther the original orbit moves from the line. With this in mind it becomes clear that
the optimal t∗ to reduce peak prevalence is smaller than the optimal value to reduce attack
rate.

A.2 The mixing matrix

The cross-infection between sub-populations is modelled by B = (βij)i,j=1,2,...N , where βij
represents the rate at which infectious contacts are made from sub-population i towards
susceptible individuals in sub-population j.

We implement a weak coupling by joining the population in a linear fashion: population
i is only connected to population (i − 1) and (i + 1). The first and the last populations
only connect to the second and the pen-ultimate population, respectively. The entries for
the coupling/mixing matrix are generated as follows. On the main diagonal, the βii values
are set to 2 + (Unif(0, 1) − 0.5). Off-diagonal entries are set to Unif(0, 1)(β∗ii/10) (β∗ =
maxi=1,2,...,N βii) and represent a scaled and randomised version of the largest entry on the
main diagonal. This yields an R0 above 2, comparable to current estimates for COVID-19.

We only use a single realisation of the mixing matrix and this is given below,

B =



1.917 0.059817 0 0 0 0 0 0 0
0.062024 2.2203 0.03117 0 0 0 0 0 0

0 0.0094413 1.5001 0.0043357 0 0 0 0 0
0 0 0.070055 1.8023 0.076213 0 0 0 0
0 0 0 0.01146 1.6468 0.049723 0 0 0
0 0 0 0 0.02948 1.5923 0.054573 0 0
0 0 0 0 0 0.07709 1.6863 0.045981 0
0 0 0 0 0 0 0.015262 1.8456 0.015462
0 0 0 0 0 0 0 0.098061 1.8968


. (2)
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