Private and Public Intangible Investment Spillovers, Imperfect Competition, Returns to Scale and Product and Process Innovation

Carol Corrado, (TCB, New York and Georgetown University, Washington)
Jonathan Haskel, (Imperial College, CEPR and IZA, London)
Cecilia Jona-Lasinio, (LUISS Lab and ISTAT, Rome)
Ana Rincon-Aznar (NIESR, London)

June 2018
Much work suggests productivity slowdown is TFP slowdown. What might cause that?
 - Mismeasurement?
 - If intangibles have spillovers then intang slowdown means slowdown in TFP?

Need framework for intangibles and spillovers

So far: put intangibles as additional arguments in a production function and consider extra outputs and inputs
 - Makes sense for intangibles like business process innovation or process R&D
 - But what about branding/marketing? Or R&D product innovation?

Purpose of paper
 - New framework for process and product innovation
 - New data
 - Econometric issues in estimating spillovers: imperfect competition, returns to scale, division bias
 - Estimates
If $\Delta \ln R$ has slowed down, less spillovers means $\Delta \ln TFP$ slows down?
Three sector model

Upstream N^S and N^D sectors, producing process and product new intangibles

\[N_S = F^{N_S}(L^{N_S}, K^{N_S}, R_{A}^{N_S}) \] (1)

\[dn_S = \varepsilon_L^{N_S} dl^{N_S} + \varepsilon_K^{N_S} dk^{N_S} + \varepsilon_R^{N_S} dr_{A}^{N_S} \]

and

\[N_D = F^{N_D}(L^{N_D}, K^{N_D}, R_{A}^{N_D}) \] (2)

\[dn_D = \varepsilon_L^{N_D} dl^{N_D} + \varepsilon_K^{N_D} dk^{N_D} + \varepsilon_R^{N_D} dr_{A}^{N_D} \]

where elasticity of output is ε and lower case letters are logs and "d" is a time derivative.

Downstream C sector, renting process intangibles in production

\[C = F^{C}(L^{C}, K^{C}, R_{S}^{C}, R_{A}^{C}) \] (3)

\[dc = \varepsilon_L^{C} dl^{C} + \varepsilon_K^{C} dk^{C} + \varepsilon_R^{C} dr_{S}^{C} + \varepsilon_R^{C} dr_{A}^{C} \]

Capital stocks and investment flows

\[R_{t}^{a} = N_{t}^{a} + (1 - \delta^{Ra})R_{t-1}^{a}, \quad a \in S, D \quad \text{and} \quad K_{t} = I_{t} + (1 - \delta^{K})K_{t-1}, \] (4)

Rental and asset prices

\[p_{t}^{Ra} = p_{t}^{Na}(r_{t} - \pi_{t}^{Ra} + \delta^{Ra}) \quad a \in S, D \quad p_{t}^{K} = p_{t}^{I}(r_{t} - \pi_{t}^{K} + \delta^{K}) \] (5)
Demand and product innovation

- Quality-adjusted output C^e is "more" output.
- Let C^e trade at price P^{Ce}. Define units:

 $P^C C \equiv P^{Ce} C^e$, $\implies C^e \equiv C(P^C/P^{Ce}) \equiv C\Theta$

 $dc^e = dc + d\theta$ \hspace{1cm} (6)

- What is Θ? = endog quality price premium
- Arrow/Nerlove. Demand curve $C^D = C(P^C, R_D)$, where R_D is (intangible) stock of reputation/goodwill
- Firms sell Q^* of branded perfume/superior light bulb at $P_2 > P_1$ for unbranded/standard bulb by spending on R_D to shift C^D.

 - Log differentiation of demand

 $dc^D = -\eta dp + \phi_{R_D} dr_D$ (η = elasticity of demand, ϕ = elasticity of output with respect to R_D. So Θ sustained by product investment R_D

 $d\theta = \frac{\phi_{R_D}}{\eta} dr^D$. \hspace{1cm} (7)
Suppose output only partially quality-adjusted. Quality-adjustment implicit and explicit

\[dc_m = dc + \nu d\theta \]

(8)

Demand and supply in the downstream sector. Using (1), (2), (3), (6), (7) and (8) gives

\[dc_m = \varepsilon^C L dL^C + \varepsilon^C K dk^C + \varepsilon^C R_S dr_S^C + \nu \frac{\phi^D}{\eta} dr_D + \varepsilon^C R_A dr_A^C \]

(9)

- Process inputs: weighted by output elasticity
- Product term: weighted by output elasticity divided by demand elasticity.
- Final term is the output effects of knowledge spillovers: free knowledge times their output elasticity.

Usually we write (9) in terms of shares...so what’s the relation?
Endogenise these elasticities: firm optimisation

- First-order conditions for L, K and R_S (arguments in prod functions)

$$
\varepsilon_X^C = \left(\frac{1}{1 - \frac{1}{\eta}} \right) \sigma_X^C = \mu \sigma_X^C, \ X = L, K, R_S
$$

where σ_X^C are competitive labour and capital rental payments as a share of revenue in the C sector and μ is the mark-up of price over marginal costs ($\mu = 1/(1-1/\eta)$).

- Arrow-Nerlove condition for R^D (demand function)

$$
\phi_{RD} = \eta \sigma_{RD}^C = \frac{\mu}{\mu - 1} \sigma_{RD}^C
$$
Model of downstream sector only

- Downstream equation:

\[
dc_m = \mu \sigma_L^C dl^C + \mu \sigma_K^C dk^C + \mu \sigma_R^C d\ell_S^C + \nu \sigma_R^C d\ell_D^C + \varepsilon_R^C d\ell_A^C \tag{12}
\]

Ex ante approach: if we can measure \(\sigma \) we can calculate/estimate (12).
Ex post, no data on competitive factor shares

In practice we don’t have raw data on capital payments. Assume
- nominal value added, $P_Q Q$ observed (correctly capitalise all investment spending)
- Measured labour shares are right
 \[\sigma_L^C = s_L^C \] (13)
- Measured factor shares add to unity (Jorgenson/Grilliches)
 \[s_L^C + s_K^C + s_{RS}^C + s_{RD}^C = 1 \] (14)
- True incomes in the economy include imperfect competition
 \[\sigma_L^C + \sigma_K^C + \sigma_{RS}^C + \sigma_{RD}^C + \sigma_{\pi}^C = 1 \] (15)
 where σ_{π} is the share of abnormal profits in the sector.
- Economies of scale (note: no term in ε_{RD}^C)
 \[\varepsilon_L^C + \varepsilon_K^C + \varepsilon_{RS}^C = \psi \] (16)
- Measured capital shares are residuals $= 1 - s_L$. Combining gives
 \[1 - s_L^C = \sigma_K^C + \sigma_{RS}^C + \left(1 - \frac{\psi}{\mu} \right) \] (17)
Downstream, ex post shares

- Substituting in elasticities gives

\[
\begin{align*}
 dq^C &= \mu \left(s_L^C dl^C - (1 - s_L^C)dk^+,C \right) + (\psi - \mu)dk^+,C \\
 &\quad + \nu \sigma^C_{RD} dR^C_{RD} + \varepsilon^C_{RA} dR^C_{RA}
\end{align*}
\]

(where \(dk^+\) is \(dk\) and \(dr_S\) weighted by the rental shares of total payments to \(K\) and \(R_S\)).

- *Ex post* \(Q\) grows with spillovers and

- first two terms because if \(\mu > 1\), output elasticities differ from factor shares, and if \(\psi \neq 1\) then \(dc\) is affected by capital

- Product innovation.
 - no quality adjustment, \(\nu = 0\) so firms spending to boost quality, but the statistics office is missing the extra output (in terms of TFP, measured TFP is too small)
 - full quality adjustment, \(\nu = 1\): in which case measured \(Q\) reflects product innovation spend

- Sector aggregation gives similar result, see paper
Data are by industry, country, institutional sector, year

<table>
<thead>
<tr>
<th>Industry (NACE, Revision 2)</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>A Agriculture, forestry and fishing</td>
<td>X</td>
</tr>
<tr>
<td>B Mining and quarrying</td>
<td>y</td>
</tr>
<tr>
<td>C Manufacturing</td>
<td>y</td>
</tr>
<tr>
<td>D Electricity, gas, steam and air conditioning supply</td>
<td>y</td>
</tr>
<tr>
<td>E Water supply; sewage, waste management and remediation activities</td>
<td>y</td>
</tr>
<tr>
<td>F Construction</td>
<td>y</td>
</tr>
<tr>
<td>G Wholesale and retail trade; repair of motor vehicles and motorcycles</td>
<td>y</td>
</tr>
<tr>
<td>H Transportation and storage</td>
<td>y</td>
</tr>
<tr>
<td>I Accommodation and food service activities</td>
<td>y</td>
</tr>
<tr>
<td>J Information and communication</td>
<td>y</td>
</tr>
<tr>
<td>K Financial and insurance activities</td>
<td>y</td>
</tr>
<tr>
<td>L Real estate activities</td>
<td>X</td>
</tr>
<tr>
<td>M Professional, scientific and technical activities</td>
<td>y</td>
</tr>
<tr>
<td>N Administrative and support service activities</td>
<td>y</td>
</tr>
<tr>
<td>O Public administration and defence; compulsory social security</td>
<td>y</td>
</tr>
<tr>
<td>P Education</td>
<td>y</td>
</tr>
<tr>
<td>Q Human health and social work activities</td>
<td>y</td>
</tr>
<tr>
<td>R Arts, entertainment and recreation</td>
<td>y</td>
</tr>
<tr>
<td>S Other service activities</td>
<td>y</td>
</tr>
<tr>
<td>T Activities of households</td>
<td>X</td>
</tr>
<tr>
<td>U Activities of extraterritorial organisations and bodies</td>
<td>X</td>
</tr>
</tbody>
</table>

- **Years:** 1995-2013.
- **Countries:** United States (US), big Northern European (DE, FR and UK), Scandinavian (FI, SE), Small European (AT, NL) Mediterranean (IT, ES).
- **Inputs and outputs:** Tornquist-weighted ln growth rates
Knowledge

- Knowledge term

\[
(\varepsilon_{RA} \cdot d\varepsilon_{RA})_i = \gamma_{MKT}^i (\Delta \ln R_{MKT}^i) + \gamma_{MKT}^i \left(\sum_{j \neq i} \omega_{MKT}^j \Delta \ln R_{MKT}^j \right) + \gamma_{NonMKT}^i \left(\omega_{NonMKT}^i \Delta \ln R_{NonMKT}^i \right)
\]

- Zero public sector depreciation

\[
(\varepsilon_{RA} \cdot d\varepsilon_{RA})_{i,c,t} = \gamma_{MKT}^i (\Delta \ln R_{MKT}^i)
\]

\[
+ \gamma_{MKT} \left(\sum_{j \neq i} \omega_{MKT}^j \Delta \ln R_{MKT}^j \right) + \rho_{i,c,t} \left(\omega_{NonMKT}^i \frac{N_{NonMKT}^c,t}{Q_{i,c,t}} \right)
\]

- \(\sum_{j \neq i} \omega_{MKT}^j \) from I/O tables
- \(\omega_{NonMKT}^i \) share of ind R&D, co-operation
Estimating equation

- See paper for discussion of endogeneity, meas error/division bias
- Estimating equation, for long and short differences n and lags s

$$\Delta_n \ln Q_{c,i,t} = a_t + a_c + a_i + \gamma_{1}^{\text{MKT}} \Delta_n \ln R_{i,c,t-s}^{\text{MKT}}$$

$$+ \gamma \Delta_n \ln R_{i,c,t-s}^{\text{OUT,MKT}} + \rho \left(\frac{N^{\text{NonMKT}}}{Q^{\text{MKT}}} \right) \Sigma_{n,i,c,t-s}$$

$$+ \rho_1 \Delta_N \left(\frac{N^{\text{NonMKT}}}{Q^{\text{MKT}}} \right) \Sigma_{n,i,c,t-s}$$

$$+ (\mu - 1) \left(s_L^Q \Delta_n \ln (L/K^+) \right)_{c,i,t} + (\psi - 1) (\Delta_n \ln K^+)_{c,i,t}$$

$$+ (\nu \zeta_{RD} - 1) \left(s_{RD}^Q \Delta_n \ln R_{D} \right)_{c,i,t} + u_{c,i,t}$$

- Consistently find that change in $N(\text{nonMKT})$ appears
- In principle should be able to estimate rates of return (γ, ρ), μ, ψ, ν.
- Useful if we think e.g. μ has risen post 2007. Meas error biases suggest μ, ψ, ν biased downwards
- Substantial policy interest in γ, ρ; e.g. does ρ vary by country?
Regressions: Dependent variable $\Delta lnQ_{i,c,t}$

<table>
<thead>
<tr>
<th></th>
<th>Mfr</th>
<th>Mfr</th>
<th>Non-mfr</th>
<th>Non-mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year dummies</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country dum</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Industry dummies</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>$\Delta lnR_{rd}^{i,c,t-3}$</td>
<td>0.25**</td>
<td>0.25**</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.24)</td>
<td>(2.20)</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>$\Delta lnR_{outside}^{rd}^{i,c,t-3}$</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.09*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.28)</td>
<td>(-0.35)</td>
<td>(-1.88)</td>
<td></td>
</tr>
<tr>
<td>$\Delta lnR_{intan}^{i,c,t}$</td>
<td>-0.01</td>
<td>0.20***</td>
<td>0.21***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.08)</td>
<td>(5.28)</td>
<td>(5.36)</td>
<td></td>
</tr>
<tr>
<td>$\Delta lnR_{intan}^{i,c,t}_{outside}$</td>
<td>-0.04</td>
<td>0.09*</td>
<td>0.09**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.21)</td>
<td>(1.88)</td>
<td>(2.03)</td>
<td></td>
</tr>
<tr>
<td>shRD*(GovRD/PqQ)$_{i,c,t-2}$</td>
<td>-0.44</td>
<td>-0.45</td>
<td>0.30**</td>
<td>0.32***</td>
</tr>
<tr>
<td></td>
<td>(-0.62)</td>
<td>(-0.63)</td>
<td>(2.50)</td>
<td>(2.65)</td>
</tr>
<tr>
<td>$\Delta shRD \times (GovRD/PqQ)_{i,c,t-2}$</td>
<td>4.15***</td>
<td>4.03***</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>(3.04)</td>
<td>(2.85)</td>
<td>(0.34)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>$s^Q_L \Delta ln(L/K_+)$</td>
<td>0.75***</td>
<td>0.76***</td>
<td>0.39***</td>
<td>0.40***</td>
</tr>
<tr>
<td></td>
<td>(5.01)</td>
<td>(4.97)</td>
<td>(10.16)</td>
<td>(10.28)</td>
</tr>
<tr>
<td>$\Delta ln(K_+)$</td>
<td>0.64***</td>
<td>0.64***</td>
<td>0.42***</td>
<td>0.42***</td>
</tr>
<tr>
<td></td>
<td>(3.68)</td>
<td>(3.42)</td>
<td>(10.84)</td>
<td>(10.58)</td>
</tr>
<tr>
<td>$s^Q_RD \Delta lnR^D_{i,c,t}$</td>
<td>0.26</td>
<td>0.27</td>
<td>0.87*</td>
<td>0.87*</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.32)</td>
<td>(1.71)</td>
<td>(1.71)</td>
</tr>
</tbody>
</table>

Observations 182 182 1,432 1,432

R-squared 0.83 0.82 0.49 0.49

CHJR
Intangibles, Spillovers, Process/Product Innovation
World KLEMS, 2018
Summary

- Framework for estimating spillovers, taking account of imperfect competition and different roles for intangibles, process and product innovation
- New data
- Findings
 - Suggestion of spillovers/excess returns to intangibles both public and private varying by manufacturing and services
 - Point estimates outside manufacturing suggest negative mark-ups: measurement, DRS, biased?
- Scope for further investigation e.g. by industry, country