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This document provides additional, supplementary materials for “An Honest Approach
to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Sections C-D provide state-
ments and proofs of uniform asymptotic results. Section E provides additional simulation

results.

C Uniform asymptotic results

The main text of the paper considers a finite sample normal model, which is motivated as
an asymptotic approximation to a variety of econometric settings of interest. In this section,
we show that our main results for the conditional approach translate to uniform asymptotic
results for a large class of data-generating processes. We refer the reader to Appendix C of

Armstrong and Kolesar (2020) for uniformity results for fixed length confidence intervals.**

C.1 Assumptions

Throughout this section, we fix A = {A§ < d} for some A with all non-zero rows, and assume
that A is non-empty. We consider a class of data-generating processes, indexed by P € P,
under which \/ﬁ(ﬁn — Bp) is asymptotically normal, where the asymptotic mean [Sp can be
decomposed as the sum of 0p € A and M, 7p With 7p € RT .45 The parameter of interest is

Op := l'tp, for some fixed [ # 0.

Assumption 6. Let BL, denote the set of Lipschitz functions which are bounded by 1 in

absolute value and have Lipschitz constant bounded by 1. We assume

Ep [f(\/ﬁ(ﬁn - 513))] ~E [f(gp)]H _0,

lim sup sup
n—0 pep feBLy

where Ep ~ N (0, Xp), and Bp = 0p + MpostTp for 0p € A and 7p € RT.

44We note, however, that the setting of Armstrong and Kolesar (2020) differs from ours in that they
consider a local-to-0 setting in which A shrinks with sample size.

45To avoid notational clutter, we drop the additional subscript “post” on 7 and simply index 7 by the
underlying data generating process P.
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Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see

Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 6 formalizes the notion

of uniform convergence in distribution of \/n(3, — 8p) to a N (0, p) variable under P.
Our next assumption requires that the eigenvalues of the asymptotic variance of the

event-study coefficients be bounded above and away from zero.

Assumption 7. Let S denote the set of matrices with eigenvalues bounded below by A > 0
and above by A = \. For all Pe P, ¥peS.

Next, we assume that there is a uniformly consistent estimator of the variance of B )

Assumption 8. We have an estimator S, that is uniformly consistent for ¥p,

lim sup Pp <Hfln —Yp|| > e) =0,
P

n—%0 pe
for all e > 0.

In order to more clearly articulate our next assumption, it is useful to first present the

following result, which characterizes the set of dual vertices under Assumption 7.

Lemma C.1. Let F(X) := {v : 121’(.7_1)7 = 0,6(X)y = 1,7 = 0} be the feasible set of the
dual problem, where 6(X) is the vector containing the square-roots of the diagonal elements
of AXA'. Let V(X) denote the set of vertices of F(X). Then there exists a finite set of
distinct, non-zero vectors J1, ...,7y such that ||v;|| = 1 and v; = 0 for all j, and for any ¥

positive definite
V(E) = {a(X)7, . cs(X)7s),

where ¢;(X) = (7;6(X)) 7"

For ease of notation, we define v,(X) := ¢;(3)%,;. With this notation in hand, we can then

state our next assumption.

Assumption 9. Suppose ;A # 0. Then for all i # j and all P € P,

(7(Ep) = %(Xp)) ABpA'(3i(2p) — 1;(3p)) > ¢,
for some constant ¢ > 0.

Assumption 9 guarantees that there are not two vertices of the feasible set that produce
non-degenerate objective values in the dual problem (18) and are perfectly correlated asymp-

totically. Assumption 9 holds trivially if the minimal eigenvalue of A¥Xp A’ is bounded from
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below. Note that under Assumption 6, AXpA’ is the asymptotic variance of ﬁABn, and
thus corresponds with the asymptotic variance of 1/nY,(f), the moments used in the con-
ditional and hybrid tests scaled by 1/n. Assumption 9 can be dispensed with if we use a
modified version of the conditional and hybrid tests that adds full-rank normal noise to Y,

which ensures that the asymptotic covariance of the scaled moments is positive definite.

C.2 Size control

We now establish uniform asymptotic size control for the conditional test. ARP establish
uniform asymptotic size control under high-level conditions, whereas here we show size con-
trol in our setting under the lower-level conditions introduced above. These conditions are
somewhat weaker than the higher-level conditions in ARP. For instance, we allow for the
possibility that 7 has zero variance conditional on a set of optimal multipliers, which is ruled
out by assumptions in ARP but can be shown to arise in our context, e.g. for A = ASPPB,

As in ARP, we show size control for a modified version of the conditional and hybrid
tests that never rejects if the critical value is below a certain finite value —C'. That is, we
consider ¢, = ¥§ - 1[f) = —C1, for ¥ an indicator for whether the a-level conditional test
rejects and 7 the solution to the linear program (17). We do this for technical reasons to
avoid complications related to sequences where both 7 and the critical values diverge to —oo.
However, this modification is reasonable on substantive grounds, since when 7 is very small
all of the moments are satisfied in the data, and the conditional test (potentially) rejects
only due to extreme realizations of the critical values. Moreover, we show in Section C.4
below that the modified tests retain desirable asymptotic power properties.

Under the assumptions stated in the previous section, the modified conditional test uni-

formly controls size.

Proposition C.1. Suppose Assumptions 6 to 9 hold. Then

~ 1.~
lim sup sup Ep ¢fa(ﬁn,A,da Op, —En)] s a
’ n

n—o PeP

C.3 Consistency

We now provide conditions under which the conditional test is uniformly consistent. Specifi-
cally, we establish a uniform asymptotic version of the consistency result given in Proposition
4.1 in the context of the finite sample normal model.

To show uniform consistency for the conditional test, we require some additional assump-

tions on the asymptotic distribution of the estimated covariance matrix 3
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Assumption 10. Let W, = (8, — Bp)', (vec(3,) — vee(Sp))'), where vec(Z) is the vector

of the elements of the matrix 3. We assume

lim sup sup ||Ep [£(vaW,)] — E[£(65)]]] = 0.

n—%0 peP feBL,

Xp  Vpps

where £ ~ N (0, Vp), Vp = (V Y
Py 35

) and Bp = 0p + Mpyoump for 6p € A and
Tp € RT.

Assumption 11. For all P € P, the matriz Vp defined in Assumption 10 lies in a com-
pact set V. Additionally, Xp has eigenvalues bounded between A > 0 and X\, and (Xp —
ijggVEéVp,m) has eigenvalues bounded below by X > 0.

Assumption 10 strengthens Assumption 6 to require that the pair (B , f]) converge uniformly
to a joint normal distribution centered at their respective means. Although somewhat more
restrictive, we note that event-study estimates are often estimated via OLS, and standard
covariance estimators for OLS, including cluster-robust variance estimators, produce asymp-
totically normal estimates as the number of clusters grows large (Hansen, 2007; Stock and
Watson, 2008; Hansen and Lee, 2019). Note that we do not impose that the asymptotic
distributions of B and 3. are independent, as would occur in linear models if the linear model
is properly specified. Likewise, Assumption 11 strengthens Assumption 7 to require that the
asymptotic variance matrix of the pair (B, i) lies in a compact set, and that the error in B
is not perfectly colinear with the error in 3. The latter condition can be ensured to hold by
adding full-rank noise to B . With these added conditions, we obtain asymptotic consistency
for the (modified) conditional test.

Proposition C.2. Suppose Assumptions 8 to 11 hold. Then for any x > 0,

lim inf Ep w*a(ﬁn,A d, 0% + S| =1

n—o0 PeP

3I*—‘

C.4 Local Asymptotic Power

We now establish conditions under which the power of the conditional test converges uni-
formly to the power envelope.

Recall that in the finite sample normal model, we showed that the local power of the
conditional test converged to the power envelope under Assumption 5, which intuitively
guaranteed that the “right” number of moments bind at the edge of the identified set. We
define P, to be the set of distributions for which this condition holds and the non-binding

moments are slack by at least e.
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Definition 2. For € > 0, let P, denote the set of distributions P € P such that Assumption
5 holds when setting 64 = dp, and for which all elements of the vectors egs+) and ep(s++) as

defined in Assumption 5 are bounded below by e.

Recall from Appendix A.2 that our Assumption 5 is implied by linear independence constraint
qualification (LICQ). Assuming that P € P, is thus similar to a uniform LICQ assumption,
as in e.g., Gafarov (2019) and Cho and Russell (2018). We note, however, that we require
this assumption only for our uniform local asymptotic power results, and not for uniform
asymptotic size control.

Our next result states that the local power of the conditional test converges to the power
envelope in the limiting model uniformly over P.. This can be viewed as an asymptotic

version of Proposition 4.2.
Proposition C.3. Suppose Assumptions 6 to 8 hold. Let 6% = sup S(A, Bp). Then for any
€e>0andx >0,

=0,

lim sup
n—%0 pep,

o 1 1
EP |:¢ga<6n7A7d7 Q;b + \/_ﬁx’ EZH)] - P*<P7 $)

where

1
p*(P,z) = lim sup P 1x ((0}51’ + —u1) ¢ Ca,n)
"0, T (ALEp) Op,7py 5 2P) \n

1s the optimal limiting power of a size-a test in the finite sample normal model using
(0a,7a,%X*) = (0p,7p,Xp), provided that —C, the threshold for the modified conditional

test, 1s set sufficiently small.

If a € (0,.5], then C' = 0 is sufficient for the conclusion of Proposition C.3 to hold.
Proposition C.3 shows that the power of the conditional test converges to the power of
the optimal test in the limit of the finite sample normal model as n — . Using results
from Miiller (2011), we next show that that the power bound p*(P,z) from the limiting
model is an upper bound on the asymptotic power of a large class of confidence sets that
control size asymptotically. In particular, we consider the set of confidence sets that i) can
be written as functions of \/ﬁﬁn and 3, ii) control size asymptotically over all sequences
of distributions that induce a normal limit, and iii) are invariant to transformations that
preserve the identified set for all values of 5. To formalize iii), let A+ = {v : Av = 0}
denote the null space of A and let G be the group of transformations of the form g, :
B — B+ v for v e A It is then immediate from the definition of the identified set,
S(A,B) = {0 : 30 € A, Tpost s.t. B =6 + MpostTpost, U Tpost = 0}, that S(A, 5) = S(A, g,0)
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for any 5 and g, € G. By iii) we mean that we will consider the class of confidence sets such

that C(v/nf3,%) = C(gu(y/nf),%) for all g, € G and all £.

Proposition C.4. Suppose that C,(-,-) is such that

lim sup Pp, (Gpn ¢ Cp(v/nfn, in)) <o
n—o0
for any sequence of distributions P, such that y/n(B, — Bp,)) T34 N (0, £%), 3, B3, ©*,
where Bp, = 0p, + MpostTp, and Op, = l'tp, for some sequences Tp, € RT and op, € A.

Suppose that for some distribution P*, \/n(B,—Bp+) B a N (0, *) and 2, E:p ¥ where
Bp+ = 0px + MpostTpx for 6ps € A satisfying Assumption 5. Let 9;’; :=sup S(A, Bpx) be the
upper bound of the identified set given Bpx. Then, for any x > 0,

1
n
where p*(P*,x) is defined in Proposition C.5.

lim sup Pps (9?}; +

n—0o0

v ¢ Co(v/ifh, in>> < p*(P*.2),

D Proofs of uniform asymptotic results

D.1 Proofs and Auxiliary Lemmas for Uniform Size Control

Proof of Lemma C.1

Proof. Recall from Section 8.5 of Schrijver (1986) that v is a vertex of the polyhedron
P={zeRF : Wz <b}iff ve P and Wiz z = by for J a set of indices such that Wz

)

has K independent rows. It follows that v € V(X)) iff v > 0 and there exists J such that

!/
A(v_l)
Wj = —](j,.)
5_/
0
has row rank equal to K, and Wyv = | 0 [, where K is the number of rows of A.
1
- Al
Now, let J be the set of indices J such that W, := _(I'?il) has exactly K — 1

linearly independent rows and there exists a vector v; # 0 such that W,v = 0 and vy > 0.

Since by construction WJ has rank K — 1 and K columns, its nullspace is 1-dimensional. It

S-6



is then immediate that for each J € J, there is a unique vector o7 > 0 such that ||v7|| = 1
and Wjﬁ 7 = 0. Moreover, J is finite, since there are a finite number of possible subindices
of I, and thus we can write {v7 : J € J} = {01, ...,0;} for distinct vectors vy, ..., 0.
It now remains to show that V(X) = {¢1(X)v1,...,cs(X)vs}, for ¢; as defined above.
First, suppose that v = ¢;(X)v; for some j. By construction, 121/(.7_1)1) =0,v>0,and ¢'v =
- Al
(6'v;)"*(6'v;) = 1, and so v € F. Additionally, there exists J such that W, = ( ;’_1) >
has rank K —1 and W,v = 0. From the fact that W,v = 0, whereas 6'v = 1, we see that ¢’
. W
must be linearly independent from the rows of W, and thus W, = ( ~:7 ) has rank K.
a

It follows that v € V(2).
Next, suppose that v € V(X). Then v = 0, and there exists J such that

Al
Aty
Wj = —](‘77.)
6./
O ~ 121'/
has row rank equal to K, and Wyv = | 0 |. Let W, = 3_'”1) . Note that since

1
W v = 0, whereas 'v = 1, & must be linearly independent of the other rows of W, from
which it follows that W has row rank K — 1. Thus, J € J, and so v = cv; for some j and
¢ > 0. Since ¢'v = 1, we have ¢5'v; = 1, which implies ¢ = (6'0;) !, which gives the desired

result. O

Proof of Proposition C.1

Proof. First, note that by Lemma B.2, 1/18(37“ A, d, Op, %f]n) = ng(\/ﬁén, A, /nd, \/nbp, f]n)
Additionally, we show in the proof to Lemma B.2 that the values of 1 for these two problems

are the same, from which it follows that the modified tests are tests are equivalent as well,
ga(ﬁn, A, d, Op, %in) = *Ca(\/ﬁﬁn, A, y/nd, \/nbp, f]n) It thus suffices to show that

lim sup sup Ep [ ga(\/ﬁBR,A, Vvnd, \/ﬁepain)] < a.

n—o PeP

Towards contradiction, suppose the proposition is false. Then, following Andrews, Cheng
and Guggenberger (2020), there exists a sequence of distributions P,, and an increasing

sequence of sample sizes n,, such that
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liminf Ep [wfa(«/nmﬁnm, A, \/Mmd, /11 0p, 2%)] > o+ w, (61)
m— 00 ’

for some w > 0.
Define Y,,, := +/nm, (ABnm —d—- A(.,_l)ﬁpm) and X = 121(.’_1). Then,

UE o (Vm B s Ay A Temd A nOp, S ) = UE o (Vi X, AS,,  AY).

Further, define Ym =Y, — A(.’,l)F(,l,.)(ﬂ/anpm) For notational convenience, let X2, :=
Sp,, and 3, := ¥, . By Lemma 16 in ARP, ¢/C, (Y, X, A8, A') = ¢<, (Y, X, A, A').
Additionally, observe that

Y/m = A/ <ABnm — d — /I(.J)me — A(.’,l)r(,l,.)ﬁ:ﬂ)

= N (ABnm —d-— A(.,l)l/’fpm - /’i(.’,l)r(,17.)7'Pm>

()

where the first equality uses the definition of 6p, = I'Tp, and the second equality follows

from Lemma D.5. This implies that

0

TP,

Vi = A/t (BM —bp,, — ( )) + /T (Abp, —d). (62)
Next, observe that by Assumption 6, dp € A = {6 : AJ < d} for all P, and so
/N (Adp,, — d) < 0. We can therefore extract a subsequence m; such that

VT, (Adp,, — d)1 — py € Ru {—ow}.

Passing to further subsequences, we can extract a subsequence myg (for K the number of

rows of A) along which

Vg (Adp,, —d) — p* € {RuU {—oo}}".

Additionally, by Assumption 7, Xp_ is contained within a compact set, and so we can extract

a further subsequence mg.,; along which ¥ — X* for some ¥* € S. For notational

MK +1
ease, we will assume that these convergences hold for the original sequence (m,n,,) for the
remainder of the proof

Now, equation (62) along with Assumptions 6 and 8 and the continuous mapping theorem
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imply that
(Vi ) > (€ + 417, 57),

for &€ ~ N (0, AX*A’). Observe from (62) that for all m, Y, € col(A) + {—a-d : a > 0},
where col(A) is the column space of A and + represents the Minkowski sum. Likewise, if
&~ N (0, AX*A'), then & = Alsx for &g+« ~ N (0, £*), and so £ is supported on col(A).
Thus, £+ p* is supported on col(A) + p*. We then see that both Y,, and £ + p* are supported
on :=col(A) + ({—a-d : ae R} u{u*}).

Suppose first that max,cy s+ y'p* = —oo. Note that 7, = Max_ cy(s;, ) v'Y,,. From
Lemma C.1, V(X) = {a1 ()7, ..., ¢s(£)7s}, where the functions ¢;(X) are continuous and by
Lemma D.1, ¢;(£)* = —c > 0 for all j. Since max,cy(zx)7/p* = —00, we have ¢;(X*)y;u* =
—co for all j. But the continuous mapping theorem then implies that for all j, ¢;(3,,)Y;Ym —a
c;(X*)¥;(§ + p*) = —oo, and hence 7, —, —co. Thus, P (7}, < —C) — 1, and so our tests
never reject asymptotically, which contradicts size control failing. For the remainder of the
proof, we assume that max,ey(z+)y'p* is finite. (Note that since 7; > 0 and p* < 0, we
cannot have max,cy(s#) 7/ pu* = 00.)

Next, note that it follows readily from the construction of the (unmodified) conditional

test in Section 4.2 that the unmodified conditional test rejects iff
p(Y, %) =P (¢ <A(Y,E)[¢ e (Y, ), 0" (Y, £)],{ ~ N (0, 02(V, X)) > 1 —a,

where the functions 7, a%, v and v* are defined as follows. We define 7(Y, ) to be the

conditional test statistic using Y and X,

AY. ) = 0%
n(Y, %) max 7Y,

We define o7 (Y, ¥) to be the estimated variance of 7,Y" for 7, € argmax_ .y (5, 7'Y. That is,

Note that O’%(Y, %) is only well-defined if v, A¥ A"y, is the same for all 7, € argmax, ¢y () 7'V
We will show below, however, that this occurs with probability 1 in the limiting model.

If 07(Y, %) > 0, then we define v'(Y, X)) and v*(Y, X) to be the minimum and maximum
of the set

5
C ={c: max v SW*+ic 4
VEV(E) Ve 2V
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where as before 7, is an element of arg max,cy/(s)7'Y and we define

On the other hand, if o7(Y,¥) = 0, then we define v = —o0 and v"? = 0. This is a
notational convenience that allows us to capture the fact that when og = 0, the unmodified
conditional test rejects iff (Y, X) > 0, since P({ < 7| ~ N (0, 0)) = 1[5 > 0].

Since the modified conditional test rejects only if the unmodified conditional test rejects,
(61) thus implies that

liminf Pp,, (p(ffm, $)>1— a) > o+ w. (63)

m—00

Lemma D.3 shows that the function p(-,-) is continuous at (£ + p*, ¥*) for almost every

&~ N (0, AX*A"). The continuous mapping theorem then implies that
PV, ) 5 pl€ + 17, 57).

Moreover, Lemma D.4 implies that the distribution of p(¢ + p*, 3*) does not have a mass

point at 1 — «, and hence
Pp, (p(?m,f]) >1- a) —>PpE+p" Y >1-a).
However, since the conditional test controls size in the finite-sample normal model,
Pe (p(§ + 15, 5%) > 1 —a) < o,

and thus
lim inf Pp, <p(17m, $)>1- a) <o,

m—00
which contradicts (63).
[

Lemma D.1. Suppose Assumption 7 holds. Then for any x and X € S, A’z < 2'Sx < \o'z.
Additionally, there exist constants ¢ > 0 and ¢ such that for all ¥ € S and all j =1, ..., J,

c<¢(X) <¢, for ¢;(X) as defined in Lemma C.1.

Proof. By the singular value decomposition, we can write ¥ = UAU’, where U is a unitary
matrix (UU’ = I) and A is the diagonal matrix with the eigenvalues of ¥ on the diagonal. By

Assumption 7, these eigenvalues are bounded between A > 0 and A > \. Thus, for any z, we
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have 'Yz = (U'z)A(U'z) = >, \i(U'z)2. Tt follows that 2/Sz < Y A(U'z)? = \d'UU'z =
Az'z. It can be shown analogously that 'Yz > Ax'z. Now, recall that ¢;(X) = (¥6(%)) !,
where 67 = Al ZAa- Let ma = max; A, jAq,) and ma = min; Af, J A, and note that
both m and m are strictly positive since A is assumed to have no all-zero rows. It then
follows from the previous discussion that &; € [v/Am4, \/7 := [61, Gup]. Moreover, since
¥ = 0 and 7; # 0 for all j, we have that 4;6 > max{7;}6;, > min;{max{7;}}o, > 0, where
the last inequality uses the fact that the set 71, ...7; is finite. Likewise, for K the dimension
of ;, we have 7,6 < K max{7;}G., < max;{max{7;}G.,} < 00. We have thus shown that
;7 (%) is bounded between two positive finite values, and thus the same is true of its inverse,
which suffices for the result. [

Lemma D.2. Let p*, ¥*, and ) be as defined in the proof to Proposition C.1, and assume
max,ey (s+) Y (¥ is finite and Assumption 9 holds. Let N(X*) be an open set containing X*.
Then (Y, %), 02(Y, %), v'°(Y,X), v**(Y,X) — when viewed as functions over Q x N(X*) —
are continuous in (Y,X) at (§ + p*,X*) for almost every & ~ N (0, AL*A"). Additionally,

for almost every &, one of the following holds:
1) There is a neighborhood of (£ + p*,¥*) on which o} (Y,X) > 0 and v"°(Y,X) < v*?(Y,%).

2) There is a neighborhood of (§+p*, X*) on which (Y, X) <0, 07(Y,X) = 0 and v'(Y,X) =
—0, v"P(Y, %) =

Proof. We first show that 7(Y,X) is continuous. Lemma C.1 implies that

A(Y, %) := max 'Y = max{ci(Z)NY, ..., cs(E)7;Y},
¥eV(E)

where the functions ¢;(X) are continuous. We claim that each of the functions in the max
above are continuous in (Y, X) at (£ + p*, X*). If Y were finite-valued, then this would hold
trivially. However, since some elements of Y may be equal to —oo, we additionally need to
show that there is a neighborhood of ¥* such that for all ¥ in this neighborhood and all j,
the elements of ¢;(X)%; do not change from 0 to non-zero or vice versa. However, by Lemma
D.1, ¢;(£*) = ¢ > 0 for all j, and so for ¥ sufficiently close to ¥*, ¢;(£) > 0, and thus each
element of ¢;(X)7; has the same sign (0 or positive) as the corresponding element of 7;, as
we desired to show.
Next, define V(Y Y) 1= argmax,cy(s)7'Y. We claim that with probability 1, either
V(€ + p*, 2*) is unique, or 7. A = 0 for all v, € V(Y,X). Observe that since ¢ is finite with
probability 1 and max,cy (s#) 7' p* is finite by assumption, it follows that maz, ey )y (£ +
w*) is finite with probability 1. Let 1,72 € V(X*). Note that vi,7, € V(f, ¥*) only if
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*

(11— 7)€ = (92 —m)w
variance (y; — 7o) AX*A'(y1 — 7). Thus, (11 — 72)’¢ is equal to any particular constant

Observe further that (1 — 72)’¢ is normally distributed with

with positive probability only if (y; —72) AX* A’ (1 — 72)" = 0. Since ¥* is positive definite,
(71 —2) AX* A’ (1 —y2) = 0 iff (71 —72)’A = 0. However, by Assumption 9, (71 —72)’A =0
only if A = 74A = 0. It follows that at most one of 7; and ~, are in V with probability
1, or 7,A = 74A = 0. Since the set V(X*) is finite, it follows that either V(& + p*, £*) is
unique, or all of its elements have 7, A = 0, as needed.

Suppose first that every ~, € V(§ + p*, 3*) satisfies 7, A = 0. Without loss of generality,
assume that V(€ + p*) = {c1(*)71, ..., ¢z, (3%)7s, }, where 1 < J; < J. We first claim that
there is a neighborhood of (£ + p*, X*) on which max.cy(s) 7Y = ¢;(£)7;Y for some j < J;.
This is trivial if J; = J. If not, let j < J; and i > J;. Since cj(E*)ﬁj{(ﬁ—l—/uL ) € V(€ +pu*, X*)
and ¢;(S*)7.(€ + p*) ¢ V(€ + p*, £*), we must have i (X7 (E+ p*) > i (X*)3i(E +p*). We
showed above that the functions on both sides of the inequality are continuous in (Y, X) at
(& 4+ p*, ¥*), and thus there exists a neighborhood of (£ + p*, 3*) on which the inequality is
preserved, and hence max,cy(s) 7Y > ¢;(2)7;(§ + ). Additionally, since there are finitely
many ¢ > Ji, we can choose a neighborhood such that this holds simultaneously for all
i > Jy, which implies that in this neighborhood V (Y, 2) < {¢y ()1, ..., ¢, (2)7, }, as needed.
It follows that o2(Y,%) = 0 for all (Y,%) in this neighborhood, since ;A = 0 for all
J < Ji, which implies 4;AXAy; = 0. Additionally, note that by definition, (Y, Y) = —0
and v"?(Y,¥) = o whenever o;(Y,%) = 0. Thus, o2(Y,%), v"°(Y, %), and v**(Y,X) are
continuous at (& + p*, 3*).

To show that n(Y, %) < 0 in a neighborhood of (£ + u*,¥*), observe that it is immediate
from the definition of Q that any Y € € can be written as Av — a; - d + aop®, for v e RE
and ay,az = 0. For any j € {1,..., i}, 7,4 = 0, and thus 7}Y = —a,7}d + ax¥ju*. However,
since 7; > 0 and p* < 0, we have that ay¥;u* < 0. Likewise, since A is assumed to be non-
empty, there exists some 0 such that A0 —d < 0. Since ¥;A = 0 and 7; > 0, it follows that
¥;(=d) < 0. Hence, ;Y < 0 for any Y € €2, and thus, in a neighborhood of ¥* sufficiently
small such that ¢;(3) > 0, ¢;(¥)7;Y < 0. Since we've shown that in a neighborhood of
(E+p*,X%), N(Y,X) = ¢;(X)¥;Y for some j, it follows that n(Y, %) < 0 for (Y, X) sufficiently
close to (& + p*, X%).

Next, suppose that V(¢ + p*) has a single element 7, = c;(X*)¥(§ + p*) for some
j € {1,..,J} such that ;A # 0. Without loss of generality, suppose j = 1. We first
show that V(Y,Y) = ¢;(2)% in a neighborhood of (¢ + p*). Indeed, since V(£ + p*) =
(T (€ + p*), for all @ > 1, ¢ (%)Y (€ + p*) > (%)% (€ + p*). However, since we've
shown the functions on both sides of this inequality to be continuous in (Y, X) at (£ +p*, %),
there is a neighborhood of (£ 4+ p*, ¥*) such that for all i > 1, ¢;(2)7Y > ¢;(2)7}Y, and
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hence V(Y,¥) = ¢;(X)% in this neighborhood. It follows that in a neighborhood of (£ + p*),
o2 (Y, 8) = ¢1(X)Y;AXA’c; (X)71, which is clearly continuous in ¥. Additionally, by Lemma
D.1, ¢(X*) = ¢ > 0, and so 0} > >3] AX*A'}y, which is positive since 714 # 0 and ¥*
is positive definite. From the continuity of 037, it follows that there is a neighborhood of

(€ + p*,X*) such that o7 (Y, %) > 0.

Next, consider v'°(Y,X). Let 7.(X) = ¢1(X)%;. For ease of notation, we will make the
dependence of vy, on ¥ implicit where it is clear below. The results above imply that in a
neighborhood of (£ + p*, ¥*), v'°(Y, X)) is the minimum of the set

CY,S) = {c : max (SV*(Y) L2 c) -

veV (%)

for -
S, (Y, ) = (1 - ﬂ) Y.

Rearranging terms, we see that

C={c:0= yrer\l/%}é) Ay (Y) + b%v*c}7

where a, ., (Y) := +'59,,(Y) and b, 5, :=

VsV

— 1. Note that a, -, (Y) = 0 = b,, -,, 50

/
0 < Maxyey () Ay, (Y) + by, c for all c. I;V/[*ozr:ggver, for ¢ = ALY, the max is attained at 7,
by construction. Hence, the set C' is non-empty.

Intuitively, if we plot a..,(Y) + b,,, as a function of ¢, then each v € V(X) defines
a line, and the set C represents the values of ¢ for which 0 is the upper envelope of this
set. It follows that the lower bound of C' is the maximal x-intercept of a line of the form

Uy (Y) + by c with b, . < 0. Hence,

(Y, %) = max "l ll) (Y>
EV(I\} 10775 <0} by,

Recall that by Lemma C.1, V(X) := {7 (X2), ..., 7s(2)}, where v;(X2) := ¢;(X)7; and ¢;(X) is
continuous. Additionally, we showed earlier in the proof that for all j, ¢;(3)7;Y" is continuous
in a neighborhood of (£ + p*, ¥*). It is then immediate from the definitions of a ., (Y) and
by, that for all j, ay;(g) =) (Y) and by, ()4, () are continuous in (Y, ¥). Without loss of
generality, suppose that for 2 < k < Ky, by, (5%) 4, (z%) < 0; for ki < k < kg, by, (5%) 4y (z%) = 0;
and for k& > ky, by, (z#)4,(x*) > 0. From the continuity of b, (x),(x), it is clear that in a
neighborhood of (& + p*,X%), by, () ~ye(x) > 0 for all 2 < k < &y and by, (5),x) < 0 for all
k > ko. Hence, in this neighborhood,
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VoY, %)) :max{ max = —eE® M} (64)
() 2<k<hr by () 7 (D) EVOE) by yp(m)

where

VOE) == {(D) : k1 <k < ko, byyz) ez < 0}

and we define the max of an empty set to be —oo. It is clear from the continuity of the
functions @ and b that the inner max on the left side of (64) is continuous. To show that v%
is continuous at (£ + p*, ¥*), it suffices to show that for any sequence (Y, X) — (& + p*, X%),
the max on the right hand side of (64) converges to —co. To do this, observe that by
construction, @, (Y) + by, - 7Y =Y —~.Y. Since for any k£ > 1, 7.(X*) (£ + p*) >
Yie(E*) (4 p*), it follows that a., (s#) v, () (E+ 15) + by (55) e (m%) - (§ 4+ 11*) < 0. Additionally,
Doy (%) s (%) (E+ 11*) = O for k € (kq, k2], and so for such values of k, @, (z#) 4, (s#)(§ +p1*) < 0.
However, this implies that for any sequence (Y,3) — (£ + p*) and k € (kq, ko], we have
— 0y, (2),7+(x) (Y) approaching a positive limit, and b., (5, (x) approaching 0. For values of
(Y, %) where by, (54, (s > 0, it follows that —a., (5)1,.()(Y)/byy (5,74 (x) becomes arbitrarily
negative, whereas for values of (Y,X) where b, (s)+,.(x) = 0, v is not included in VO It
is then immediate that the max on the right hand side of (64) converges to —oo, which
suffices to establish the continuity of v at (€ + u*,¥*). The continuity of v*? can be shown
analogously.

To complete the proof, we now demonstrate that in a neighborhood of (§+pu*), v°(Y, X)) <
v"P(Y,Y) for almost every &. Note that since we have shown v and v* to be continuous,
it suffices to show that v'°(€ + p*, X*) < v"P(€ + p*, X*). We showed above that for almost
every &, either \7(5 + u*) contains only elements such that A = 0, or V(f + 1*) has a unique
element such that 4'A # 0. In the former case, we showed that v'° = —o0 and v*? = .
Suppose we are in the latter case. We showed that v'°(£ + p*, ¥*) is the x-intercept of a line
of the form a + b - ¢, where b < 0 and a + b- % < 0. Hence, v'°(¢ + p*, %) < H(€ + p*,X).
However, by construction v < 7 < v*?, and thus v'° < 7 implies v'° < v*?, which completes
the proof.

O

Lemma D.3. Let u*, ¥*, and € be as defined in the proof to Proposition C.1, and assume
max,ey (s+) Y (1* is finite. Let N(3*) be an open set containing ¥*. Define p : @ x N(X*) —
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[0,1] by
p(Y,X) =P (¢ < (Y, 8)[¢ e (Y, %), 0" (Y, £)],{ ~ N (0, 02(Y, X)) .

Then p(Y, X)) is continuous in both arguments at (§+u*, %) for almost every & ~ N (0, AX*A)

and X* € S non-stochastic.

2

] U
7U p70-7]

Proof. From Lemma D.2, for almost every &, the functions 7, v are continuous at

(& + p*,X*). Additionally, for almost every &, either

1) There is a neighborhood of (& + p*, ¥*) on which ¢7(Y, ¥) > 0 and v"(Y, ) < v**(Y, %),

or

2) There is a neighborhood of (§+p*, ¥*) on which §(Y,X) < 0, 02(Y,X) = 0 and v'°(Y, X) =
—o0, v"?(Y,X) = .

First, suppose 1) holds. Note that for v'° < v*? and ¢, > 0,

O(i)/0y) — P(v'/y)
®(vr/a,) — ®(vl0/a,) 7

Pc (¢ <il¢e v 0],¢ ~ N (0, 07))) =

which is clearly continuous in 7, v, v*?, and ,. The continuity of p(Y,X) then follows from
the continuity of 7, v'°, v*, and o,
Next, suppose 2) holds. Note that

Pe (¢ <[ e [~m, 0], ~N(0,0)) = 1[5 > 0].
It then follows that when 2) holds, p(Y,3) = 0 in a neighborhood of (£ + p*, ¥*), and thus

1s continuous. ]

Lemma D.4. Let p(Y,X) be as defined in Lemma D.3, and suppose max ey s+ ¥ p* is finite.
Let & ~ N (0, AX*A"). Then for any a € (0,1), P(p(§ + p*,X*) =1—a) =0.

Proof. Note that for v'° < v*P and o, > 0,

(n/o,) — (D<Ulo/0n)
®(vr/a,) — ®(v'0/a,) '

Pc (¢ <il¢e v 0"],¢ ~ N (0, 07))) =

Thus, when v'° < v*? and o, > 0, p(€ + p*,¥*) = 1 — a iff j = 7, - c1_4 (0", v"P, 0,)), where

c1-a (v, 0", 5,) is the unique value that solves

B(er-a) — B(0°/,)
(v?/oy) — D(v'/oy)

=1-o.
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However, (19) implies that 7(¢ + p*,3*) has a truncated normal distribution conditional on
V(€ + p*, B%), v P (€ + p*,B*) and o2(€ + p*, ¥*), with truncation points v'(€ + p*, X*)
and v"P(§ + p*,¥*) and (untruncated) variance ag(f + p*,3*), and hence is continuously
distributed when vy,(€ + p*, £*) < vyp(§ + p*, ¥*) and 07 (§ + p*, X*) > 0. Thus, conditional
on vy (€ 4 1%, %) < vyp(€ + p*, B*) and o2 (€ + p*, X%) > 0, (€ + p*, %) = 10 (0, 0", o)
with probability zero.

Additionally, observe that

Hence, whenever 7j(§ + pu*, $*) < 0, v'°(€ + p*, X%) = —o0, v"P(£ 4+ p*,T*) = 0 and o,,(€ +
@, 3*) =0, we have p(§ + p*,X*) = 0 # 1 — a for almost every &.

However, from Lemma D.2, with probability 1 either i) vj,(§ + p*, %) < vy, (€ + p*, %)
and G2(€ + %, 5%) > 0, or it) (€ + %, 5*) < 0, v(E + , 5¥) = —o0 0UP(E + ) = o0

and o,(§ + p*,X*) = 0. The desired result then follows immediately.
O

Lemma D.5. For any vector v e RT,

- , B 0
A('J)U U) + A(~,—1)F(—1,.)U =A ( ) V.

Proof. By definition,

Additionally, the first row of I' is assumed to be I’, so I’ = I(; )I'. It follows that

~ 0
A(.J)llv =A ( 7 ) 1“*1](.,1)](17.)1“1)

~ 0
A(.7_1)F(_17.)U =A ( I > Fflf(.7_1)f(_1’.)rv.
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Noting that (. _1)I(—1,) + I¢.1)I1,) = I, the two equations in the previous display imply
that

~ " 0 0
A(-71)(l/1}) + Al =4 ( ! > I 'me=A ( ; ) v,

as needed. O

D.2 Proofs and auxiliary lemmas for uniform consistency results

Proof of Proposition C.2

Proof. Asin the proof to Proposition C.1, ¢ga(ﬁn, A d, 0%+, %f]n) = @bga(\/ﬁﬁn, A d,/n0%+
v, $,), so it suffices to show that

lim inf Ep [, (vB, A, v/d, Vi + v/, $,)] = 1.
; |

n—o0

Towards contradiction, suppose this is false. Then there exists an increasing sequence of

distributions P,, and sample sizes n,, such that

limsupEp,, [@Dga(«/nmﬁnm, A, \/Nod, «/an";éiL + npx, inm)] <1-—w, (65)

m—0o0

for some w > 0. Since V is compact, we can extract a subsequence m; along which Vg, —
Vi Vs

this holds for the original sequence m. Now, let

€ V. For ease of notation, without loss of generality we assume that

YV = /o (Aﬁnm —d— Ay (0% + x)>
= A (5% . Bpm) + /T (Aﬁpm —d— Ay (0 + x>) , (66)

and observe that
O (VB s ATy /10008 + g, ) = VS (Y, X, AS, A,

where

Yy = A (BM - 5Pm) + /T (Aﬁpm —d— Ay (0 + a:)) . (67)

.

~
=:A\m
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Now, from Lemma B.13, there exists a constant ¢ > 0 such that n(8p,, A,d, 0%’% +
x,%*) = c¢-x for n(-) defined in (38). Reformulating (38) in terms of its dual, and noting
that the dual vertices are the same as in the dual problem for 7, we see that there is a dual
vertex v;(X*) € V/(X*) such that ~;(3*) <Aﬁpm —d— /Nl( (08 + x)) c-z. From Lemma
C.1, v (2*) = ¢;(X*)7;, and there is a vertex of V(3,,,) of the form v;(2,.) = ¢;(Zn. )7,
where the function ¢;(-) is continuous. Since ¥, —, 3*, it follows that v;(2,,,) —, 7;(X*),
and hence ~;(3,,.)’ <Aﬁp —d— A (0 + $)> —, c-x > 0. It is then clear from (67)

that 7;(3,,.)'Ym —p 0, since the inner product of 7;(%,,) with the first term of (67)
converges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 8 and Slutksy’s lemma, and the second term converges in probability to co. Since
Vi (3, ) Yo is feasible in the dual problem for 7,,,, it follows that 7, —, oo. It follows that
Pp,. (M, < —C) — 0, so the modified test agrees with the unmodified test with probability
approaching 1. For simplicity, we therefore consider the unmodified test for remainder of the
proof.

Now, suppose C' > max{0, z;_o}. We showed in the proof to Lemma B.16 that if (Y, ¥) >
C, then ¢S (Y,¥) = 1 unless 0., := 4/7.X7 > 0 and i(ﬁ — o) < ((C), where 7,
is an optimal solution to the dual problem and ((-) is a function such that ((C) — 0 as

C — o. Additionally, by Lemma D.6, there exists some vertex v such that ﬁ(ﬁ — o) =
*
o) (2 ) e ) = (7 17 0

Vi Dy =Y Xy
To complete the proof, we will show that we can extract a subsequence of m, indexed by

q, along with a constant C' > max{0, z;_,} such that

q—0

lim sup P, ({ﬁnq <CYv {{an >0} A {Uinq (g — 01%) < C(C)}}) <w/2.

This implies a contradiction of (65), since the event in the probability in the previous display
is a necessary condition for the conditional test to not reject. Further, since we’ve shown

that 7, —, 00, it suffices to construct a subsequence such that

1
limsup Pp, <{&W7”q > 0} A { — (T, — vil‘;) < C(C’)}) < w/2. (68)
q—0 777"’1

Now, recall from Lemma C.1 that we can write V(2) = {¢1(X), ..., ¢;(X)7,} for positive
continuous functions ¢; and distinct non-zero vectors 4; > 0. For notational convenience,
let ¢;pm = ci(i]nm),c;‘ = ¢i(Z%), Yim = Cim7i, and ¥ = ;. Likewise, for a pair (7,7) let

Kijm = K(Yim,Vjm) and £5; = K£(77,75). Assumption 8 implies that inm —, X*. By the
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continuous mapping theorem, we therefore have ¢;,,, —, ¢, Vim —p 7, and Kijm —p /{fj.

Note that if 7;,, is optimal and /A = 0, then 6,.,,, = (cim7:) AXn, A (cimYi) = O.
Thus, we can only have 0;,,, > 0 if the optimal vertex corresponds with an index 7 such
that /A # 0. To establish (68), it therefore suffices to extract a subsequence ¢ such that for

any pair (4,7) with ¢ # j and /A # 0, either

lim Pp, (nn — Y ) — 0, OR (69)

q—0 ’

timsup Br, ({i, = 7,72} A ka0 — 30l < C(O)}) <w/@m), (70)
q—0

where m is the number of such pairs (i, j).

Consider any such pair (i, j). First, we claim that /\,, < —"y{fl(.,l)a:. To show this, note
that since 9}51 e S(A,Bp,), 3T € RT-! such that ), + 121(.71):5 = AB,, —d— fl(.,l)ﬁ}ézl —
A _1y7 < 0. By construction (see the proof to Lemma C.1) /A, ;) = 0 and % > 0, and
hence 7, (A, + A( 1)) < 0, which implies ¥/\,, < —7/A( 1y, as desired.

Since /A, is bounded above, it follows that either i) 4/\,, — —oo, or ii) there ex-
ists a subsequence m; such that ¥/\,, — p; € R. If i) holds, then it is clear from (67)
that %f,mf/m —, —o0, since the inner product of 7;, with the first term in (67) con-
verges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 10 and Slutsky’s lemma, and the second term converges in probability to —oo.
Since 1), —p o, it follows that PP (ﬁnm = ’V{m?m> — 0, so v;m, is optimal with vanish-
ing probability. Now, suppose ii) holds and consider the sequence m;. By an analogous
argument for 7;,,, we can show that either ii.a) v}, Y, —p, —c0 or ii.b) there exists a
further subsequence my such that 47, An, — p2 € R. If il.a) holds, then it is immedi-
ate that for any ¢ > 0, P ({ﬁnm = 7£7m2§~/m2} A {Kij,mz (Yimg — 7j7m2)'1~/m2 € [—C,C]}) — 0,
since 7y, — 0, fy;,mlffm —p —0, and Kym, — Kj; > 0. Now, suppose ii.b) holds.
Since /M, (77 — 75)' Am, is non-stochastic, we can choose a subsequence mj such that

oms (V= VF) Amy — ps € R U {£o0}. Then

(%7m3 - ’7j7m3),ym3 = (%7m3 - ’7j7m3)/\/n7m3A(5nm3 - /B-Pm3)

. >

=71
+ v Mims (%,mzs - ’7;‘)/)‘7713 - N Mg (’Yj,ma - ’YJ*),)‘mj
:?%2 :‘:,Z3
Vs (= 77) A

Z4

By Assumption 10 along with Slutsky’s lemma, Z, —q (v} — ;) A&s, for {5 ~ N (0, ¥¥).
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Next, note that we write Z, = y/n(c;j(Xn,,,) — ci(¥*))0jAm;. Since ¢; is continuous, Assump-
tion 10 along with the delta method imply that \/n(c;(¥,,,) — ci(X*)) —a Giés, where
Gi = Dyenyci(X¥) is the gradient of ¢; at ¥*, and & ~ N (0, Vy). Since 0\, — i,
by Slutsky’s lemma, we have Zy —4 u1Gi¢s. By an analogous argument, we have that
Z3 —q MQG;{E. Finally, recall that Z, — ps by construction, and K;jm,, — fi;“j > (0. Com-
bining these results, along with the fact that these convergences hold jointly by Assumption
10, we have that

Kijoms (Vima = Viama) Yms —a #5557 =77 ) Ap + Ki; (1 Gi — paGy)'Es + Kijus,

where (£5,£5)" ~ N (0, V*). It is immediate that the limiting distribution in the previous
display, which we will denote by &;;, is normally distributed. We claim further that its
variance is strictly positive. Indeed, note that £z |y is normally distributed with variance
¥ - VEVe _1V2*B> which is positive definite by Assumption 11. Further, Assumption 9
implies that (v —~7)'A # 0, and thus &;(7 — 7})'A¢s has positive variance conditional
on &s. That the unconditional variance of &;; is positive then follows from the law of total
variance. Let Ufj denote the unconditional variance of &;;. We then see that for any ¢ > 0,
P (&; € [—¢,¢]) < (¢/0i;) — ®(—(/04j), since the normal distribution is single-peaked and
symmetric about its mean, so the maximal probability that a normal variable falls in an
interval of length 2¢ occurs when the interval is centered around the mean. Since ((C) — 0

as C' — o0, we can choose C sufficiently large such ®(¢/0;;) — ®(—(/0;;) < w/(2m). Hence,

lim SupP (|Hij7nm3 (7i,m3 - Vj,ms)/Ym3| < <<C>) < w/(2m>

m3—>00

We have thus established that we can find a subsequence along which (69) or (70) holds
for a single pair (i,j). However, since there are finitely many such pairs (7, j), we can use
analogous arguments to further refine our subsequence and constant C' such that this holds
for all pairs (i, 7).

O

Lemma D.6. Let 77(Y,X) be as defined in the proof to Proposition C.1, and v, an optimal
solution to the dual problem for (Y, X). Then, if v'°(Y,X) is finite,

/
~ lo YV Z’Y* ( IaY AV, )
_ - Y —AY
nm—v Y s — 7' s s g 5

Ve XV

== > ().
Ve Dy —7 Xy

for some vertex v € V(X) such that
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Proof. We show in the proof to Lemma D.11 that

oo — min — 0y, (V)

- )
{¥EV(2) : by, vy <0} b'y,'y*

where
v s
b =—— -1
VY 7;27*
v
Y)=+(I —- —24Y.
a%%k( ) ’7 ( 7;27* 7*)

Noting that 77 = ~.Y, the result then follows from applying the expressions above and

cancelling like terms. O]

D.3 Proofs and auxiliary lemmas for uniform local asymptotic power

results

Proof of Proposition C.3

Proof. Let 71, ...,74; be as defined in Lemma C.1. By Lemma D.16, there exists a value
C* € R such that for any ¥ € S and any j such that ;A # 0,

A

n
? (wj@mmwm) s

only if n > —C™*. We suppose throughout the proof that —C' < —C™*.

Towards contraction, suppose that the proposition is false. Then there exists a sequence

of distributions P,, € P. and an increasing sequence of sample sizes n,, such that

v S| - o)

nm m

lim inf > w (71)
a0

n—

Ep, [wﬁa@nm, Ad 00 +

for some w > 0. We showed in the proof to Proposition C.1 that wf ., 1s invariant to scale,

so this is equivalent to

lim inf ’Epm [wfa(«/nmﬁnm, A, \/Npd, /00 + 2, f]nm)] - p*(Pm)’ > w. (72)
n—00 ’ m

Define
Y., = A/Nm (ABnm —d — /1(.,_1)(9}231 + x))
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and X = fl(.y_l). Then

VS (VB Ay N emd, V0OE + 2,5, = 0 (Y, X, AS, A').

For notational convenience, define 7, := 7p,; define é,,, 9" and ¥, analogously. Let
Yo =Yoo= A( )T 190/ (TP — 0P post+ 05 post)- By Lemma 16 in ARP, ¢ (V;,, X, AY,, A') =
Sa(?m,X , A%, A’). Additionally, recall from the proof of Lemma B.7 that 8% = I'(mp +

OPpost — Opost). From this, we see that

Y/m = A/ (ABnm — d — A(.jl)g}él:n — A(~,—1)F(—1,~)(7Pm — (5p7n7p05t + 5?3*7”’72081;)) — 121(.71)1}
= A/ Nm (ABnm —d— A(',l)l/(’rpm + 5Pm,]?08t - 57’1,;70%) - A(',*I)F(*l,') (TPm - 5P7n7p03t + 5;?;,]20575))

— A(.J)l‘
A 0 s A
=/ | ABn, —d—A s (Tp,, + 0P, post — 5Pm’post) —Acye,

where the last line follows from Lemma D.5. Additionally, note that by construction,

0
OPppre = Op pre- Lhus, dp, — 058 = < ; ) (0P .post — O post)- 1t follows that
0

Tp,,

Vi = \imA (Bnm — b, ( )) i (ASE, — d) — Ay (73)

Now, since P, € P., by definition there exists an index B,, such that

Ap,0p, —dg, =0

A(_Bm7.)5;k); — d—Bm < €,

and Apg, post has rank |B,,|. Since there are finitely many possible subindices of the rows
of A, we can choose a subsequence m; such that B,,, = B for some index B such that
Ap post has rank |B|. Additionally, since S is compact, we can choose a further subsequence
msy along which X Py, — >* for some X* € S. To avoid notational clutter, we will assume

that these convergences hold for the original sequence (m,n,,). Additionally, without loss of
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generality, we will assume that B corresponds with the first |B| rows of A. It follows that

i Ay
Vi (A8 —d) — Az = ( - (B.) ) )

(805 —d-p) — AT

< —A(B{)(L’ ’
—A/Mm€ — A(_B’l)l’

from which it is apparent that

—00

. ~A
it (ASE —d) — ALy — ( (BT ) .

as m — 0. Now, equation (73) along with Assumptions 6 and 8 and the continous mapping
theorem imply that
(Y/mv im) —d (f + [, E*)a
for & ~ N (0, AX*A).
Now, as in the proof to Proposition C.1, note that the (unmodified) conditional test
rejects iff p(Y,X) > 1 — « for

p(Y,3) = P (C < (Y, 3) € € (Y, ), 0" (Y, )], ¢ ~ N (0, 02(Y,5)))) > 1 —av
It follows that the modified conditional test rejects iff p(Y, X) := p(Y, X)-1[7(Y,X) = -C] >

1 — a. Thus, (72) implies that

lim inf ‘Ppm (ﬁ(Ym, ) >1— a) - p*(Pm)’ > w.

n—o0

Additionally, Proposition 4.2 implies that for all m, p*(P,,) = ®(c*z — 21_4), where ¢* =

—YgAB1) /0B, for op = \/ﬁgA(B7.)EA'(B VB and ¥p the unique vector such that 45 A5 1) =
07’73 = 07 H:)/BH =1 ThUS,
liminf |Pp,, <]5(1~/m, ) >1— oz)) —O(c*r — 21-4)| = w. (74)

n—ao0

However, Lemma D.14 gives that p(Y, ) is continuous at (£ + i, £*) for almost every
&~ N (0, AX*A’), and so from the continuous mapping theorem,

ﬁ(i/; 2A:m) —d ]5(5 + [, Z*>

Additionally, Lemma D.15 gives that the distribution of p(§ + i, ¥*) is continuous at 1 — «,
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and thus
Pr (Vi Sn) > 1—0) = P(E+ 5,5 > 1-a).

Lemma D.12 implies that with probability 1,

p(g + i, 2*) — P < VJ(Z*)I(g + ﬂ) > :

V7 (8%) AX* Al (3)

where v, (X*) = ¢;(X)7; for 4; the unique element of {¥,...,7,} such that 7, _p = 0. Ad-
ditionally, Lemma D.9 gives that with probability 1, n(§ + i1, £*) = ~;(2*)(§ + ). Since

- < -C* @ il > 1—a only if ) > —C, from which we see
VAT A, ()
that P(p(& + 4, X*) > 1 —a) =P (p(§ + 1, %) > 1 — ) . It follows from the expression for

p(€ + @i, ¥*) in the previous display that with probability 1, p(§ + i, X*) > 1 — « iff

7 (5)€ R V10> /
VAT A (T T (S AT A ()

The term on the left-hand side has the standard normal distribution, and thus

P(p€+ X >1—a)=> < (=) - zl_a> .
V7 (B*) AD* Al (2¥)

Next, note that by definition ~,;(X*) = ¢;(X*)%;, where by construction 7; _p = 0. Fur-
ther, from Lemma D.7, 4; g is equal to the vector 75 defined above (i.e. the unique vector
satisfying the unique vector such that %3121(37_1) = 0,98 = 0,||5s|| = 1). It is then immediate
from the previous display and the fact that g = —fl( BT that

Pp(+m,Y)>1—a)=("z— 21_4).
But this implies that

lim inf ‘Ppm (p’(f/m, S) > 1 a) ~d(c*r — 2a)| = 0,

n—o0

which contradicts (74). O

Lemma D.7. Suppose Assumption 5 holds. Let B = B(6**) be the index of the binding
moments. Let y1,...,7; be as defined in Lemma C.1. Then ¥;_p = 0 for exvactly one j €
{1,...,J}. Additionally, ¥;A # 0, and 7; p is the unique vector in the set {yp : 713121(37_1) =
0,78 = 0, |lvs]| = 1}.
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Proof. We first show that there can be at most one 7; such that 4; _p = 0. Recall from
the proof to Lemma C.1 that for all j, ﬁj’fl(.,_l) = 0,9 = 0 and ||3|| = 1. Thus, if
¥;—B = 0, we have ”‘y;;BA(Bﬁl) = 0. However, from Lemma B.7, the set {y5 : ¥ A1) =
0} = {cv5 | c € R} for some non-zero vector 75 = 0. Thus, there is a single vector in the
set {v5 : YgAm_1) = 0,78 = 0,[|vs|| = 1}. In particular, its lone element is c*~%, for
c* = 1/||vEll- Hence, if there is such a 7;, it has ¢*v}; in the positions corresponding with B
and zeros otherwise.

It thus remains to show that the vector with c*v} in the positions corresponding with B
and zeros otherwise is in the set {71, ..., 7s}. Denote this vector v*. Note that by construction,
7*’121(.7,1) = 0. Thus, for any ¥ positive definite, (v*'5)"1v* € F(X) = {y : 'y’fi(.7,1) =
0,7’ = 1}. Moreover, (v*&) '7* must be the unique vector in F(3) with y_5 = 0, since
as discussed above, {75 : 7'Ap_1y = 0} = {c75|c € R} and so there is a unique vector

with v3A. 1) = 0,7 = 0, and 7’6 = 1. Let v be the vector with -1 in the positions

corresponding with —B and zeros otherwise. Then v/(y*5)~1y* = 0, whereas /v < 0 for

any other v € F(X), since every v € F(X) satisfies v > 0 and v_p # 0. Thus, (v*5) " '7* is
a minimal face of F'(X), and hence a vertex (see Schrijver (1986), Section 8.5). By Lemma
C1, F(X) = {a1(X)71, ..., cs(X)7s} where ¢; > 0. Tt follows that (y*5) 1y* = ¢;(X)7; for
some j, so y* is a constant multiple of ;. However, since by construction v* and 7; are both
positive and have a norm of 1, they must be equal, which gives the first result.

Next, note that we showed in the proof to Lemma B.7 that 7%’121(37.) = ¢. Since A(B,.) =
0
A,y ( ; [~! and I'"! is full rank, it follows that 7§ Ay # 0. Since 3,5 = ¢*v} and

v;—g = 0, we have that 7. A = ¢*v§ Ap.y # 0, which gives the second result.
7, j B4X(B,)
O

Lemma D.8. Let ji and ¥* be as defined in the proof to Proposition C.5. Let V(Y,%) =
arg max. .y () v'Y. By Lemma D.7, there is a unique index j such that 7; _p = 0. Then for
almost every & ~ N (0, AX*A"), there is a neighborhood of (€ + ji, X*) such that V(Y,X) =
cj(X)7; for almost every & ~ N (0, AX*A).

Proof. Without loss of generality, suppose that ¥; _p = 0. Lemma C.1 implies that

ﬁ(Yv, Z) = max ’)//Y = maX{Cl(2>’71Y7 veey CJ(Z)71Y}7
eV (E)

where the functions ¢;(X) are continuous. Each of the elements of the max are continuous
functions of (Y, X) in a neighborhood of (£ + fi, *) by an argument analogous to that in the
proof to Lemma D.2 (replacing p* with i). Note, however, that 7 (i+¢&) = ”_AB(fB—I—fl(B,l)x),
which is finite with probability 1. On the other hand, for j > 1, 4;({ + 1) = —c0, since
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7; = 0 and has at least one strictly positive element in the index —B, and y_p = —00. Since
¢j(X*) > 0 for all j by Lemma D.1, it follows that c;(X*)7 (€ + 1) > ¢;(X*)7;(€ + fz) for all
j > 2. Since the functions on both sides of the inequality are continuous at (£ + i, X*), this
implies that ¢ (X)%Y > ¢;(¥)7;Y in a neighborhood of (£ + fi, ¥*), which gives the desired
result.

]

Lemma D.9. Let i and ¥* be as defined in the proof to Proposition C.3. Let n(Y,%) =
max.ey () Y'Y . Then for almost every & ~ N (0, AX*A"), n(Y,X) is continuous at (§+fi, X*).
Further, there is a neighborhood of (§ + i, ¥*) such that (Y, %) = ¢;(X)7;Y, where j is the
unique index such that 3;_p = 0 (which exists by Lemma D.7).

Proof. Follows immediately from the proof to Lemma D.8. [

Lemma D.10. Let i and X* be as defined in the proof to Proposition C.3. Then for al-
most every § ~ N (0, AL*A"), 02(Y, %) is continuous at (§ + 1, X*). Further, there is a
neighborhood of (€ + i, ¥*) such that o,(Y, %) = ¢;(¥)*7;ALA’; > 0.

Proof. By Lemma D.7, there is a unique index j such that 4; _p = 0, and this 7; satisfies
;A # 0. Lemma D.8 implies that V(Y,%) = ¢;(2)7, in a neighborhood of (€ + fi, ¥*).
Thus, in that neighborhood, 62(Y,¥) = ¢;(¥)*5;AXA'y;, which is clearly continuous in X.
Additionally, ¢;(£*) > 0 by Lemma D.1, and ¥* is positive definite, so &%({ + [, 2%) =
c;(¥*)*7;AX* A’y; > 0. Since 67 is continuous at (§ + i, X*), it is also positive in a neigh-

borhood of (£ + i, X*). O

Lemma D.11. Let i and ¥* be as defined in the proof to Proposition C.3. Then for almost
every € ~ N (0, AX*A'), v'°(E+ 1, B*%) = —o0, vP(£ + [i, %) = o0, and the functions v'° and

v are continuous at (§ + [, ).

Proof. By Lemma D.7, there is a unique index j such that 7; _p = 0, and this 7; satisfies
;A # 0. Without loss of generality, assume this holds for j = 1. Lemmas D.8 and D.10
then imply that V(Y,X) = ¢;(X)% and 62(Y, %) > 0 in a neighborhood of (¢ + fz, ©*).

The proof of the continuity of v and v* is then similar to that in Lemma D.2. Let
7:(X) = ¢1(X)7;. For ease of notation, we will make the dependence of v, on ¥ implicit where
it is clear below. Since in a neighborhood of (¢ + /1, X*), 67(Y, ¥) > 0 and V(Y,2) = {1.(D)},
in that neighborhood v°(Y,¥) is the minimum of the set

DYy
= : ! Y. X
C={c max (SV*( : )+%E%C>},
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for

Yo'y
Y. = (1- * )y,
S %) ( 7;27*)

Rearranging terms, we see that

VeV (E)

where a., ., vy = 7S, (Y) and b, ., » := — 1. Note that a,, v,v = 0 = by, -,, SO

/
0 < maxyey(s) Gy,yy,y + by, c for all c. Morevo*\ig:k for ¢ = 7Y, the max is attained at -, by
construction. Hence, the set C' is non-empty.

Intuitively, if we plot a., vx + by, » as a function of ¢, then each v € V(X) defines
a line, and the set C represents the values of ¢ for which 0 is the upper envelope of this
set. It follows that the lower bound of C' is the maximal x-intercept of the lines of the form

Uy, Y,s T by me With by, » < 0. Hence,

—a Y,
max S ARL ELS L)
VeV (EN{v#} :byyy, =<0} D

(Y, %) =

Vo Va2
Now, let 7.s = 7:(2*). Observe that for any v € V(X*)\7ss,

E17e, ; L i
! J— — T kX — A VA Yy .
g ( %*EW*) (E+m) =7+ n) 7;*2*7**7**@ + f1)

Since 7_p < 0 and has at least one strictly positive element, v'(£ + 1) = —oo with probability
1. On the other hand, 7. 5 = 0, and so 7., (& + 1) is finite with probability one. It follows
that a, ., e+ax+ = —00 with probability 1. Hence, v'°(§ + i, £*) = —c0.

Next, recall that by Lemma C.1, V(X) := {m(X),...,7s(X)}, where () = ¢;(X)7;
and ¢;(X) is continuous. Additionally, we showed in the proof to Lemma D.8 that for all
7, ¢j(X)7;Y is continuous at (£ + i, ¥*). It is then immediate from the definitions of the
functions a, ., y,» and b, ., = that for all j, a,, () .(2),v,z and by, (s) 44 (), are continuous in
(Y, %) as well. Without loss of generality, suppose that for 2 < k < &y, by, (m%) 1, (2%),2% < 0;
for by < k < ko, by s#) ez n+ = 0; and for & > ky, by, (5%) 4, (z#),n+ > 0. From the
continuity of b.;(s),(x)x, it is clear that in a neighborhood of (§ + p*,X%), by, (£)1u(x)z > 0
for all 2 < k < ky and b, (5))~,(x),x < 0 for all k& > ky. Hence, in this neighborhood,

Oy (2),%(2),Y.Z Ty (2),Y,5

(Y, %) = max{ max max —} : (75)

(D) 2<h<ht by (D) pe(D)E 1EVOE) by yy(e)m

where
VOE) = {m(X) : k1 <k <k, by (m)nmx < 0}
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and we define the max of an empty set to be —oo. It is clear from the continuity of the
functions @ and b that the inner max on the left side of (75) is continuous and converges
to —oo. To show that v'° is continuous at (£ + i, ¥*), it thus suffices to show that for any
sequence (Y,X) — (£ + f1,%*), the max on the right hand side of (75) converges to —oo.
To do this, note that by construction b., (sx) ., s#)xx = 0 for k € (ky, k2], and so along any
sequence (Y, ) — (§+ i, %), by, (x)45(x),n — 0 since b is continuous in (Y, X). Additionally,
since a is continuous, along such a sequence, ., (s),(2),Y,5 = Gy, (5%) s (5% c+p,5 = —0. For
values of (Y, %) where b, (s v, (x),x > 0, it follows that —a,, () 1. (3),v,5/0,(3) 74 (3),= becomes

arbitrarily negative, whereas for values of (Y, ) where by (2)s(2),x = 0, 7% is not included

Yok
in VO Tt is then immediate that the max on the right hand side of (75) converges to —oo,
which suffices to establish the continuity of v at (¢ + fi, X*). The continuity of v*7 can be
shown analogously.

]

Lemma D.12. Let i and ¥* be as defined in the proof to Proposition C.3. Define p(Y, )
as in Lemma D.5. Then for almost every & ~ N (0, AX*A"), p(Y,X) is continuous at

(S*Y (€ + [
€+ 75", and p(é + ,5%) = & | L=V EH)

\/,yj<2*)/A2*A/% (2*)
such that ¥;5 = 0 (which exists by Lemma D.7).

, where j s the unique index

Proof. Lemmas D.9 to D.11 imply that for almost every £, H(Y,X), o2(Y, %), v"(Y, X) and

A

v"P(Y, X) are continuous at (§+7, X*), and when evaluated at (§+p, X%), ) = ¢;(3*)7;(E+1),

G2 = ¢(X*)*yjALAY; > 0, v = —oo, and v = 0. Thus, G, > 0 and v < v*” in a

neighborhood of (€ + i, £*). When 67 > 0 and v < v*?,

®(i/5y) — (I)(Ulo/é-n)
P = G a,) — @/5,)

which is clearly continuous in #,v'°,v"?, and &, including when v'° = —o0 and v*? = o0.
The continuity of p(Y, ) thus follows from the continuity of 9, v, v", and &,.
Additionally, when evaluated at (Y,X) = (£ + f1, X*), we have

¢( () (€ + ) )—@@w)
vx) = V75 (B ) ASE Al (3#) » Vi (S (€ + )
plr, CI)(OO) _ (I)(—OO) \/’)/j(E*)/AZ*A”Vj(E*) .
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Lemma D.13. Let i and X* be as defined in the proof to Proposition C.5. For any C € R,
the function 1[n(Y,X) = —C1 is continuous at (§+f, X*) for almost every & ~ N (0, AX*A).

Proof. By Lemma D.9, for almost every &, the function 7(Y,Y) is continuous at (£ + f1, 2*).
It thus suffices to show that for almost every &, 7(¢ + ji,¥*) # —C. Lemma D.9 gives
that 7(¢ + 1, ¥*) = ¢;(X*)7;(§ + 1) where 7; is the unique element of {¥;,...,7,} such that
Yj— = 0. Thus, 7(§ + i1, %) = —C only if ¢;(X*)7;§ = —C — ¢;(¥*)7jf1, where the right-
hand side of the previous equation is finite since jip is finite and 7; _p = 0. Observe further
that ¢;(3*)7¢ is normally distributed with variance ¢;(3*)*3;AX*A'y; > 0. Since ¢;(X*)7}¢
is continuously distributed, it follows that c;(3X*)¥;§ = —C — ¢;(¥*)¥}ii with probability

zero, which suffices for the result. n

Lemma D.14. Let i and ¥* be as defined in the proof to Proposition C.5. Let the function
p(Y,X) be as defined in Lemma D.12. For any C € R, the function p(Y,X) = p(Y,%) -
L[(Y,X) = —C] is continuous at ( + fi, %) for almost every & ~ N (0, AX*A").

Proof. Follows immediately from Lemmas D.12 and D.13 and the fact that the product of

continuous functions is continuous. O

Lemma D.15. Let i and ¥* be as defined in the proof to Proposition C.5 and p(Y,X) as
defined in Lemma D.1}. For & ~ N (0, AX*A"), p(& + i1, %) = 1 — a with probability 0.

Proof. Note that p(Y,>) = p(Y,X)1[7(Y,X) = —C] can equal 1 — a only if 1[7(Y,X) =
—C] =Tland p(Y,X) = 1—a. It thus suffices to show that p({+f, ¥*) = 1—a with probability
% (= (E+R) )
V(B ATF A, (3%) )
where v;(X*) := ¢;(£%)7; and 7; is the unique element of {71, ...,7,} such that 7; 5 = 0.
Thus, p(§ + 1, 2%) = 1 — a iff 7 (S*)'E = 21_ar/7;(E*) AT* A';(3*) — 7;(2*) 1. However,
we showed in the proof to Lemma D.13 that ~;(X*)’¢ is continuously distributed, and thus

zero. From Lemma D.12, for almost every &, p(§ + i, X*) = @

this occurs with probability 0. O]

Lemma D.16. Let %,...,7; be as defined in Lemma C.1, and v;(X) = ¢;j(X)7y;. There
exists a value C* € R such that for any 3 € S and any j such that ;A # 0,

d 1 >1—«
V7 (B) AT A (3)
only if n > C*.

Proof. Observe that
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U
(\/’YJ AEA/%( )) sioe

iff

N> z1_ a\/% JJAY Al (2).

If zy_, = 0, then the lower bound in the previous display is weakly greater than zero.
On the other hand if z;_, < 0, then the lower bound is weakly greater than z;_, times the
maximum possible value of 4/7;(X)'AXA’y;(X). Note, however, that 4/7;(X) AL A';(3) =

cj(3)?7;AXA"y; by Lemma C.1. By Lemma D.1, ¢;(¥) < ¢. Additionally, since the set
{71, .., 7} is finite, max; || 7} A[[* is finite. It then follows from Lemma D.1 that 7;AXA'y; <
Amax; |7, A|]> < o, and so we obtain a finite upper bound on 4/7;(3) AL A;(%), which

suffices for the result.
O

Proof of Proposition C.4

Proof. We first claim that the function m(f) = Af is a maximal invariant of the group
G. Since by definition Av = 0 for any v € A', it is immediate that m(8) = m(g,53)
for any g, € G. To show that m is a maximal invariant, consider 5; and [, such that
m(B1) = m(By). Then A(B; — B2) = 0 and hence (8; — 32) € AL. From this we see that
B = P2+ (1 — B2) = g(81—p,)(B2), and thus m(3) is a maximal invariant. Note further that
ABy = ABy iff ABy + h = APy + h for any constant vector h, and so the same argument
applies to show that m,(8) = AS + h, is maximal for any h,. It follows from Theorem 1
in Lehmann (1986, p. 285) that C, can be written as a function of (m,(3),%) only, so that
Cr(/1Brs B0) = Co(min(v/1Bn), 3y). From Lemma B.7, there exists a vector 7 such that

ApyBps —dp — A0 — A 1T =0 (76)
pBpr —d_p— A_p10h — A_p1F=—€<0. (77)

We set the constant h, = —y/n[d — 121(.71)(92,1; — A —1)T], so that C is a function of Y, :=
\/E[Aﬁn —d— A(.,l)eub — 121(.7_1)72] and in.
Observe that
Y, = v/nA(B — Bpr) — /n[ABps —d — A7)
It follows immediately from (76) and (77) that \/n[ABp« —d — A _1)7] — fi, where i = 0
and ji_p = —o0. Since by assumption v/n(8, — Bpx) —q4 N (0, ©*) under P*, the continuous
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mapping theorem along with Slutsky’s lemma imply that Y, P—*>d E+pfor & ~ N (0, AZ*A").
Similarly, suppose fp, = [px + \/LE(B — Bpx) for some fixed 3. Suppose further that
V(B — Bp,) L4 N (0, £%). Observe that

Yo = \/EA(/é - BPTL) + A(B — Bp*) — \/E[Aﬁp* —d— 121(.,,1)%].
Thus, Y, %54 & + A(B — Bps) + i

-
be the set of values 3 consistent with § = 6, and BF(9) = {8 : It s.t. I't = 0, A8 —

- 0
Now, as in Lemma B.12, let By(f) := {8 : 3Irst. I't = 0, AB — d—A( ) < 0}

0 ~
dp — A(B,) ( ) < 0} be the analogous set using only the moments B. Suppose that €
T

BE (6% +z). We claim that for n sufficiently large, 3, := Bpx + == (6 Bpsx) € Bo(0* + 1 -1).
It follows from the definition of BF(6** + x) and the construction of the matrix A that there
exists 7 such that A(B,-)B —dp — /1(371)(9}‘3@ + ) — A(B’_lﬁ' < 0. This, combined with (76),
implies that

A(B)ﬁ —dB—ABl)<0b+ JI)—A(B 1)((1——)%+—7\1)<0

1
vn . n n
However, from (77), it follows that

1 ~ 1 . 1 .
b + \/—ﬁx) — A(,BJ)((l — —)7’ + —7') =

1 1 . . §
(1= =)= + == (Acp)B — db — A py (O +2) - ACpy?),

which is negative for n sufficiently large since —e < 0. The previous two displays imply that

for n sufficiently large, 3, € By(0'% + \/Lﬁx), as we desired to show. Hence, for n sufficiently

0
large, there exists d,, € A and 7, such that 5, = d,, + ( ) and l't, = 0" + L

- T

Now, let ¢, (Y, %) = 1[04 + \/iﬁx e Co(Yy,2)]. Tt follows from the previous paragraph
along with the assumptions of the proposition that for any sequence P, such that y/n(5, —
Bp,) g N (0, £%), 3, iﬁ, ¥* and fp, = fBpr + (ﬁ Bps) for B € BE (0% + z), we
have that

lim sSup EPn [Son(yna in)] S«

n—0o0

It then follows from Theorem 1 in Miiller (2011) that
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lim sup IEP* [Qpn(Ym in)] < P

n—a0

for p the power of the most powerful test between
Hy:BeBP(0™ +z) vs. Hy: B = Bps

given a single observation Y ~ A <ﬂ + A(B — Bps), AZ*A’).’16 Since u_p = —w, Y_pg =

—oo with probability 1 under both the null and alternative, so it suffices to consider tests of H,

vs H; given an observation Yz ~ N (ﬂB + A(B7.)(ﬁ~ — Bp*), A(B,-)E*A/(B’.))- Recalling that

i1 = 0 by construction, we see that p is the power of the most powerful test between Hy : 1 €

My := {Ap.)(B—Bps) : BeBEOW +2)}yand Hy : p=0given Y ~ N (,u, A(B7.)E*A’(B’.)>.
Now, it follows from the proof to Lemma B.12 that

BEOR +2) = 18+ 7 (Ap)8 — dp — A0 + ) <0},

for 45 the unique vector such that %;121( -1 = 0,98 =0, |[|78]| = 1. This, combined with
(76) and the fact that 3’ Az _1) = 0, implies that BY (0% +2) = {8 : ¥y (A, (B — Bpx)) <
YAz}, Tt is then immediate that My € {v : ypv < YA 1)z} Additionally, since §ps
satisfies Assumption 5, A(p.) has rank B, and thus its image is RIBI. This implies inclusion

in the opposite direction, and hence My = {v : Fzv < %’B/NX(BJ)x}. It then follows from

Lemma B.11 that p = & <—7j3f~1(3,1)x/ag —zl,a>, for o} = \/%314(37.)2*1423 yVB- This
accords with the formula for p*(P*, x) given in Proposition 4.2, which completes the proof.
O

E Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section E.1 describes the computation of the optimal bound for ex-
pected excess length. Section E.2 contains additional results from the normal data-generating
process considered in the main text. Section E.3 presents results from a non-normal data-

generating process in which the covariance matrix is estimated from the data.

46See also Section 3.2 of Miiller (2011) on applying Theorem 1 to invariant tests.
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E.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (9). In Section 6, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesar (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence

set that satisfies the uniform coverage requirement.
Lemma E.1. Suppose that A is convez. Let I, denote the set of confidence sets that satisfy

the coverage requirement (9). Then, for any 04 € A and T4 € R7,

c}r?z'f E(54,74,50) ACO)] =1 -a)E[w(21-a —2Z) —w(21-a — 2) | Z < 21-4],

where Z ~ N (0, 1), z1_4 is the 1 — « quantile of Z, and

w(b) :=sup{l'T|7eRT, 35 A s.t. |6 + Mpost™ — Bal3, < 0%}
w(b) :=inf{l'T| 7€ RT. 35 € A s.t. |6 + Mpos™ — Bal3, <0},

for Bai= 84+ MposTa, and ||z||s = 'S .

The proof of this result follows from observing that the confidence set that optimally
directs power against (04, 74) inverts Neyman-Pearson tests of Hy : § € A0 = 6 against
Hy : (6,7) = (04,74) for each value . The formulas above are then obtained by integrating
one minus the power function of these tests over 6. By the same argument, the optimal excess
length for confidence sets that control size is the integral of one minus the power function
over all points # outside of the identified set. Additionally, for any value § € S(A, B4), the
null and alternative hypotheses are observationally equivalent, and so the most powerful
test trivially has size a. It follows that the lowest achievable expected excess length is
(1 — @) - LID(A,d4pre) shorter than the lowest achievable expected length, where as in
Section 3, LID denotes the length of the identified set.

Corollary E.1. Under the conditions of Lemma FE.1,

nf B, om0 [EL(C; 04, 74)] = i0f B rym [MC)] = (1= ) LID(A, G pre)-

E.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the median paper consid-

ered in our simulations. Figures I1 show results using the average of the post-period causal
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effects as the target parameter, rather than the first period after treatment; that is, 0 = 7.

Figure I1: Median efficiency ratios for proposed procedures when 6 = 7,,4.
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Note: This figure shows the median efficiency ratios for our proposed confidence sets for 8 = 7,,s:. The
efficiency ratio for a procedure is defined as the optimal bound divided by the procedure’s expected excess
length. The results for the FLCI are plotted in green, the results for the conditional-FLCI hybrid confidence
interval in red and the results for the conditional confidence interval in blue. Results are averaged over 1000
simulations for each of the 12 papers surveyed, and the median across papers is reported here.



E.3 Non-normal simulation results with estimated covariance ma-
trix

In the main text, we presented simulations results where B is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which B is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider considerations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures

are quite similar to those presented in the main text.

E.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).*" Let B , 3 denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of cluster-
ing used by the authors in their event-study regression). For each bootstrap sample b, we re-
estimate the event-study coefficients Bb and the variance-covariance matrix 3}, also using the
clustering scheme specified by the authors. We then re-center the bootstrapped coefficient so
that under our simulated data-generating process parallel trends holds, Bgente’“ed = Bb — B We
then construct our proposed confidence sets for bootstrap draw b using the pair ( B{je"te”ed, f)b)

We focus on three choices of A to highlight the performance of the proposed confidence
sets under a range of conditions: AP (M), ASPPB(M) and ASPI(M). The parameter of
interest in these simulations is the causal effect in the first post-period (8 = 11). We report the
performance of the FLCI, conditional confidence set, and conditional-FL.CI hybrid confidence

set. All results are averaged over 1000 bootstrap samples.

E.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter
values 0 within the identified set S(A,0). We report results for each choice of A and M =
0,1,2,3,4,5. The table shows that all our procedures approximately control size, with null

rejection rates never substantially exceeding the nominal rate of 0.05.

47Since implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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A M  Conditional FLCI C-F Hybrid

ASD(M)
0 0.06 0.08 0.08
1 0.05 0.04 0.05
2 0.05 0.05 0.05
3 0.05 0.07 0.04
4 0.04 0.06 0.04
) 0.04 0.06 0.04

ASDPB(M)
0 0.06 0.08 0.08
1 0.05 0.04 0.05
2 0.05 0.04 0.04
3 0.05 0.08 0.06
4 0.04 0.05 0.04
) 0.04 0.05 0.04

ASDI(M)
0 0.07 0.08 0.08
1 0.06 0.04 0.06
2 0.06 0.04 0.07
3 0.08 0.08 0.08
4 0.07 0.05 0.07
) 0.08 0.08 0.08

Table 2: Maximum null rejection probability over the identified set using the empirical
distribution from Bailey and Goodman-Bacon (2015).
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E.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which B is normal and X
is treated as known. Figure I3 shows the rejection probabilities at different values of the
parameter # using both simulation methods. Specifically, we plot results for each choice of
A using M = 0 and M = 5. (The results are quite similar for all values of M considered,
and we thus omit the intermediate values.) As can be seen, the estimated average rejection
rates of each procedure are quite similar in the non-normal simulations and the normal sim-
ulations across each choice of A. As a result, the relative rankings of the procedures in terms
of power are the same in the non-normal simulations as in the normal simulations discussed

in the main text.
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Figure 12: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 7, and each choice of A = ASP(M), ASPPB(M), ASPI(M),
and M = 0. The average rejection rate for the non-normal simulations are in red and the
average rejection rate for the normal simulations are in blue; the dashed black lines indicate
the identified set bounds. Results are averaged over 1000 simulations.
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Figure 13: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 7, and each choice of A = ASP(M), ASPPB(M), ASPI(M),
and M = 5. The average rejection rate for the non-normal simulations are in red and the
average rejection rate for the normal simulations are in blue; the dashed black lines indicate
the identified set bounds. Results are averaged over 1000 simulations.

AP(M), M =5
FLCI Conditional C-F hybrid
1.00- | | 1.00- ! ! 1.00- |
I I 1 1 I ]
5075 ! i 075- ! : 075- ! i
9 1 | 1 1 1 [}
2 0.50- I I 0.50- i | 0.50- I I
Y 1 1 1 1 1 1
1% 025-\\\;\~__“’L/// 025-. 1 . 025-. .
000 L ] I 1 I ] 000 L ] : 1 ; 1 000 L ] ; ] I ]
40 5 0 5 10 40 5 0 5 10 40 5 0 5 10
ASDPB(M), M=5
100' 1 1 100 b
I I
g 0.75- —— 0.75-
9 ] I
S 0.50- I 0.50-
o) | 1
© 05- \\:\i/ 0.25-
000-  \"—r . 000-
40 5 0 5 10 -10
AP (M), M =5
100' ] 1 100 b
I I
%.075- 1 0.75-
8050- 1 0.50-
) 1 1
4 025-\\\\1\._L_"//// 0.25-
000- 1 I : 1 1 000- 1 000- I I 1 1
40 5 0 5 10 -10 40 5 0 5 10
9 9

— Bootstrap — Normal

S-39



Online Supplement References

Andrews, Donald W. K., Xu Cheng, and Patrik Guggenberger, “Generic results for
establishing the asymptotic size of confidence sets and tests,” Journal of Econometrics,
October 2020, 218 (2), 496-531.

Armstrong, Timothy and Michal Kolesar, “Optimal Inference in a Class of Regression
Models,” Econometrica, 2018, 86, 655—683.

_ and _ , “Sensitivity Analysis using Approximate Moment Condition Models,” Quantita-

tive Economics, 2020. Forthcoming.

Bailey, Martha J. and Andrew Goodman-Bacon, “The War on Poverty’s Experiment
in Public Medicine: Community Health Centers and the Mortality of Older Americans,”
American Economic Review, March 2015, 105 (3), 1067-1104.

Cho, JoonHwan and Thomas M. Russell, “Simple Inference on Functionals of Set-
Identified Parameters Defined by Linear Moments,” October 2018.

Gafarov, Bulat, “Inference in high-dimensional set-identified affine models,”
arXiv:1904.00111 [econ. EM], 2019.

Hansen, Bruce E. and Seojeong Lee, “Asymptotic theory for clustered samples,” Journal
of Econometrics, June 2019, 210 (2), 268-290.

Hansen, Christian B., “Asymptotic properties of a robust variance matrix estimator for
panel data when T is large,” Journal of Econometrics, December 2007, 141 (2), 597-620.

Lehmann, Erich Leo, Testing Statistical Hypotheses, Wiley, January 1986.

Miiller, Ulrich K, “Efficient tests under a weak convergence assumption,” Econometrica,
2011, 79 (2), 395-435.

Schrijver, Alexander, Theory of Linear and Integer Programming, Wiley-Interscience,
1986.

Stock, James and Mark Watson, “Heteroskedasticity-Robust Standard Errors for Fixed
Effects Panel Data Regression,” Econometrica, 2008, 76 (1), 155-174.

van der Vaart, Aad W and Jon A Wellner, “Weak Convergence and Empirical Pro-
cesses: With Applications to Statistics,” 1996.

40



