Research Proposal:

A Human-Robot Collaborative Learning System Using a Virtual Reality Telerobotic Interface

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering

Uri Kartoun

October, 2003
Ben-Gurion University of the Negev
Faculty of Engineering Sciences
Department of Industrial Engineering and Management

Research Proposal:
A Human-Robot Collaborative Learning System Using a Virtual Reality Telerobotic Interface

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Engineering

Uri Kartoun

Advisors: Prof. Helman Stern
Prof. Yael Edan

Author’s signature: ___________________________ Date: ____________

Advisor’s signature: __________________________ Date: ____________

Advisor’s signature: __________________________ Date: ____________

Departmental committee chairman’s signature: __________ Date: __________
A Human-Robot Collaborative Learning System Using a Virtual Reality Telerobotic Interface

Abstract

This research focuses on the development of a telerobotic system that employs several state-action policies to carry out a task using on-line learning with human operator (HO) intervention through a virtual reality (VR) interface. The case-study task is to empty the contents of an unknown bag for subsequent scrutiny.

A system state is defined as a condition that exists in the system for a significant period of time and consists of the following sub-states: 1) the bag which includes a feature set such as its type (e.g., plastic bag, briefcase, backpack, or suitcase) and its condition (e.g., open, close, orientation, distortions in bag contour, partial hiding of a bag, changing of handle lengths); 2) the robot (e.g., gripper spatial coordinates, home position, idle, performing a task); 3) other objects (e.g., contents that fell out of the bag, obstructions) and 4) environmental conditions such as illumination (e.g., day or night).

A system action takes the system to a new state. Action examples include initial grasping point, lift and shake trajectory, re-arranging the position of a bag to prepare it for better grasping and enable the system to verify if all the bag contents have been extracted.

Given the system state and a set of actions, a policy is a set of state-action pairs to perform a robotic task. The system starts with knowledge of the individual operators of the robot arm, such as opening and closing the gripper, but it has no policy for deciding when these operators are appropriate, nor does it have knowledge about the special properties of the bags. A policy is defined as the best action for a given state. The system learns this policy from experience and human guidance. A policy is found to be beneficial if a bag was grabbed successfully and all its contents have been extracted.

Learning the optimal policy for classifying system states will be conducted using two soft computing methods: 1) on-line adaptive resonance theory (ART) and 2) off-line support vector machines (SVMs). The inference of these methods will be a recommendation for a set of possible grasping points. Their recognition accuracy will be compared for a set of test cases. Reinforcement learning (e.g., Q-learning) will be used to find the best action (e.g., determining the optimal grasping point followed by a lift and shake trajectory) for a given state.

When unknown system states are identified, the HO suggests solutions (policies) through a VR interface and the robot decides to accept or reject them. The HO monitors the interactions of the telerobot on-line and controls the system through the VR interface. Policy examples are to let the HO classify the type of a bag (e.g., a briefcase) when it was recognized mistakenly as a different type (e.g., a suitcase) and to provide a set of possible grasping points by the HO when the system finds it difficult to recognize points that are beneficial for completing the task. When HO intervention is found to be beneficial, the system learns, and its dependence on the HO decreases.

For testing the above, an advanced virtual reality (VR) telerobotic bag shaking system is proposed. It is assumed that several kinds of bags are placed on a platform. All locks have been removed and latches and zippers opened. The task of the system is to empty the contents of an unknown bag onto the platform for subsequent scrutiny. It is assumed that the bag has already passed X-ray inspection to ensure the bag is not empty and does not contain obvious explosives (e.g., mines, gun bullets).
HO collaboration is conducted via a VR interface, which has an important role in the system. The HO either manipulates the 3D robot off-line, suggests solutions (e.g., the robot learns an optimal grasping location and avoids others) or changes and adds lifting and shaking policies on-line. When the robot encounters a situation it cannot handle, it relies on HO intervention. HO intervention will be exploited by the system to support the evolution of autonomy in two ways: first, by providing input to machine learning to support system adaptation, and second, by characterizing those situations when operator intervention is necessary when autonomous capabilities fail. Finally, measuring the amount of required operator intervention provides a metric for judging the system's level of autonomy - the less intervention, the higher the level of autonomy.

Keywords: support vector machines, ART neural networks, robot learning, machine vision, virtual reality, human-robot collaboration, telerobotics
The system is designed to develop a robot-friendly interface that uses a set of state-of-the-art strategies to perform tasks while integrating human interaction through a virtual reality interface. The task to be performed by the system is to clear an unmarked box for inspection and monitoring.

The system starts with knowledge of the unique characteristics of its robotic arm, such as opening and closing the grips, but it has no strategy to decide when to use them, as it does not know the specific features of the boxes. A strategy is defined as performing the best action for a given state. The system learns this strategy through trial and error, and with the help of a human.

The system is trained to identify the best strategy for a given state using two learning methods: On-line Artificial Resonance Theory (ART) and Off-line Support Vector Machines (SVMs). Each method provides a recommendation for a set of possible gripping points. The accuracy of the two methods is compared for various cases. Using Reinforcement Learning (RL), such as Q-learning, will be implemented to choose the best action (for example, determining the best gripping point and moving it) for a given state. When a new state is identified, the human suggests solutions through a virtual reality interface, and the robot decides whether to accept or reject them. The human supervises the robot-friendly interface and controls it through a virtual reality interface.

Examples of strategies include being able to sort types of boxes (for example, a file folder) when they are incorrectly identified as another type (for example, a medical bag) and providing a set of possible gripping points when the system has difficulty completing the task. When human intervention is beneficial, the system learns, and the dependence on the human decreases.

To evaluate what has been described, a robot-friendly interface is proposed that controls a telemanipulator. Several boxes are placed on a table. All the box handles are removed and the boxes are opened. The function of the system is to clear the contents of an unmarked box for inspection and monitoring. An additional assumption is that the box being examined has already been X-rayed to ensure it is not empty and does not contain explosive objects (for example, explosive devices, ammunition)
शिष्टता प्रश्नियल बिना रोबॉटों का उपयोग कर रोबॉट निर्देशन में एक और मजबूति के साथ होती है।

हमें विभिन्न स्थितियों में हमें निर्देशन देने की जरूरत होती है, जैसे कि off-line, हमें एक नया फ़ॉर्मेट देना है। रोबॉट नियम नियम के साथ कार्य करता है।

नियमों के अनुसार, अगर स्थिति के साथ रोबॉट को आया है, तो वह नियमों के अनुसार कार्य करता है। रोबॉट को on-line रूप से कार्य करने की जरूरत होती है।

उदाहरण के लिए, यदि रोबॉट को नए नियमों के साथ कार्य करना है, तो रोबॉट को on-line कार्य करना होता है।

Table of Contents

1. **INTRODUCTION** ... 9

2. **THE RESEARCH** .. 12
 2.1. RESEARCH OBJECTIVES ... 12
 2.2. RESEARCH SIGNIFICANCE .. 12
 2.3. EXPECTED CONTRIBUTIONS AND INNOVATIONS ... 13

3. **SCIENTIFIC BACKGROUND** .. 14
 3.1. TOLEROBOTICS .. 14
 3.2. VIRTUAL REALITY ... 17
 3.3. ROBOT LEARNING ... 18

4. **RESEARCH METHODOLOGY** .. 24
 4.1. PROBLEM DEFINITION AND NOTATION .. 24
 4.2. PERFORMANCE MEASURES .. 26
 4.3. METHODOLOGY ... 26
 4.3.1. System architecture ... 26
 4.3.2. System flow and operational stages .. 28
 4.4. PROCEDURES ... 30
 4.4.1. Image processing ... 31
 4.4.2. Adaptive resonance theory ... 32
 4.4.3. Support vector machines ... 35
 4.4.4. Reinforcement learning ... 36
 4.5. TESTING AND VALIDATION ... 37
 4.5.1. Physical experimental setting .. 37
 4.5.2. Performance evaluation ... 38

5. **RESEARCH PLAN** ... 39
 5.1. RESEARCH STAGES ... 39
 5.2. RESEARCH ROADMAP ... 41

6. **MSC. THESIS - VIRTUAL REALITY TOLEROBOTIC SYSTEM** 42
 6.1. INTRODUCTION .. 42
 6.1.1. Description of the problem ... 42
 6.1.2. Objective ... 42
 6.2. METHODOLOGY ... 43
 6.2.1. Task definition .. 43
 6.2.2. System architecture ... 43
 6.2.3. Tools ... 45
 6.2.4. Physical Description of the System ... 46
 6.2.5. The virtual environment .. 47
 6.2.6. Operational stages ... 48
 6.3. SYSTEM TEST AND VALIDATION .. 49
 6.3.1. Calibration ... 49
 6.3.2. System learning curve experiment ... 51
 6.3.3. Summary ... 52

7. **REFERENCES** .. 53
List of Figures

FIGURE 1. DIFFERENT KINDS OF BAGS ... 25
FIGURE 2. SYSTEM ARCHITECTURE ... 26
FIGURE 3. SYSTEM FLOW DIAGRAM .. 29
FIGURE 4. SEPARATING HANDLE FROM BAG EXAMPLE 31
FIGURE 5. ART-1 ARCHITECTURE METHODOLOGY .. 32
FIGURE 6. IMAGE PROCESSING OPERATIONS FOR A SAMPLE BAG IMAGE 33
FIGURE 7. AN EXAMPLE FOR ONE IMAGE PORTION .. 34
FIGURE 8. MULTI-CLASS METHODOLOGY USING ONE VS. ALL (OVA) APPROACH .. 35
FIGURE 9. 1-STEP Q-LEARNING ALGORITHM .. 36
FIGURE 10. EXPERIMENTAL SETUP ... 37
FIGURE 11. CLIENT-SERVER COMMUNICATION ARCHITECTURE 43
FIGURE 12. VIRTUAL REALITY TELEROBOTIC SYSTEM ARCHITECTURE 44
FIGURE 13. VR ROBOT GRIPPER EDGE .. 47
FIGURE 14. VR ROBOT HOME-POSITION ... 48
FIGURE 15. CALIBRATION EXPERIMENT FLOW CHART 50
FIGURE 16. “A255” ROBOT, PLASTIC BAG, PLATFORM AND TEN ELECTRONIC COMPONENTS .. 51
FIGURE 17. LEARNING CURVE EXPERIMENT RESULTS 52

List of Tables

TABLE 1. SUMMARY OF TELEROBOTICS RELATED WORKS 15
TABLE 2. SUMMARY OF HUMAN-ROBOT COLLABORATION RELATED WORKS .. 17
TABLE 3. SUMMARY OF VR RELATED WORKS .. 18
TABLE 4. SUMMARY OF ROBOT LEARNING RELATED WORKS 22
TABLE 5. LEARNING TECHNIQUES ... 23
TABLE 6. SYSTEM OPERATIONAL STAGES .. 28
TABLE 7. BAG SAMPLE EXAMPLE ANALYSIS .. 34

List of Appendices

APPENDIX I: TELEROBOTICS APPLICATIONS .. 62
APPENDIX II: HUMAN-ROBOT COLLABORATION ... 63
APPENDIX III: VIRTUAL REALITY APPLICATIONS ... 64
APPENDIX IV: VIRTUAL SOFTWARE EDITING SYSTEMS 67
APPENDIX V: ROBOT LEARNING ... 70
APPENDIX VI: ART-1 .. 72
APPENDIX VII: SUPPORT VECTOR MACHINES .. 78
APPENDIX VIII: REINFORCEMENT LEARNING ... 85
APPENDIX IX: VR ROBOTIC ENVIRONMENT .. 88
APPENDIX X: OPERATIONAL CONTROL PANELS ... 90
APPENDIX XI: KINEMATICS .. 105
APPENDIX XII: TRANSFORMATION MATRIX .. 109
1 Introduction

Building robotic systems that learn to perform a task has been acknowledged as one of the major challenges facing artificial intelligence [Connell and Mahadevan, 1993]. Self-improving robots can relieve humans from much of the drudgery of programming and potentially allow their operation in unknown and dynamic environments [Connell and Mahadevan, 1993]. Progress towards this goal can contribute to intelligent systems by advancing the understanding of how to successfully integrate disparate abilities such as perception, planning, learning, and action.

Robotics is one of the most challenging applications of machine learning techniques. It is characterized by direct interaction with a real world, sensory feedback and complex control system [Kreuziger, 1992]. Learning should lead to faster or more reliable solution executions or to the ability to solve problems the robot was not able to solve before or to a more simple system. Possible applications of machine learning to robotics are given: 1) World model and elementary (sensor-based) actions [e.g., Kerr and Compton, 2003]: learning of object properties (e.g., geometry), world exploration (e.g., finding objects, determining obstacles), learning of elementary actions in the world (e.g., effects of actions), learning of elementary actions with objects (e.g., manipulation of an object) and learning to recognize / classify states in the internal world model; 2) Sensors [e.g., Harvey et al.]: learning of classifiers for objects based on image data, learning of sensor strategies / plans (e.g., how to monitor an action to ensure the correct execution or how to determine certain states of the real world); 3) Error analysis [e.g., Scheffer and Joachims, 1999]: learning of error recognition, error diagnosis and error repairing rules; 4) Planning [e.g., Theocharous and Mahadevan, 2002]: improvement (speed-up) of planning module (e.g., planning macros, control rules), learning of action rules or plans (i.e., how to solve a sub (task) in principle), learning of couplings between typical task classes and related action plans (e.g., generalized action plan for a set of tasks), learning at the task level (e.g., which geometrical arrangements / action plans satisfy certain functional specifications).

Bhanu et al., 2001, presents the design, implementation and testing of a real-time system using computer vision and machine learning techniques to demonstrate learning in a miniature mobile robot. The miniature robot learns to navigate a maze using several reinforcement learning based algorithms.

Carreras et al., 2002, propose a Neural-Q_learning approach designed for on-line learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot
The environments into which a robot system is placed may have a variety of unfamiliar objects, materials and lighting conditions, making the perceptual and manipulation task difficult without the use of a significant number of domain-dependent techniques. Imaging sensors are widely employed in robot applications due to the large amount of information they supply [Unger and Bajcsy, 1996]. Vision-based grasping and retrieval of objects is an important skill in many tasks [Unger and Bajcsy, 1996]. A robotic system having the ability to perceive pertinent target object features, and the ability to select viable grasp approach for a robotic arm can perform many useful functions [Unger and Bajcsy, 1996]. Possible scenarios for such a system range from the handling of explosive materials in dangerous environments to the assistance to people with physical disabilities in household environments.

Nowadays, robots are moving off factory production lines and into our everyday lives. Unlike stationary and pre-engineered factory buildings, an everyday environment, such as an office, museum, hospital, or home, is an open and dynamic place where robots and humans can co-exist and cooperate. The office robot, Jijo-2 [Asoh et al., 2001], was built as a testbed for autonomous intelligent systems that interact and learn in the real world. Jijo-2’s most notable properties are its communication and learning skills: it can communicate with humans through a sophisticated Japanese spoken-dialogue system, and it navigates by using models that it learns by itself or through human supervision. It achieves the former through a combination of a microphone array, speech recognition module, and dialogue management module. It achieves the latter through statistical learning procedures by which the robot learns landmarks or features of its environment that let it construct useful models for navigation.

Within the context of robots controlled through the web [e.g., Stein, 2000], research has traditionally focused on the global system functionality, including the way of interaction between the user and the robot. Recent results in different robotics areas have demonstrated the potential role of several techniques from pattern recognition and machine learning domains, although very few works specifically addressed on-line robots, where object recognition is directly performed by the user [Sanz and Sánchez, 2003]. Human-robot interaction (HRI) can be defined as the study of humans, robots, and the ways they influence each other. Sheridan notes that one of the challenges for HRI is to provide humans and robots with models of each other [Sheridan, 1997]. In recent years, much effort has focused on developing robots that work directly with humans, as assistants or teammates [Nourbakhsh et al., 1999; Baltus et al., 2000].

Crucial aspects for the human-robot cooperation include simulation, distribution, robot autonomy, behavior descriptions and natural human-machine communication [Heguy et al., 2001]. An experimental environment called EVIPRO (Virtual Environment for Prototyping and Robotic) was
developed allowing the assistance of autonomous robots during the realization of a teleoperation mission [Heguy et al., 2001]. In this project, man-machine cooperation to carry out teleoperated missions in a system using virtual reality and adaptive tools was studied. The goal for the human users and the autonomous robots was to achieve a global task in virtual environment. This project used both technologies: virtual reality and behavior simulation. Thanks to virtual reality, the project could have natural and intuitive interface and to mix different information to increase user perception. Behavior simulation tools were used to help a human user by means of autonomous robots. Affordable commercial simulators, are now available for practicing tasks such as threading flexible endoscopes down a virtual patient’s throat or manipulating long surgical instruments [Sorid and Moore, 2000].

The domain selected in this research for experimental purposes is that of travel or carry bag identification and content extraction. This can be implemented by a system that classifies, grasps, and shakes several kinds of bags. Different bags with interesting shapes are challenging to grasp and to shake. A bag for the purposes of this work is considered as a suspicious package, and when classified correctly, it is manipulated by the robot according to pre-defined shaking parameters (e.g., how high to pick it up, at what speed) that the system has already learned, to empty its contents. In this work, the complex real-world domain of robotic grasping was chosen. The primary goal of the system is to control a 5-axis articulated robotic arm and to successfully learn to classify, grasp and manipulate several kinds of objects in a workplace. The objects considered here for experiments are bags filled with an unknown number of objects. Support vector machines (SVMs) and adaptive resonance theory (ART) will be used and compared here for classification of bags. Support vector machines (SVMs) are powerful classification systems based on regularization techniques with excellent performance in many practical classification problems [Vapnik, 1998; Evgeniou et al., 2000]. ART-1 [Carpenter and Grossberg, 1987] is an unsupervised neural network and its objective is to cluster binary input vectors. The learning process is designed such that that patterns are not necessarily presented in a fixed order and the number of patterns for clustering may be unknown in advance. Both, the ART-1 the SVMs inferences will serve as an input to reinforcement learning (RL) algorithm for finding the optimal policy. A policy is defined as learning the best action for a given state. The system learns this policy from experience and human guidance. A policy is found to be beneficial if a bag was grabbed successfully and all its contents have been extracted.

In comparison with other similar on-line VR human-robot collaborative systems, the above proposed issues are innovative in such a way that in the system, the requirement for HO intervention decreases as the system learns to adapt to new states. In many current systems, human-robot collaboration exists, but with limited adaptive learning capabilities. In addition, using VR as an interface is very significant in assisting the HO to interact and offer off-line solutions. VR also facilitates human-
robot interaction, and allows off-line learning. Differently from other similar systems exist in the literature, the HO can collaborate with the robot in such a way that he can affect and change parameters in the ART, SVM and in the RL algorithms on-line through the VR interface (e.g., in all the learning-based robot systems found in the literature, the RL parameters are determined a priori and cannot be changed on-line).

For evaluating the learned strategies, performance measures will be developed. The performance measures are: 1) classification accuracy; 2) whether a bag was grabbed successfully or not; 3) quality - how empty the bag is; 4) time to completely empty the contents of a bag and 5) abort task rate.

2 The research

2.1 Research objectives

The fundamental research objective of this work is to develop a cooperative human-robot learning system for remote robotic operations using a virtual reality (VR) interface. The main objective is to implement an intelligent system for recognition and classification of bag shaking learning algorithms through a VR interface. Specific objectives are to:

1) Perform classification of bags and system states (robot, environment). Classification will be learning-based and automatically when possible and designed to remain adaptive in response to significant events, and yet remain stable in response to irrelevant events.
2) Develop vision-based machine-learning algorithms to carry out the task for subsequent automated or semi-automated operations.
3) Evaluate the learned strategies.

2.2 Research significance

Millions of people fly every day. If a terrorist attempts to blow up or hijack a plane, all of the different techniques he might use to get a bomb into position must be considered (e.g., plant a bomb in an unsuspecting passenger’s luggage or smuggle a bomb in his luggage etc.). In current inspection systems, such as X-ray machines or computerized tomography (CT) scanners, human intervention is required. In non of them learning and adaptiveness occur over time. There are many tasks that unmanned systems could accomplish more readily than humans, and both civilian and military communities are now developing robotic systems to the point that they have sufficient autonomy to replace humans in dangerous tasks, augment human capabilities for synergistic effects, and perform laborious and repetitious duties [Board on Army Science and Technology, 2002]. However, development of a full autonomous system is expensive and complicated. Instead, some activities might
be performed easily by a human operator (HO) and save development and implementation of complicated and time-consuming algorithms.

This research will investigate whether learning should occur on-line while accomplishing a task in the real world or off-line in a simulated virtual reality (VR) environment. The ability to adapt on-line may be crucial to help the robot deal with unforeseen situations. For time-critical tasks such as of emptying the contents of a bag that has suspicious objects (perhaps of a chemical or radiological nature), a robot may not have much time to learn new strategies, so the system must begin the learning process off-line, where early development can be constrained safely and efficiently. Both adaptive resonance theory (ART) and support vector machines (SVMs) are learning techniques that will use reinforcement learning (RL) constantly and update the system. Supervisory human intervention is required for updating the learning algorithms for better system performance. By developing a cooperative human-robotic system that learns through a VR interface, the system can be simplified and achieve improved performance.

2.3 Expected contributions and innovations

The contributions and innovations of this research are as follows:

Incorporating learning using human operator (HO) supervisory and intervention differs from previous works in this field in a way that human-robot collaboration becomes unnecessary as long as the system adapts to new states and unexpected events. In general, even with advances in autonomy, it is found that robots are more adept at making some decisions by themselves than others. For example, structured planning (for which well-defined processes or algorithms exist) has proven to be quite amenable to automation. Unstructured decision making, however, remains the domain of humans, especially when common sense is required [Clarke, 1994]. It seems clear, therefore, that there are benefits to be gained if humans and robots work together [Fong et al., 2002]. In particular, if a robot is not treated as a tool, but rather as a partner, by incorporating learning, the system continuously improves.

This research proposes the design of a robotic system that is based on these theses. The result will be a system that accepts and makes use of human input in a variety of forms. In addition, a system of efficient and automated bag shaking provides obvious contributions to today problems of security.

Differently from other learning robotic systems found in literature which use learning algorithms in the fields of adaptive resonance theory (ART), support vector machines (SVMs) and reinforcement learning (RL) separately, the proposed system suggests developing of learning algorithms that combine the methods resulting in a more robust system. This is done by: 1) developing a methodology of
presenting the inputs arriving from the environment faster and with lower data consumption using image processing methods; 2) allow the system to decide whether to use image processing methods when no learning is required (e.g., finding possible grasping points for bags with a handle do not require learning due to their unique image structure, as described in section 4.4.1) or acquire learning; 3) improving the system accuracy by comparing and choosing an on-line learning (ART) or an off-line learning (SVMs) method based on recognition accuracy; 4) increasing the system learning performance by human intervention and 5) using virtual reality (VR) interface for human-robot collaboration in such a way that the HO can affect and change on-line parameters in the ART, SVM and in the RL algorithms.

3 Scientific background

3.1 Telerobotics

A telerobot is defined as a robot controlled at a distance by a human operator (HO) [Durlach and Mavor, 1995]. [Sheridan, 1992] makes a better distinction, which depends on whether all robot movements are continuously controlled by the HO (manually controlled teleoperator), or whether the robot has partial autonomy (telerobot and supervisory control). By this definition, the human interface to a telerobot is distinct and not part of it. Telerobotic devices are typically developed for situations or environments that are too dangerous, uncomfortable, limiting, repetitive, or costly for humans to perform. Some applications include: underwater [e.g., Hsu et al., 1999]: inspection, maintenance, construction, mining, exploration, search and recovery, science, surveying; space [e.g., Hirzinger et al., 1993]: assembly, maintenance, exploration, manufacturing, science; resource industry [e.g., Goldenberg et al., 1995]: forestry, farming, mining, power line maintenance; medical [e.g., Kwon et al., 1999; Sorid and Moore, 2000]: patient transport, disability aids, surgery, monitoring, remote treatment.

Telerobots may be remotely controlled manipulators or vehicles. The distinction between robots and telerobots is fuzzy and a matter of degree [Durlach and Mavor, 1995]. Although the hardware is the same or similar, robots require less human involvement for instruction and guidance as compared to telerobots. There is a continuum of human involvement, from direct control of every aspect of motion, to shared or traded control, to nearly complete robot autonomy, but yet, robots are considered poor when adaptation and intelligence are required. They do not match the human sensory abilities of vision, audition, and touch, human motor abilities in manipulation and locomotion, or even the human physical body in terms of compact and powerful musculature portable source. Hence, intensive research in robotics has been conducted in the area of telerobotics. Nevertheless, the long-term goal of robotics is to produce highly autonomous systems that overcome difficult problems in design, control, and planning. There are also unique problems in telerobotic control, dealing with the combination of master, slave, and
HO [Cao et al., 1995]. Even if each individual component is stable in isolation, when hooked together they may be unstable. Furthermore, the human represents a complex mechanical and dynamic system that must be considered. More generally, telerobots are representative of man-machine systems that must have sufficient sensory and reactive capability to successfully translate and interact within their environment. In the future, educators and experimental scientists will be able to work with remote colonies of taskable machines via “remote science” paradigm that allows: 1) multiple users in different locations to share collaboratively a single physical resource; 2) enhanced productivity through reduced travel-time, enabling one experimenter to participate in multiple and geographically distributed experiments.

Interface design has a significant effect on the way people operate a robot [Preece et al., 1994]. This is born out by differences in operator habits between various operator interfaces. This is consistent with interface design-theory where there are some general principles that should be followed [Preece et al., 1994].

One of the difficulties associated with teleoperation is that the HO is remote from the robot; therefore the feedback data may be insufficient for correcting control decisions. Hence, a telerobot is described as a form of teleoperation in which a HO acts as a supervisor, intermittently communicating to a computer information about goals, constraints, plans, assumptions, suggestions and orders relative to a limited task, getting back information about accomplishments, difficulties, concerns, and as requested, raw sensory data - while the subordinate robot executes the task based on information received from the HO plus its own artificial sensing and intelligence [Earnshaw et al., 1994].

Several works related to telerobotics are summarized in Table 1 with detailed description in Appendix I.

<table>
<thead>
<tr>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescience</td>
<td>Backs et al., 1998</td>
</tr>
<tr>
<td>Mercury project</td>
<td>Goldberg et al., 1995</td>
</tr>
<tr>
<td>Telegarden</td>
<td>Goldberg and Santarromana, 1997</td>
</tr>
<tr>
<td>Forestry</td>
<td>Goldenberg et al., 1995</td>
</tr>
<tr>
<td>Space</td>
<td>Hirzinger et al., 1993</td>
</tr>
<tr>
<td>Underwater Vehicle</td>
<td>Hsu et al., 1999</td>
</tr>
<tr>
<td>WWW telerobot</td>
<td>http://www.telerobot.mech.uwa.edu.au/</td>
</tr>
<tr>
<td>Medical</td>
<td>Kwon et al., 1999; Sorid and Moore, 2000</td>
</tr>
<tr>
<td>KhepOnTheWeb</td>
<td>Saucy and Mondada, 1997</td>
</tr>
<tr>
<td>PumaPaint project</td>
<td>Stein, 2000</td>
</tr>
</tbody>
</table>

A robot is commonly viewed as a tool: a device that performs tasks on command [Fong et al., 2002]. As such, a robot has limited freedom and will perform poorly whenever it is ill-suited for the task at hand. Moreover, if a robot has a problem, it has no way to ask for assistance. Yet, frequently, the only
thing a robot needs to work better is some advice from a human. In order for robots to perform better, therefore, they need to be able to take advantage of human skills (e.g., perception, cognition, etc.) and to benefit from human advice and expertise. To do this, robots need to function not as passive tools, but rather as active partners. They need to have more freedom of action, to be able to drive the interaction with humans, instead of merely waiting for human commands. To address this need, Fong et al., 2002, developed a system model for teleoperation called collaborative control. In this model, a human and a robot work as partners, collaborating to perform tasks and to achieve common goals. Instead of a supervisor dictating to a subordinate, the human and the robot engage in dialogue to exchange ideas, to ask questions, and to resolve differences.

Autonomous robotic agents are aimed to build physical systems that can accomplish useful tasks without human intervention operating in unmodified real-world environments (i.e., in environments that have not been specifically engineered for the agent). To accomplish a given task, an agent collects or receives sensory information concerning its external environment and takes actions within the dynamically changing environment. However, the control rules are often dictated by HOs, although ideally the agent should automatically perform the tasks without assistance. Consequently the agent must be able to perceive the environment, make decisions, represent sensed data, acquire knowledge, and infer rules concerning the environment. Agents that can acquire and usefully apply knowledge or skill are often called intelligent, these agents receive a task from a HO and must accomplish the task in the available workspace [Fukuda and Kubota, 1999].

For telerobotic control, decision making can be performed by a combination of knowledge based autonomous procedures, sensor based autonomous procedures and HO procedures. In unstructured environments, expert systems and rule-based systems are restricted to infer only within the domain of limited knowledge of the world. This knowledge is either not available, or its development expense is not justifiable for specific tasks. Sensor based autonomy in telerobotic systems is feasible only for low levels of control such as collision avoidance, and tracking of known objects. On the other hand, humans can easily adapt to unpredictability task environments due to their superior intelligence and perceptual abilities. Such an advantage, of using a HO to make decisions makes a direct manual control of robot by the operator a viable option [Rastogi et al., 1995].

Several works related to human-robot collaboration are summarized in Table 2 with detailed description in Appendix II.
Table 2. Summary of human-robot collaboration related works

<table>
<thead>
<tr>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jijo-2 - Office robot</td>
<td>Asoh et al., 2001</td>
</tr>
<tr>
<td>Collaborative Control</td>
<td>Fong et al., 2002</td>
</tr>
<tr>
<td>Error recovery - KAMRO</td>
<td>Längle et al., 1996</td>
</tr>
</tbody>
</table>

3.2 Virtual Reality

Virtual reality (VR) is a high-end human-computer interface allowing user interaction with simulated environments in real-time and through multiple sensorial channels [Burdea and Coiffet, 1994]. Such sensorial communication with the simulation is done through vision, sound, touch, even smell and taste. Due to this increased interaction, the user feels immersed in the simulation, and can perform tasks that are otherwise impossible in the real world [Burdea, 1999]. VR is more than just interacting with 3D worlds. By offering presence simulation to users as an interface metaphor, it allows operators to perform tasks on remote real worlds, computer-generated worlds or any combination of both [Balaguer and Mangili, 1991]. Hostile environments such as damaged nuclear power plants make it difficult or impossible for human beings to perform maintenance tasks. Telepresence aims to simulate the presence of an operator in a remote environment to supervise the functioning of the remote platform and perform tasks controlling remote robots.

There is a little doubt that the field of virtual environments (VEs) has grown to include the creation, storage, and manipulation of models and images of virtual objects. These models are derived from a variety of scientific and engineering fields, and include physical, mathematical, engineering and architectural [Kalawsky, 1993]. Because of the need to develop new technologies that allow human operator (HO) to become immersed and interact with virtual worlds, developers of these systems must be multidisciplinary in their approach.

Yet the real environment aspect of telerobotics distinguishes it from VEs to some extent [Durlach and Mavor, 1995]. Telerobots must interact in complex, unstructured, physics-constrained environments; deal with incomplete, distorted, and noisy sensor data, including limited views, and expend energy, which may limit action [Durlach and Mavor, 1995]. Some of the corresponding features of VEs are form, complexity, and physics of environments are completely controllable; interactions based on physical models must be computed; virtual sensors can have an omniscient view and need not deal with noise and distortions; the ability to move within an environment and perform tasks is not energy limited. Despite such simplifications, VEs play an important role in telerobotic supervisory control. A large part of the supervisor’s task is planning, and the use of computer-based models has a potential critical role. The VE is deemed an obvious and effective way to simulate and render
hypothetical environments to pose “what would happen if” questions, run the experiment, and observe the consequences [Durlach and Mavor, 1995].

Sheridan, 1992, has identified operator depth perception of teleoperators and task objects to be a major contributing factor in manipulation performance decrements, as compared to direct operation (hands-on) [Durlach and Mavor, 1995]. These decrements manifest themselves in the form of increased task completion times and errors including missing or damaging objects with the manipulator. Depth perception errors often occur because of obstructed camera views (e.g., robot arm in-the-line-of-sight of a peg) displayed to the operator. Such errors cannot be afforded in most nuclear applications because of the volatility of materials being handled and prolonged exposure of system electronics to radiation.

Several works related to VR are summarized in Table 3 with detailed description in Appendix III. A comprehensive review of virtual software editing systems is described in Appendix IV.

<table>
<thead>
<tr>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>http://www.usuhs.mil/; Sorid and Moore, 2000</td>
</tr>
<tr>
<td>Distributed VE</td>
<td>Macedonia and Zyda, 1997</td>
</tr>
<tr>
<td>Autonomous agents in VEs</td>
<td>Ziemke, 1998</td>
</tr>
</tbody>
</table>

3.3 Robot learning

Learning approaches aim to give agents a certain degree of autonomy by providing them with some capacity for learning that allows them to acquire and adapt their behavior, at least to some extent, on their own. Prominent among these are 1) neural networks (NNs) approaches to self-learning [Ziemke, 1998] and 2) evolutionary learning techniques based on adaptation at the population level, inspired by the mechanisms of natural selection [Ziemke, 1998]. The challenge for learning approaches is to design an appropriate learning mechanism, that allows agents the acquisition of complex and adaptive behavior [Ziemke, 1998], i.e., to solve problems such as 1) how to acquire and adapt particular behaviors (e.g., obstacle avoidance) and 2) how to coordinate and structure the control of a possibly large number of these specific behaviors, some of which exclude each other and some of which have to be integrated (e.g., goal finding) at least partly, themselves [Ziemke, 1998].

A major advantage of the NN approach in the context of autonomous agents is that it incorporates mechanisms for learning behaviors which, often in combination with reinforcement learning (RL) techniques (learning from rewards and punishments), allows a bottom-up development of integrated control strategies [Meeden, 1996]. Although the use of NN self-learning techniques allows autonomy, it has to be noted that there are a number of problems arising from the fact that the most
powerful NN learning techniques are supervised or RL techniques [Ziemke, 1998]. During supervised learning NN has to be supplied with the correct target output in every time step, namely that a sufficiently accurate model of the control task has to be available beforehand. During RL, NN typically only receives occasional feedback in terms of “good” or “bad”. This has the advantage that no longer a detailed model of what exactly to do in every situation is required. Instead, more abstract information has to be available about negative situations (e.g., robot hitting an obstacle) and positive ones (e.g., robot reaching a goal). This abstract feedback is, of course, easier to provide than detailed supervision, nevertheless there are problems: 1) reinforcement is typically given in abstract terms (“good” or “bad”) whereas most NN learning algorithms require precise error measurements. There are, however, approaches addressing this problem, as the complementary reinforcement backpropagation algorithm [Ackley and Littman, 1990]; 2) NNs typically learn from feedback in every time step. For complex tasks, however, reinforcement often is not available until, for example, a goal is achieved, i.e., typically after a possibly long sequence of actions. These problems, especially the latter one, are not NN-specific but have to be faced by any self-learning agent when learning from interaction with an environment.

Three-layer neural networks are universal classifiers in that they can classify any labeled data correctly if there are no identical data in different classes [Young and Downs, 1998; Abe, 2001]. In training multilayer neural network classifiers, usually, network weights are corrected so that the sum of squared errors between the network outputs and the desired outputs is minimized. But since the decision boundaries between classes acquired by training are not directly determined, classification performance for the unknown data, i.e., the generalization ability, depends on the training method. And it degrades greatly when the number of training data is small and the overlap among classes is scarce or nonexistent [Shigeo, 2001].

Evolutionary learning techniques are inspired by the mechanisms of natural selection [Holland, 1975]. Evolutionary algorithms typically start from a randomly initialized population of individuals encoded as strings of bits or real numbers. Each individual usually represents a possible solution to the problem at hand. A number of researchers [e.g., Meeden, 1996; Floreano and Mondada, 1996; Nolfi, 1997] have used evolutionary algorithms to evolve NN connection weights. Comparisons to the results achieved with conventional NN learning showed that evolutionary algorithms can find suitable solutions reliably in cases where no sufficient reinforcement model or only delayed reinforcement is available [Ziemke, 1998], e.g., if the robot only gets rewarded once for reaching a goal location after a possibly large number of steps. This is due to the fact that evolutionary algorithms do not require step-by-step supervision or reinforcement, since they are not based on self-learning individuals. Instead they typically give a once-in-a-lifetime reinforcement by letting individuals reproduce according to their fitness, which in Meeden’s, 1996, case was evaluated by counting achieved goals and errors made for each individual
during a test run. Thus, evolutionary algorithms typically evolve a large number of individuals, each representing a possible solution, over an even larger number of generations. The problem with this type of learning in an autonomous agent is that in an individual physical agent or robot, the evolution and evaluation of such a large number is often not feasible due to real-time and memory restrictions. Inspired by the variety of adaptive mechanisms in natural systems, a number of researchers have suggested the combination of different adaptation techniques [e.g., Vaario and Ohsuga, 1997]. Combinations of evolutionary adaptation with self-learning techniques have also received attention [e.g., Nolfi and Parisi, 1997].

On the other hand, in training support vector machines (SVMs) the decision boundaries are determined directly from the training data so that the separating margin of decision boundaries is maximized in the high dimensional space called feature space [Vapnik, 1995, 1998]. This learning strategy, based on statistical learning theory developed by [Vapnik, 1995, 1998], minimizes the classification errors of the training data and the unknown data. Therefore, the generalization abilities of SVMs and other classifiers differ significantly especially when the number of training data is small [Vapnik, 1995, 1998]. This means that if some mechanism to maximize the margin of decision boundaries is introduced to non-SVM type classifiers, their performance degradation will be prevented when the class overlap is scarce or non-existent. In SVMs, the n-class classification problem is converted into n-two-class problems, and in the i^{th} two-class problem the optimal decision function that separates class i^{th} from the remaining classes is determined. In classification, if one of the n decision functions classifies an unknown datum into a definite class, it is classified into that class. In this formulation, if more than one decision function classify a datum into definite classes, or no decision functions classify the datum into a definite class, the datum is unclassifiable. Another problem of SVMs is slow training. Since SVMs are trained by solving a quadratic programming problem with the number of variables equal to the number of training data, training is slow for a large number of training data.

Say it is desired to categorize the vectors within a certain input environment using a neural network. However, as the input environment changes in time, the accuracy of the network will rapidly decrease because the weights are fixed, thus preventing it from adapting to the changing environment. This algorithm is not plastic [Heins and Tauritz, 1995]. An algorithm is plastic if it retains the potential to adapt to new input vectors indefinitely [Heins and Tauritz, 1995]. To overcome this problem the network can be retrained on the new input vector. The network will adapt to any changes in the input environment (remain plastic) but this will cause a rapid decrease in the accuracy with which it categorizes the old input vectors because old information is lost. This algorithm is not stable [Heins and Tauritz, 1995]. An algorithm is stable if it preserves previously learned knowledge. This conflict
between stability and plasticity is called the stability-plasticity dilemma [Carpenter et al., 1987]. The problem can be posed as follows: 1) how can a learning system be designed to remain plastic, or adaptive, in response to significant events and yet remain stable in response to irrelevant events? 2) how does the system know how to switch between its stable and its plastic modes to achieve stability without rigidity and plasticity without chaos? 3) in particular, how can it preserve its previously learned knowledge while continuing to learn new things? and 4) what prevents the new learning from washing away the memories of prior learning? Adaptive resonance theory (ART) was specifically designed to overcome the stability-plasticity dilemma [Grossberg, 1976]. The ART-1 neural network was designed to overcome this dilemma for binary input vectors [Carpenter and Grossberg, 1987], ART-2 for continuous ones as well [Carpenter and Grossberg, 1987]. Other adaptations include ART-3 [Carpenter and Grossberg, 1990], ART-2a [Carpenter et al., 1991], ARTMAP [Carpenter et al., 1991], Fuzzy ART [Carpenter et al., 1991] and Fuzzy ARTMAP [Carpenter et al., 1992].

When interacting with an object, the possible choices of grasping and manipulation operations are often limited by pick and place constraints [Wheeler et al., 2002]. Traditional planning methods are analytical in nature and require geometric models of parts, fixtures, and motions to identify and satisfy the constraints [Wheeler et al., 2002]. These methods can easily become computationally expensive and are often brittle under model or sensory uncertainty [Wheeler et al., 2002]. In contrast, infants do not construct complete models of the objects that they manipulate, but instead appear to incrementally construct models that are based on interaction with the objects themselves. Wheeler et al., 2002, propose that robotic pick and place operations can be formulated as prospective behavior and that an intelligent agent can use interaction with the environment to learn strategies which accommodate the constraints based on expected future success. They present experiments demonstrating this technique, and compare the strategies utilized by the agent to the behaviors observed in young children when presented with a similar task. They also hypothesize that human infants use exploration based learning to search for actions that will yield future reward, and that this process works in concert with the identification of features which discriminate important interaction contexts. In this context, they propose a control structure for acquiring increasingly representations and control knowledge incrementally. Within this framework, they suggest that a robot can use RL [Sutton and Barto, 1998] to write its own programs for grasping and manipulation tasks that depend on models of manual interaction at many temporal scales. The robot learns to associate visual and haptic features with grasp goals through interactions with the task.

Several works related to robot learning are summarized in Table 4 with detailed description in Appendix V.
There currently seem to be five popular classes of techniques or mathematical methods in robot learning: 1) neural method; 2) evolutionary method; 3) reinforcement learning method; 4) probabilistic method and 5) support vector machines method. There have been significant advances in several of the underlying technologies, *e.g.*, support vector machines [Cristianini and Shawe-Taylor, 2000]; improved links between reinforcement learning and stochastic control theory [Bertsekas and Tsitsiklis, 1996]; advances in planning and learning methods for stochastic environments [Littman, 1996; Parr, 1998]; and improved theoretical models of simple genetic algorithms [Vose, 1999]. Major types of learning techniques are summarized in Table 5 [Zimmerman and Kambhampati, 2001; Nordlander, 2001].

Table 4. Summary of robot learning related works

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidden Markov models</td>
<td>Mobile Rover</td>
<td>Aycard and Washington, 2000</td>
</tr>
<tr>
<td>SVM+NN</td>
<td>Text categorization</td>
<td>Basu et al., 2003</td>
</tr>
<tr>
<td>Reinforcement learning</td>
<td>Mobile robotics</td>
<td>Bhanu et al., 2001</td>
</tr>
<tr>
<td>Reinforcement learning and neural networks</td>
<td>Underwater robotics</td>
<td>Carreras et al., 2002</td>
</tr>
<tr>
<td>Self-supervised Learning</td>
<td>Robot grasping and self calibration</td>
<td>Graefe, 1995; Nguyen, 1997</td>
</tr>
<tr>
<td>SVM</td>
<td>Face recognition</td>
<td>Heisele et al., 2001; Moghaddam and Yang, 2001; Kim and Kim, 2002</td>
</tr>
<tr>
<td>Evolutionary</td>
<td>“Toybots”</td>
<td>Lund and Pagliarini, 2000</td>
</tr>
<tr>
<td>NN</td>
<td>Mobile robotics</td>
<td>Nolfi and Parisi, 1997</td>
</tr>
<tr>
<td>Reinforcement learning and neural networks</td>
<td>Robotic soccer</td>
<td>Scárdua et al., 2000</td>
</tr>
<tr>
<td>Reinforcement learning</td>
<td>Robot pick and place operations</td>
<td>Wheeler et al., 2002</td>
</tr>
<tr>
<td>Learning Technique Approach</td>
<td>Models*</td>
<td>Strengths</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Artificial Neural Networks</td>
<td>Discrete, real and vector-valued functions.</td>
<td>Robust to noisy, complex data and errors in data. Very flexible in types of hypotheses they can represent. Bears some resemblance to a very small human brain. Can adapt to new data with labels. Do not have to fulfil any statistical assumptions, and are generally better at handling large amounts of data with many variables. Fast.</td>
</tr>
<tr>
<td>Evolutionary</td>
<td>Uses mutations to evolve populations.</td>
<td>Useful method of optimization when other techniques are not possible.</td>
</tr>
<tr>
<td>Probabilistic</td>
<td>Probabilistic inference, hypothesis that makes probabilistic predictions.</td>
<td>Readily combine prior knowledge with observed data, modifies hypothesis probability incrementally based on each training example.</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>Control policy to maximize rewards.</td>
<td>Can model actions with non-deterministic outcomes, can learn optimal policy from non-optimal training sets, and facilitates lifelong learning.</td>
</tr>
</tbody>
</table>

* The column headed “Models” refers to the type of function or structure that the method was designed to represent or process. A method chosen to learn a particular function is not well suited if it is either incapable of expressing the function or is inherently much more expressive than required. This choice of representation involves a crucial tradeoff.
4 Research methodology

4.1 Problem definition and notation

Notation

Let R be a robot, O an object, and E an environment. This will define the system represented by $\Sigma = [R, O, E]$. Let F be a set of features or patterns representing the physical state of Σ. Let ψ be a mapping from Σ to F. T is a task performed on O, using R, within the environment E to meet a goal G. The performance of the task T is a function of a set actions, A, for each physical state of Σ. The state of the system represented by F will be denoted as S. Let a policy P be a set of state-action pairs, ${S, A}$. Let the performance measure be $Z(F, P)$.

Goal

The goal, G, is to classify a bag correctly, grab it successfully and empty its contents on a collection container in minimum time.

Task

The task, T, is to observe the position of an unknown bag (e.g., plastic bag, briefcase, backpack, or suitcase) located on a platform, grasp it with a robot manipulator and shake out its contents on a table or into a nearby container. It is assumed that all clasps, zippers and locks have already been opened. Another possible option is to combine both actions of gradually dragging and raising of a bag without the need to shake it. The system starts with no knowledge about classifications of bags. New bag types are adaptively learned over time. It has no a-priori knowledge regarding to efficient grasping and shaking policies. The system learns this knowledge from experience and from human guidance.

System

Robot

The “A255” robot, R, manufactured by “CRS Robotics” is an articulated robotic arm, with five degrees of freedom (X, Y, Z, and orientation, Pitch, and Roll). The “A255” robot system consists of a robot arm and controller, which runs “RAPL-II” operating software.

Object

The system will contain different types of bags (examples - Figure 1). Different geometrical attributes will be defined for each bag, O (section 4.4.1). The conclusion about the identity of O, can take these terms: {plastic bag, briefcase, backpack, suitcase, not recognized, new type}.

Environment

The robotic environment, E, contains a platform on which the inspected bag is manipulated, light sources, and extraneous objects such as undesirable human hand.
Figure 1. Different kinds of bags

Features
Let F be a set of features or patterns representing the state of \sum. F may include bag classifications, robot position and orientation and environmental conditions.

Mapping
Let ψ be visual mapping function which obtains visual image I taken of $\sum = [R, O, E]$ and extracts a set of representative features of I denoted as F.

Actions
Actions, A, are command instructions such as grasping, shaking, etc.

Policy
Carrying out the task involves a policy P. Given F of $\sum = [R, O, E]$, a policy $P = \{(F, A)\}$ is a set of state-action pairs.
4.2 Performance measures

The performance measures, \(Z(F, P) \), include (Table 6 in section 4.3.2):

1) Classification accuracy.
2) Whether a bag was grabbed successfully or not.
3) Quality - how empty the bag is.
4) Time to completely empty the contents of a bag.
5) Abort task rate.

4.3 Methodology

4.3.1 System architecture

The system architecture (Figure 2) consists of state-action classifiers that receive inputs from a vision system, a robotic system and a virtual reality (VR) interface.

When the state-action classifiers have little or no knowledge about how to proceed on a task, they can try to obtain that knowledge through advice from the human operator (HO). This is done by human-robot collaboration in such a way that the HO can affect and change parameters in the learning algorithms on-line through the VR interface (e.g., by changing the learning rate of the reinforcement learning (RL) algorithm, suggesting new actions such as shaking plans, intervene in case of misclassification).
In the proposed system, the search space in which to discover a successful solution may be quite large. To make this search tractable, the system should accept advice from the HO through its search. This requires the ability to identify when knowledge is needed as well as to provide the necessary problem-solving context for the HO so that supplying the knowledge is easy. It must also be possible for the system to proceed without advice when the HO is unavailable. If guidance is available, the system will utilize its own strategies together with advice to quickly construct a solution.

In the proposed machine learning framework, two learning classification methods will be used and compared: 1) On-line adaptive resonance theory (ART) and 2) Off-line support vector machines (SVMs). The methods will be tested separately and independently from each other (one can treat it as two “Human-Robot Collaborative Learning systems”).
4.3.2 System flow and operational stages

The system operational stages has multiple stages summarized in Table 6.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Success</th>
<th>Failure</th>
<th>Human Intervention</th>
<th>Performance Measure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Determine the state of the system ((F)) using visual and possibly tactile sensors. This may involve positioning a robot onboard camera (“hand-in-eye”) to view the object position and the surrounding environment. It may also involve touching the object with a tactile sensor to assess its composition (soft cloth, plastic, hard plastic, etc.). Classification is performed by image processing combined with one of the following: adaptive resonance theory (ART) or support vector machines (SVMs).</td>
<td>A bag was classified correctly.</td>
<td>Required for avoiding the object repositioning stage.</td>
<td>Required for setup - put manually various bags on the robot workspace. If failure occurs, HO gives correct classification.</td>
<td>Classification accuracy.</td>
</tr>
<tr>
<td>Grasping</td>
<td>The robot grasps the object.</td>
<td>A bag was grasped successfully.</td>
<td>If a bag was not grasped at all.</td>
<td>HO gives a correct set of possible grasping points.</td>
<td>Whether a bag was grasped successfully or not.</td>
</tr>
<tr>
<td>Object Repositioning</td>
<td>Re-arranging the position of the object to prepare it for easier grasping.</td>
<td>A bag was grasped successfully.</td>
<td>If a bag was not grasped at all.</td>
<td>HO repeats this stage until the object is grasped successfully.</td>
<td>Whether a bag was grasped successfully or not.</td>
</tr>
<tr>
<td>Lift and shake</td>
<td>The robot lifts the object above the table or above a collection container and shakes out its contents.</td>
<td>Always successful.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verification</td>
<td>The system tries to verify if all the contents have been extracted.</td>
<td>1) If the number of items fell from a bag is less than a predetermined threshold for a shaking policy. 2) Time to empty the contents is too slow. 3) Abort task rate is too high.</td>
<td>1) Not enough items fell out. 2) Time to empty the contents is too slow. 3) Abort task rate is too high.</td>
<td>1) Suggest new grasping points through VR interface. 2) Suggest new lifting and shaking policies through VR interface.</td>
<td>1) Quality - how empty the bag is. 2) Time to completely empty the contents of a bag. 3) Abort task rate.</td>
</tr>
</tbody>
</table>
The system flow diagram is shown in Figure 3.
The below procedure summarizes the system flow. That includes whether using a learning method (adaptive resonance theory (ART) or support vector machines (SVMs)) or just use image processing methods. The reinforcement learning (RL) is also described and is inseparable of whether there is learning or not.

For each bag presented to the system, perform as follows:

1) Image processing:
 a) Identify the existence of a handle (look at section 4.4.1 for more details).
 i) If handle identified, find whether its location is symmetric with the bag.
 b) Find the seven parameters vector that represent a bag (after removing handle using image processing operations) described in section 4.4.1.

2) Learning algorithm:
 a) If a handle was identified and symmetric with the bag:
 Find the opening of the bag and a set, \(S_{gp} \), of possible grasping points using image processing methods (it is assumed that points that are far from the opening are better than those that are near).
 b) If a handle was not identified or if it was identified, but its location is not symmetric with the bag (that means that possible grasping points will be found to be wrong) do one of both:
 i) Feed an ART neural network on-line with a binary vector representing the bag (details in section 4.4.2) the seven parameters vector found in 1(b) to classify the bag into categories, \(C_b : \{\text{briefcase}, \text{suitcase}, \text{plastic bag}, \text{new type}, \ldots\} \).
 ii) Feed SVM off-line with the seven parameters vector found in 1(b) (details in section 4.4.3) to classify the bag into categories, \(C_b : \{\text{briefcase}, \text{suitcase}, \text{plastic bag}, \ldots\} \).
 c) For a bag category found in 2(b) and in which no possible grasping points were found due to image processing methods, determine manually an area of possible grasping points, \(S_{gp} \).
 d) Attach \(S_{gp} \) to \(C_b \).
 e) Use reinforcement learning (e.g., Q-learning): Based on a learning function that contains Q-values and system performance measures described in section 4.2, an optimal policy that includes a starting grasping point, lift and shake parameters will be determined. It is noted that manual repositioning might be necessary for re-grasping the bag. Further details are in section 4.4.4.

4.4 Procedures

The objective is to implement an intelligent system for recognition and classification of bag shaking learning algorithms through a virtual reality (VR) interface. Three methods will be applied: 1) adaptive resonance theory; 2) support vector machines and 3) reinforcement learning. The first two will serve as input module to the reinforcement learning algorithm which will be used for finding the best
actions (e.g., determining the optimal grasping point followed by a lift and shake trajectory) for a given state.

4.4.1 Image processing

Processing starts with a grabbed 24-bit color image of a scene. Various image processing operations are used; conversion to gray-scale, removal of noise from the image due to optical distortions of the lens, adaptation to ambient and external lighting conditions, and segmentation of the bag from the background. \(S = \{ S_R, S_o, S_E \} \) is defined as the state of the system, where \(S_R \) is the state of the robot, \(S_o \) is the state of the bag and \(S_E \) is the state of the environment (details in section 4.1). For segmenting a bag, the robot should be at the home position state and no obstructions such as unknown objects (e.g., human hand) and bad lighting conditions (e.g., extreme darkness) should exist in the scene. The end result is an image of segmented bag from which features are extracted. For each bag, the existence of a handle will be determined (based on finding the image contour and its associative euler number). If a handle exists, two intersection coordinates (or more, if handle is folded several times) between the handle and the bag will be found (based on neighboring pixels operations). According to the intersections found, a recommendation of a set of grasping points will be determined (points exist far from the handle are better than those which are near) and will be serve as an input to a reinforcement learning (RL) algorithm that will be described in section 4.4.4.

The next stage will be to separate the bag from its handle (if it exists) using a sequence of erode and dilate operations (example - Figure 4).

![Figure 4. Separating handle from bag example](image)

Each bag (without its handle) will be assigned a vector that consists of seven geometrical attributes: 1) Area - actual number of pixels in the region; 2) Centroid - coordinates of the center of mass of the region; 3) Bounding box - the smallest rectangle that can contain the region; 4) Major axis length - the length of the major axis of the ellipse that has the same second-moments as the region; 5) Minor
axis length - the length of the minor axis of the ellipse that has the same second-moments as the region; 6) Eccentricity - the eccentricity of the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the distance between the foci of the ellipse and its major axis length and 7) Orientation - the angle between the x-axis and the major axis of the ellipse that has the same second-moments as the region.

4.4.2 Adaptive resonance theory

The ART-1 unsupervised neural network will be used for clustering binary input vectors (details are in Appendix VI). Figure 5 describes the inputs and outputs of the ART-1 classification methodology. Bag image evoked into an image processing module which its output represents a binary vector (pattern) as described later in this section. The image features produced by the image processing will serve as an input to an ART-1 module. The output will be a classification to bag categories (e.g., plastic bag, briefcase, backpack, suitcase, not recognized, new type).

![ART-1 architecture methodology](image)

In the proposed algorithm, each bag image captured will be presented as a binary vector that will serve as input to an ART-1 neural network. The proposed methodology suggests to represent the bag images in such a way, to avoid the disadvantages of using of the ART-2 network (Appendix VI) on one hand, and using the ART-1 network and its advantages on the other hand. Image processing operations such as background separation, black and white transformations, centroid finding and partitioning to regions are shown in Figure 6 for a sample bag image.
As can be seen, the sample image was divided into 14 portions (a different number can also be chosen), starting from its centroid to the corners and to equal distances predefined coordinates on the border (constant angles can also be chosen instead of portions):

\{(0,0), (160,0), (320,0), (480,0), (640,0), (0,160), (160,160), (320,160), (640,160), (0,480), (160,480), (320,480), (480,480), (640,480)\}.

For each portion, the ratio between the number of the white pixels and the black pixels is calculated and is compared to a predefined constant value. If this ratio is above this value, then the binary output bit of a particular portion is noted as “1”, otherwise, it is “0”. Results for the below sample bag image shown in Figure 7 are shown in Table 7. The constant and tunable value was chosen to be as 1.5, that yields an input vector \(s \in \{0,1\} \) of \(s = [1101100000111] \) that represents the bag and will serve the ART-1 network for finding similarity and to classify the bag into its category. The ART-1 learning algorithm notation, description and comments is described in details in Appendix VI.
Figure 7. An example for one image portion (noted as region 8) - the black pixels are shown in yellow and the white pixels are shown in green.

Table 7. Bag sample example analysis

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Black Pixels</th>
<th>Number of White Pixels</th>
<th>Ratio</th>
<th>Binary Output Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4623</td>
<td>15598</td>
<td>3.37</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7188</td>
<td>12886</td>
<td>1.79</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8255</td>
<td>11735</td>
<td>1.42</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7339</td>
<td>12714</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8674</td>
<td>13468</td>
<td>1.55</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>9861</td>
<td>12103</td>
<td>1.23</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8940</td>
<td>12569</td>
<td>1.41</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7533</td>
<td>10841</td>
<td>1.44</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8619</td>
<td>9482</td>
<td>1.10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>7820</td>
<td>10594</td>
<td>1.35</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>5272</td>
<td>13143</td>
<td>2.49</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>7347</td>
<td>21709</td>
<td>2.95</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>9962</td>
<td>19042</td>
<td>1.91</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>6948</td>
<td>22225</td>
<td>3.20</td>
<td>1</td>
</tr>
</tbody>
</table>
4.4.3 Support vector machines

Here, a separate support vector machine (SVM) is trained for each bag class and the winning class is the one for with the largest margin, which can be thought of as a signed confidence measure. The training data set for the SVM classifier will be obtained from a set of 5000 images of several bag classes taken from 200 students. From this set of 5000 images, 2500 images will be picked for the training data. The accuracy of the trained classifier will be assessed using also 2500 test samples. The SVM methodology procedure is as follows (Figure 8):

1) Define each target class based on bag image components described in section 4.4.1.
2) Decompose the multi-class problem into a series of 4 binary OVA classification problems: one for each class (e.g., plastic bag, briefcase, backpack, or suitcase).
3) For each class build the binary classifiers on the training set using leave-one-out cross-validation, i.e., remove one sample, train the binary classifier on the remaining samples, combine the individual binary classifiers to predict the class of the left out sample, and iteratively repeat this process for all the samples. A cumulative error rate will be calculated.
4) Evaluate the final prediction model on an independent test set.

Figure 8. Multi-class methodology using one vs. all (OVA) approach

Further details are in Appendix VII.
4.4.4 Reinforcement learning

4.4.4.1 Q-learning algorithm

In this work, the main focus is on the single reinforcement learning (RL) algorithm, Q-learning [Watkins, 1989]. Theory regarding to RL is described in Appendix VIII. The reason why the Q-learning algorithm was chosen is due to its advantage that the update rule is policy free as it is a rule that just relates Q values to other Q values. It does not require a mapping from actions to states and it can calculate the Q values directly from the elementary rewards observed.

In Q-learning (Figure 9) the system estimates the optimal action-value function directly and then uses it to derive a control policy using the local greedy strategy mandated by Equation 10 described in Appendix VIII.

The first step of the algorithm is to initialize the system’s action-value function, \(Q \). \(Q \) is the system’s estimate of the optimal action-value function. Since no prior knowledge is available, the initial values should be arbitrary (e.g., uniformly zero). Next, the system’s initial control policy, \(f \), is established. This is achieved by assigning to \(f(s) \) the action that locally maximizes the action-value. That is,

\[
Q \leftarrow \text{a set of initial values for the action-value function (e.g., all zeroes)}
\]

For each \(s \in S : f(s) \leftarrow a \) such that \(Q(s,a) = \max_{a' \in A} Q(s,a') \)

Repeat forever:

1) \(s \leftarrow \text{the current state} \)

 System senses current state of environment that consists of: \(s_{bag_class} \): {plastic bag, briefcase, backpack, suitcase}, \(s_{bag_condition} \): {open, close, orientation}, \(s_{robot} \): {home position, idle, performing a task}, \(s_{bag_contents} \): {how many}, \(s_{obstruction} \): {how many}, \(s_{illumination} \): {day, night}.

2) Based on current state, the system chooses an action, \(a \), to execute and communicates it to the environment. An action consists of: \(s_{grasping_point} \): {coordinate}, \(s_{lift_trajectory} \): {how high}, \(s_{shake_trajectory} \): {how horizontal, how vertical, how many cycles, speed}.

The selected action, \(a \), to execute is usually consistent with \(f \) but occasionally an alternative. For example, one might choose to follow \(f \) with probability \(p \) and choose a random action otherwise.

3) Execute action \(a \), and let \(s' \) be the next state and \(r \) be the reward received.

4) Update \(Q(s,a) \), the action-value estimate for the state action \((s,a)\) pair:

\[
Q(s,a) \leftarrow (1-\alpha_k) Q_k(s,a) + \alpha_k [r + \gamma U(s')] \quad \text{where} \quad U(s') = Q(s', f(s'))
\]

5) Update the policy \(f \):

\[
f(s) \leftarrow a \text{ such that } Q(s,a) = \max_{a' \in A} Q(s,a')
\]

Figure 9. 1-Step Q-learning algorithm
\(f(s) \leftarrow a \) such that \(Q(s,a) = \max_{a' \in A} Q(s,a') \) where ties are broken arbitrarily. The robot then enters a cycle of acting and policy updating.

First, the robot senses the current state, \(S = \{S_R, S_o, S_E\} \) where \(S_R \) is the state of the robot, \(S_o \) is the state of the object and \(S_E \) is the state of the environment. \(S_R \) contains the home position, idle, and performing a task. The \(S_o \) state contains the bag class (e.g., plastic bag, briefcase, backpack, suitcase) and its condition (e.g., open, close, orientation) and \(S_E \) contains the environmental conditions, such as how many obstructions are in the scene and illumination (e.g., day or night). It then selects an action \(A \) to perform next. An action consists of a set of coordinates of possible grasping points, lift trajectories (e.g., manipulate the robotic arm 60cm above the collection container and with 30 degrees left) and shaking trajectories (e.g., manipulate the robotic arm 10cm horizontally and 15cm vertically in 3m/s speed for 5 cycles). Most of the time, this action will be the action specified by the system's policy \(f(s) \), but occasionally the system will choose a random action (choosing an action at random is a particularly simple mechanism for exploring the environment). Exploration is necessary to guarantee that the system will eventually learn an optimal policy. The system performs the selected action and notes the immediate reward \(r \) and the resulting state \(s' \). The reward function is probabilistic and depends on the number of items fell from a bag during lift and shaking operations. The action-value estimate for the state-action pair \((s,a)\) is then updated. Mathematical modeling of the robot-environment interaction is described in Appendix VIII.

4.5 Testing and validation

4.5.1 Physical experimental setup

In this work, a 5 degrees of freedom (DOF) articulated robot is controlled through a virtual reality (VR) interface from a remote site for performing various tasks (Figure 10).
The implementation of this work is a client-server application. The server contains a dual frame grabber connected to stereo cameras mounted over the workspace. Robot control software is also located in the server. Two additional universal serial bus (USB) cameras are mounted over the workspace for visual feedback of the scene to the human operator (HO), (the client). From the client site, the HO can take control over the robot through a VR interface.

4.5.2 Performance evaluation

Three hypotheses will be evaluated:

1) Whether system learning performance increases by human intervention.
2) Whether system performance increases by on-line learning.
3) Whether support vector machines (SVMs) methodology is better than adaptive resonance theory (ART) for classification. SVMs and ART will be tested separately and independently from each other (one can treat it as two “Human-Robot Collaborative Learning Systems”). Currently, no other systems compare between SVMs and ART.

System performance will be evaluated by several independent measures:

1) Speed of convergence to optimality [Kaelbling et al., 1996]. Optimality is usually an asymptotic result, and so convergence speed is an ill-defined measure. More practical is the speed of convergence to near-optimality. This measure begs the definition of how near to optimality is sufficient. A related measure is the level of performance (e.g., whether a bag was classified correctly, whether a bag was grabbed successfully, how empty the bag is) after a given time, which similarly requires that someone define the given time. Measures related to speed of learning have an additional weakness. An algorithm that merely tries to achieve optimality as fast as possible may incur unnecessarily large penalties during the learning period. A less aggressive strategy taking longer to achieve optimality, but gaining greater total reinforcement during its learning might be preferable.

2) Regret. The regret is calculated as the difference between the expected total reward gained by following a learning algorithm and expected total reward one could gain by playing for the maximum expected reward from the start [Berry and Fristedt, 1985].

3) Recall (R) - the percentage of the bags for a given category that are classified correctly, Precision (P) - the percentage of the predicted bags for a given category that are classified correctly. It is a normal practice to combine recall and precision in some way so that classifiers can be compared in terms of a single rating. F_1 rating is one of the commonly used measures, which is defined as
\[F_i = \frac{2RP}{(R + P)} \] [Yang and Liu, 1999]. These scores are calculated for a series of binary classification experiments, one for each category [He et al., 2000].

4) The ability of the classifiers to generalize will be tested (calculated based on generalization error). The test will evaluate how well they can observe a new set of system features \(F \) and determine the correct classification.

5 Research plan

5.1 Research stages

The research consists of the following main stages:

1) Application Description:
 a) Definition of system performance measures. This includes features that represent the system: fixed (\(e.g. \), robot capabilities, camera features, sensor specifications) and controllable parameters (\(e.g. \), shaking a bag - number of items fell from a bag, robot gripper height, vertical and horizontal amplitudes in shaking policies).
 b) Definition of a representable set of bags. A bag is classified based by the following characteristics: 1) Bag type (\(e.g. \), plastic bag, briefcase, backpack, or suitcase); 2) Bag specifications (\(e.g. \), height, width and depth).

2) Preparation of the VR interface:
 a) Implementation of a telerobotic system controlled from VR using “Alice”.
 b) Implementing the VR robotic environment in “OpenGL” (replacing “Alice”). This includes incorporating of kinematic equations for solving the forward / inverse kinematics problem, and necessary constraints.
 c) Design a transformation matrix for mapping the VR to the real world coordinates.

3) Finding a set of points located on the contour of a bag image which some of them are candidates for grasping using image processing methods. In future steps, the system learns to recognize where a bag opening is.

4) Studying and implementing training process for classifying several kinds of bags using adaptive resonance theory (on-line) and support vector machines (off-line) and compare between them based on several task cases.

5) Design of a set of evacuating policies (state-action pairs).

6) Finding preferable grasping points using reinforcement learning. This includes mathematical definition of a policy, a reward function, and a value function. This includes also gathering data.
manually and updating the algorithm functions accordingly and manually positioning of a bag. The goal is to demonstrate improving performance in learning to find preferable grasping points from a given set. In this way the system learns to recognize where a bag opening is. Another goal is to learn which evacuating policy to choose.

7) Determining when HO intervention is required or if the system can behave autonomously when an unknown event or error occurs. Show how human intervention can provide guidance to improve overall task performance.

8) Operational system.
5.2 Research roadmap

The research is expected to take four years. The first year includes the Ms.C research, which has been completed. Three papers related to the work have been presented at international conferences (Stern et al., 2001; Wachs et al., 2002; Stern et al., 2003). The research road map is presented below in parallel to the research plan stages:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Deliverable</th>
<th>Schedule (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System performance measures definition.</td>
<td>1) Technical report that describes all of the system performance measures.</td>
<td>2</td>
</tr>
<tr>
<td>System object representation.</td>
<td>1) Technical report that describes a representable set of bags and their specifications.</td>
<td>2</td>
</tr>
<tr>
<td>Develop a VR telerobotic system using standard tools (e.g., “Alice”).</td>
<td>1) A working system that includes a robot controlled from remote through a VR interface.</td>
<td>6</td>
</tr>
<tr>
<td>Test the virtual reality (VR) telerobotic system.</td>
<td>1) Set an experiment in which a standard user controls the system. 2) Learning curve experiment. 3) Calibration experiment.</td>
<td>2</td>
</tr>
<tr>
<td>Develop image-processing algorithms.</td>
<td>1) Find state of robot and environment. 2) Identify the existence of a bag handle. 3) Find a seven parameters vector that represent a bag. 4) Determine a set of possible grasping points.</td>
<td>6</td>
</tr>
<tr>
<td>Develop a method for classifying several kinds of bags off-line using support vector machines (SVMs).</td>
<td>1) Build a training data set. 2) Build the SVMs supervised classifier.</td>
<td>6</td>
</tr>
<tr>
<td>Develop a method for classifying several kinds of bags on-line using adaptive resonance theory (ART).</td>
<td>1) Build ART-1 unsupervised classifier.</td>
<td>6</td>
</tr>
<tr>
<td>Evaluate the quality of the ART and SVM learning classifiers.</td>
<td>1) Compare between the classifiers based on: convergence to near-optimality, regret, recall, precision and F1 task cases. 2) Test the ability of the classifiers to generalize.</td>
<td>6</td>
</tr>
<tr>
<td>Develop lifting and shaking policies.</td>
<td>1) Technical report that describes possible lifting and shaking policies. Describe advantages and disadvantages.</td>
<td>3</td>
</tr>
<tr>
<td>Develop an on-line method using reinforcement learning (RL) algorithm for grasp and shake a bag.</td>
<td>1) Set an experiment to demonstrate improving performance of the grasping and shaking tasks over time.</td>
<td>6</td>
</tr>
<tr>
<td>Human collaboration.</td>
<td>1) Determining when human operator (HO) collaboration is required or if the system can behave autonomously when an unknown event or error occurs. 2) Demonstrate how HO intervention can provide guidance to improve overall task performance through VR interface.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1) Submit Ph.D. research.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>48</td>
</tr>
</tbody>
</table>
6 Ms.C. Thesis - Virtual Reality Telerobotic System

6.1 Introduction

6.1.1 Description of the problem

Teleoperation and telerobotics are technologies that support physical action at a distance. This distance could span a few yards through a radioactivity proof wall, or millions of miles through a vacuum to another planet [Goldberg, 2000]. In this work, a virtual reality (VR) telerobotic system was built using the Internet as the communication link. In today’s world the Internet plays an important role in everyone’s lives. It provides a convenient way for receiving information, electronic communication, entertainment and conducting business [Ho and Zhang, 1999]. Robotics researchers are now using the Internet as a tool to provide feedback for teleoperation [Sheridan, 1992]. Internet-based teleoperation will inevitably lead to many useful applications in various sectors of society [Ho and Zhang, 1999]. To understand the meaning of teleoperation, the definition of robotics is examined first. Robotics is the science of designing and using robots. A robot is defined as “a re-programmable multi-functional manipulator designed to move materials, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks” [Robot Institute of America, 1979]. Robots can also react to changes in the environment and take corrective actions to perform their tasks successfully [Burdea and Coiffet, 1994]. Furthermore, all electromechanical systems, such as toy trains, may be classified as robots because they manipulate themselves in an environment.

Teleoperation is the direct and continuous human control of a teleoperator [Sheridan, 1992]. A teleoperator can be any machine that extends a person’s sensing or manipulating capability to a location remote from that person. In situations where it is impossible to be present at the remote location such as a minefield, at the bottom of the sea or simply at a distant location, a teleoperator can be used instead.

Hirukawa and Hara, 2000, divide teleoperation systems into two groups, from the viewpoint of motion command transfer. In the first group, an operator controls directly a real robot and manipulates an object at a remote site. This group is called a direct type. In the second group an operator plans robot tasks interactively through a computer simulation of a robot and objects, and the planned motions are sent to control a remote real robot afterward. This group is called an indirect type. The indirect type has been developed mainly to cope with time delays.

6.1.2 Objective

The fundamental research objective of this work is to develop and evaluate a VR system for remote robotic experiments.
6.2 Methodology

6.2.1 Task definition

The VR (virtual reality) telerobotic system, built in this work, allows a human operator (HO) to work in the following modes: 1) Plan an off-line path for manipulating an object in a VR robotic scene. When the path is planned to his satisfaction, it is performed at the remote robotic scene at the same height of the workspace. The system was tested by planning a path in the VR scene several times. Each time, the instructions were sent as a “batch command” over the Internet to the remote real robot, and error of placement measurements were taken manually for each one of the points along the path. In all the experiments the robot picked up the object correctly and the path was performed successfully. In none of the experiments, the object was accidentally dropped on the way; 2) Control directly both the VR and the real robot. The available commands for control are increments in the X, Y, and Z axis and open / close the gripper. When a command is chosen, the VR model is updated first, and then the real robot moves accordingly; 3) Plan the shaking of a suspicious package. In this mode, the HO can choose a desired combination of spatial locations in the VR model and cause the real robot to move between them in a desired speed and 4) Construct a high level (HL) to low level (LL) language for planning and executing robot trajectories on-line.

6.2.2 System architecture

In this work, by using the “Alice” [http://www.alice.org/] and the “Python” [http://www.python.org/] programming language, a client (the HO) communicates with the server, connected to a robotic arm (Figure 11) through web-browser (Figure 1 in Appendix IX). With a constant connection between client and server, both sides can communicate immediately when new information is to be transmitted.

![Figure 11. Client-server communication architecture](image-url)
Commands sent from the client in the virtual environment (VE) update the VR robot. Through TCP/IP, the control parameters are sent from the VE to the server via the communication channel. Another program then extracts them and updates the real robot.

Figure 12. Virtual reality telerobotic system architecture

The following steps were performed for building the system architecture (Figure 12):

1) The robot specifications were achieved: this includes information on the dimensions of the robot, the limits of movement, the behavior and properties. In addition, information regarding both hardware and software is essential to allow data exchange between the controller and the robotic environment.

2) Interface techniques and methods of data exchange were determined: a technique of sending and receiving data to and from the controller was determined to update the robotic variables (e.g. joint positions, gripper state, etc.) constantly. This information is accessed automatically over the network. A method of accessing the robotic variables as well as the method of enabling the VR model to access them were determined. This includes choosing VR software that allows the model to send and receive data using the same protocol.
3) A programming language to build the interface was chosen: the language chosen must suit the purpose of the robotic application and should be able to use the data exchange protocol to communicate with the robot controller program as well as with the VR model. For controlling and manipulating these models, “Python” scripts were used.

4) A VR model was built and its behavior was verified: having chosen the right VR tools allows data exchange in and out of the system. For creating the VE, a rapid prototyping software for creating interactive 3D was used (“Alice”, http://www.alice.org/). One out of several reasons “Alice” was chosen, is its ability to import and manipulate 3D models from different software packages, such as the “3D-Studio-Max” [http://www.discreet.com/].

5) A VR-channel interface was built: having constructed the VR model, codes were then inserted, enable handshaking and data transfer to and from the interface program.

6) The VR-channel interface was tested until it was error free.

7) The channel-robot interface was built: “RAPL-II” commands sent to the controller enabling this data exchange. Codes were inserted into the channel program for the same reason.

8) Interfaces were tested with full capability.

9) Full integration was tested.

6.2.3 Tools

The following tools were used for building the virtual reality (VR) telerobotic system: 1) Personal computer workstation (PC) - the server is a Pentium-4 PC with Microsoft [http://www.microsoft.com/] Windows 2000 as the operating system (OS). A visual basic (VB) based web server is running on this host to service incoming network requests. Furthermore, the remote host is connected to the robot controller and two universal serial bus (USB) cameras; 2) Robot and its controller - a 5 DOF (degrees of freedom) articulated robot was used as the slave robot. The manufacturer provides the controller for the robot that is connected to the remote host machine through serial cable; 3) Web cameras - two 3Com [http://www.3com.com/] “HomeConnect” web cameras are used as the video cameras to observe the robotic environment. “HomeConnect” was chosen because of its low cost and its ability to be adapted to any PC by simply plug-and-play into a USB port. No extra image capturing is required. The image capturing software, “Webcam32” [Kolban D., 1998] is provided by the manufacturer and runs on the remote host machine. It captures images, which are 240X180 pixels in 24 bit colors. By using two web-cameras and the “Webcam32”, live images are constantly being sent and update the remote client. The USB protocol allows connecting up to 127 devices to a computer. Each device can consume up to a maximum of 6 megabits per second of network bandwidth.
When a user enters the system web-site, predefined characteristically images are being sent to his web-browser (close and general views in Figure 1 in appendix IX). “Webcam32” supports two types of direct image delivery. The first, called “Single Frame” sends once, a single frame. The second, called the “Server-Push” provides a stream of frames that is constantly being sent to web-browsers and provides real-time update as processor speed and bandwidth allow.

6.2.4 Physical Description of the System

The articulated robot arm, “A255”, manufactured by “CRS Robotics” [http://www.crsrobotics.com/] was used in this work. The “A255” robot system consists of robot arm and robot controller, which runs “RAPL-II” operating software. Programming features include continuous path, joint interpolation, point-to-point relative motions, and an on-line path planner, to blend commanded motions in joint or straight-line mode. A gripper was installed on the robot arm to perform tasks. The arm is articulated with five joints, giving it five degrees of freedom. This allows it to move a tool to spatial coordinates and orientation defined by X, Y, Z, Pitch, and Roll. An “A255” robot can be operated with a serial teach pendant, a video display terminal (VDT) with serial I/O, or a PC. The range of motion of each joint and the length of each section (base, links, or tool flange) defines the workspace of the “A255” robotic arm.

The “C500” controller is a computerized electronics unit with memory that provides control signals necessary for the operation of the robot arm. Control signals are issued by the execution of “RAPL-II” commands stored in the controller’s memory. The “RAPL-II” robot programming language uses English-like command structures. The “C500” contains control functions required for stand-alone robot operation and a digital display for full diagnostics. These controls can be duplicated on a remote panel to provide control if the controller is mounted away from the operator’s station. The serial teach pendant functions as a remote control that allows manual movement of the robot arm, location teaching, and other operator programming. It has a four-line, 20-character “LCD” display and a 45-key keypad. Its safety features include an emergency stop button and a live-man switch. The “C500”’s stored kinematic solutions provide full robot control in world, tool, and cylindrical programming.

When the power to the controller is off, the arm position data in its memory is lost. As a result, when the controller is powered on, it does not know the position of the arm. The procedure called “homing” moves the arm to a factory-installed position, which is permanently retained in the controller memory. At this position, each joint’s encoder disk is aligned to its zero pulse position. Afterward, during any motion, the encoders continually send position counts to the controller. Using these counts, the controller knows any position of the arm relative to the home-position.
6.2.5 The virtual environment

One of the most useful tools in producing computer animation is the ability to link objects together to form a hierarchy. By linking one object to another, a parent-child relationship is created. Transformations applied to the parent are also transmitted to the child object. By linking more objects to both parent and child objects, complex hierarchies can be created. Chains can be created to include ancestors (parents’ parents) and descendents (children’ children). Kinematics describes the movement of the chains [Lander, 1998]. They can be animated by transforming the parent object (forward or FK) or by manipulating the other end of the chain (inverse or IK) [Lander, 1998]. Forward kinematics is primarily based on rotational keys; inverse kinematics is based on translations and rotations of special manipulators (goals and end effectors) which drive the ends of the chains. Linking objects together and building complex hierarchies have the following common uses: 1) Creating complex motions; 2) Simulating jointed structures; 3) Providing the structure for the IK [Lander, 1998]. The hierarchy tree of the virtual environment (VE) that includes the robot, a table, a layer-grid and a checkerboard is shown in Figures 1 and 2 in Appendix IX.

The virtual reality (VR) robot end point that represents the end of the robotic chain coordinates is shown in Figure 13. The coordinates of the end of the robotic chain, X, Y and Z are those of the center of gravity of the cylinder attached to the end of the gripper. During motion, the cylinder is hidden from the human operator (HO), but still represents the coordinates.

![Image](a) Gripper with hidden edge cylinder
(b) Gripper with edge cylinder

Figure 13. VR robot gripper edge

When the real robot is first turned on, the controller does not know the arm position relative to the world [A255 Robot System, 1998]. The real robot must be “Homed” to provide synchronization between controller and the arm, as well as the VR robot. Home-position of the VR robot from two views is shown in Figure 14.
6.2.6 Operational stages

In this work, the web-based interface consists of a set of predefined buttons that the human operator (HO) can press upon to trigger predefined actions. The interface consists also of a graphical animation of a virtual reality (VR) robot that controls the real one.

The interface (Figure 1, Appendix IX) consists of a VR model that includes five degrees of freedom articulated robotic arm that was planned according to the “CRS A255” robot specifications [A255 Robot System, 1998], a checkerboard and a table. The robot model was built using “3D-Studio-Max”. The VR robot dimensions were determined relatively to those of the “A255” one. It consists also of two universal serial bus (USB) web-cameras visual video feedback returning from the remote real robot site (close and general views), and several control panels that will be described later.

Through several control panels, a HO can control the speed of the robot, show a 3D grid that contains spatial locations where the robotic arm can move to, look at several views over the VR model, plan shaking policies, plan an off-line path and control directly and in real-time over the real robot. For creating the 2D control panels, the “Alice’s” “Control Panels” package was used. The functionality of this package is limited, but has the advantage of being extremely simple and that all the logic behind is written in the same scripting language (“Python”) that controls the 3D screen objects. The operational control panels that include speed, grid, views, shake, off-line planning, direct control and high level (HL) to low level (LL) language are described in detail in Appendix X.

6.2.6.1 Kinematics

The form of inverse kinematics (IK) solution used here is known as a closed form or analytical solution [Lander, 1998]. It has the benefit of being an exact solution and very fast to calculate. It also allows calculating quickly whether or not the point is even reachable. However, if the point is not in reach, the system will fail. To avoid this undesired failure, some limitations were added to the virtual reality (VR) model. If the human operator (HO) tries to manipulate the robot into unreachable locations, the system recognizes that and the robot remains stationary. For the VR robot, an IK algorithm was
implemented to determine the joint angles required reaching a specific spatial location by supplying the X, Y and Z coordinates. Further details appear in Appendix XI.

The VR and the real worlds are different from each other by the position, orientation, and scaling of the robots, the checkerboards and the objects. Therefore, a transformation matrix was calculated. The transformation matrix was calculated based on 32 intersection points taken from both the VR and the real checkerboards. Table 1 that appears in Appendix XII presents the intersection coordinates taken from both the VR and the real environments. Figures 1 and 2 that appear in Appendix XII show the real and VR coordinate systems accordingly. This includes necessary lengths and positions. It is assumed that both the VR and the real robot bases are located at point (0,0). Xvr, Yvr represent VR values and Xr, Yr represent real values. The transformation matrix (Figures 3 and 4 in appendix XII) was calculated by using a method for aligning a pair of shapes [Cootes et al., 1992] which is based on the least-squares approach. More details appear in Appendix XII.

6.3 System test and validation

6.3.1 Calibration

The identified parameters related to robotics calibration are accuracy, repeatability, and resolution [Conrad et al., 2000]. Each of these depends on the various components used (links, motors, encoders, etc.), the construction procedure, and the capability of the controller [Conrad et al., 2000]. Resolution is defined as the smallest incremental move that the robot can physically produce [Conrad et al., 2000]. Repeatability is a measure of the ability of the robot to move back to the same position and orientation [Conrad et al., 2000]. Accuracy is defined as the ability of the robot to precisely move to a desired position in 3D space [Conrad et al., 2000].

The calibration experiment performed here starts with manually controlling the virtual reality (VR) robot arm and taking the coordinates of several points (Xvr, Yvr) that were reported by “Alice” (Figure 15). These points were inserted into the transformation matrix. The calculated output of the transformation (Xr, Yr) was sent to the real robot, and compared with corresponding manually measured coordinates from the real robotic scene.
The VR checkerboard was located in a reasonable distance next to the VR robot and was represented by “Alice” as 21.15cm. The lengths between intersections of the VR checkerboard were represented by “Alice” as 4.54cm. The VR checkerboard was built in such a way that each square is large enough. The VR robot was manually moved with a virtual pen point in its gripper and visually observed touching 32 intersection points (16 points on each side of the X-axis) as shown in Figure 2 in Appendix XII. The coordinates of these points (Xvr, Yvr), are reported by “Alice”, and appear in Table 2 in Appendix XII. These coordinates were inserted into the transformation matrix as an input vector. It is noted that these coordinates stay constant when zooming. The output of the transformation matrix (Xr, Yr) was sent to the real robot, which moved to the corresponding points in the real scene. An edge of a pen was put in the real robot’s gripper to get an accurate location. The real coordinates of the robot’s pen on the real checker board intersections (Xr,m, Yr,m) were measured manually by a ruler. It should be noted that points 27, 34 and 35 were unreachable in the real environment. The real error (E) between the intersection points from the VR and the actual points on the real checkerboard was calculated. En (Normalized error) presents the error E as normalization to the length of a square (6cm) in percents and was calculated as 5.02%.

Figure 5 appears in Appendix XII presents an example of an off-line path planning experiment. It starts with manually controlling the VR robot arm and moving it toward an object placed at point 11,
then it is picked up and moved along a path to touch point 22 and finally it is dropped at point 7. Figure 6 in Appendix XII presents the flow chart of this example. When the path is planned to the human operator’s (HO’s) satisfaction, it is performed in the remote real robotic scene. The measurements are shown in Table 3 in Appendix XII. The real error (E) between the measured intersection points from the real scene and the actual points on the real checkerboard was calculated for points 11, 22, and 7. En (Normalized error) presents the error E as normalization to the length of a square (6cm) in percents and was calculated as 1.32%.

A repeatability test was set up to measure how precisely the robot can return to the same position. The robot arm was instructed to move from point 0 to an arbitrary point (16) shown in Figure 7 in Appendix XII several times in the real environment. The motions lead to differing displacements. 10 measurements were taken and reported from the robot controller as shown in Table 4 in Appendix XII. In each one of the measurements, the gripper was moved manually as close as possible to point 0 which its accurate coordinates are (265, -240) mm from the robot origin, then it was moved 60mm in the X axis and 420mm in the Y axis to point 16. Each time the coordinates of point 16 were taken, and the distance between the points was calculated. The repeatability is defined as the difference between the maximum and the minimum between point 0 and 16 of the 10 measurements was found to be 0.1260mm whereas according to the manufacturer specifications it should be 0.05mm.

6.3.2 System learning curve experiment

An experiment was performed in which a human operator (HO) using the virtual reality (VR) model and its interface controls the remote robot to empty the contents of a bag onto the platform (Figure 16). It is assumed that the contents of the bag are ten identical electronic components and that the HO knows this number in advance.

Figure 16. “A255” robot, plastic bag, platform and ten electronic components
HO performed ten identical experiments and the performance times were recorded. Due to the simple VR model and its interface developed, the learning curve of task completion time was reduced quickly and standard times were reached after five to six trials (Figure 17).

![Figure 17. Learning curve experiment results](image)

6.3.3 Summary

In summary, the real error between the virtual reality (VR) model and the real robotic scene was calculated as 5.02% based on 32 experimental point intersections. Based on an off-line planning experiment of 3 experimental intersection points, the real error was calculated as 1.32%. A repeatability test was set up to measure how precisely the robot can return to the same position. It was found to be 0.1260mm whereas according to the manufacturer specifications it should be 0.05mm. Human operator (HO) performed a task of controlling the real robot from the VR interface and evacuate a plastic bag from electrical components, ten times. The average time to perform the task was calculates as 330 seconds. Standard times were reached after five to six trials.
7 References

55

- http://www.3com.com/
- http://www.alice.org/
- http://www.crsrobotics.com/
- http://www.discreet.com/
- http://www.microsoft.com/
- http://www.olympus.com/
- http://www.opengl.com/
- http://www.python.org/
- http://www.sega.com/
- http://www.sgi.com/
- http://www.sony.com/
- http://www.telegarden.aec.at/
- http://www.telescope.org/
- http://www.usuhs.mil/

Appendices

Appendix I: Telerobotics applications

One of the first successful World Wide Web (WWW) based robotic projects was the Mercury Project [Goldberg et al., 1995]. This later evolved in the Telegarden Project [Goldberg and Santarromana, 1997; http://www.telegarden.aec.at/], which allows users to tend a garden that contains live plants. The system allows uncovering objects buried within a defined workspace from remote. Users were able to control the position of the robot arm and view the scene as a series of periodically updated static images. In this project, a 2D graphical representation of the environment was used to allow a user to click on parts of the graphic image to specify the next location of the telerobot.

A number of researches are using graphical models of robots to allow users to control an off-line robot and practice control techniques. Examples can be found in the web interface for Telescience (WITS) projects [Backs et al., 1998] and the KhepOnTheWeb project [Saucy and Mondada, 1997]. WITS was developed by NASA for controlling remote vehicles on planets such as Mars and Saturn. WITS is being developed for use in the 2003 and 2005 rover missions to Mars for distributed rover command generation. Mark Cox [http://www.telescope.org/] developed a system for allowing users to request images from a remotely controlled telescope.

The University of Western Australia's Telerobot experiment [http://www.telerobot.mech.uwa.edu.au/] provides Internet control of an industrial ASEA IRB-6 robot arm through the WWW. Users are required to manipulate and stack wooden blocks and, like the Mercury and Telegarden projects, the view of the work cell is limited to a sequence of static images captured by cameras located around the workspace. The previously mentioned projects rely on cameras to locate and distribute the robot position and current environment to the user via the WWW.

The PumaPaint project [Stein, 2000] is a web-site allowing any user to control a PUMA-760 robot equipped with a parallel-fingered pneumatic gripper. The site allows users to perform tasks of painting on an easel with real brushes and paint. Four colored paint jars are held in fixed positions beneath plastic funnels. The brushes (one for each color) are held on a small wooden platform. The PumaPaint has a “Java”-based interface, which is appropriate for a web robot. Because the “Java” applet is executed on the web user’s machine, the user interacts directly with the applet and receives immediate feedback. The interface takes advantage of this feature, providing two channels of feedback; one immediate and virtual and the other time-delayed and real.
Appendix II: Human-robot collaboration

The increasing intelligence and autonomy of modern robot systems require new and powerful man-machine-interfaces [Längle et al., 1996]. For example, a robot's capability to autonomously recover from error situations corresponds with dynamic adjustments of robot plans during execution [Längle et al., 1996]. Längle et al., 1996, provide a natural language explanation for the error recovery of an autonomous mobile robot named KAMRO.

To build a semi-autonomous collaborative control system, Fong et al., 2002, have found that there are four key issues that must be addressed. First, the robot must have self-awareness [Fong et al., 2002]. This does not imply that the robot needs to be fully sentient, merely that it be capable of detecting, determining if it should ask for help, and recognizing when it has to solve problems on its own. Second, the robot must be self-reliant. Since the robot cannot rely on the human to always be available or to provide accurate information, it must be able to maintain its own safety. Specifically, the robot should be capable of avoiding hazards, when necessary. Third, the system must support dialogue. That is, the robot and the human need to be able to communicate effectively with each other. Each participant must be able to convey information, to ask questions and to judge the quality of responses received. To an extent, traditional teleoperation has dialogue (i.e., the feedback loop), but the conversation is limited. With collaborative control, dialogue is two-way and requires a richer vocabulary. Finally, the system must be adaptive. By design, collaborative control provides a framework for integrating users with varied skills, knowledge, and experience. As a consequence, the robot has to be able to adapt to different operators and to adjust its behavior as needed, e.g., asking questions based on the operator’s capacity to answer.
Appendix III: Virtual reality applications

Virtual reality (VR) poses challenging intellectual problems and also considerable potential for a variety of applications. Progress in the virtual environment (VE) entertainment industry is of interest because its contribution to the field will probably be generalized to other application areas. Moreover, entertainment can be expected to be a primary drive and test-bed for certain aspects of the technology. According to the popular press, since 1992, many joint ventures have been created among video game companies, computer graphics companies, motion picture studios, and telecommunication conglomerates to use VE technology as a new medium for entertainment, education, and artistic expression [Durlach and Mavor, 1995]. To date, the entertainment industry efforts in VE has been proceeding on several fronts, ranging from low-end systems for home use to arcade games, location-based entertainment, and theme parks. At the low end of the technology, several companies, including Sony [http://www.sony.com/], Olympus [http://www.olympus.com/], and Sega [http://www.sega.com/] are developing inexpensive VE displays for use in the home with interactive, three-dimensional games. In arcades, VE action games involving one or more players are now appearing. Those currently in existence offer motion platforms and realistic interaction, but the visual quality remains poor. Location-based entertainment differs from arcade games in that it provides several interactive systems on a common theme. Such systems usually involve several players sharing a virtual space over a network [Durlach and Mavor, 1995].

The fundamental design issues encountered in the field of telerobotics have a significant overlap with those that are and will be encountered in the development of VEs. Within the VE, the man-machine system must allow translation of viewpoint, and interaction with the environment. This must occur through technologies that provide sensory feedback and control.

VE techniques provide a powerful tool for the visualization of the 3D environment of a teleoperation workspace, particularly when “live” video display is inadequate for the task operation or its transmission is constrained, for example by limited bandwidth [Tan et al., 2000]. By using VR, the human operator (HO) can experience the task operation as if he was present at the workspace. By using the added information provided by the video images, the teleoperation HO can easily identify significant changes in the environment and adjust his operations accordingly [Tan et al., 2000].

In robotics engineering, it is often desirable for operators to get a lot of practice on robots especially if it is time consuming to learn handling the fine controls necessary for executing machine motions precisely and with economy of movement [Durlach and Mavor, 1995]. Unfortunately, it is not often possible because operators have to be supervised when they are on these machines (potentially dangerous if not supervised) as well as expensive if damaged. If it is possible to couple training on the robots with Virtual Models, it would offer tremendous advantage as a self learning tool without all the
disadvantages of operating robots unsupervised and learning might be improved even while making mistakes.

Large-scale VEs will need to use wide area networks (WANs) to expand both their geographical scope and number of participating hosts. Furthermore, until recently, real-time graphics performance was confined to specialized and very expensive computer image generators. With the low-cost, off-the-shelf graphics workstations, standard graphics tools and libraries and high-speed inter-networks problems, such as slow developing time and primitive interfaces are being overcome. Moreover, distributed VEs hold promise for new educational, training, entertainment, and medical applications [Macedonia and Zyda, 1997]. For wide area networks where the number of users is unlimited, the available network bandwidth, which determines a VE’s size and richness, is a major issue. However, networks are now becoming fast enough to develop distributed VR applications. Distributed VR can require enormous bandwidth to support multiple users, video, audio, and the exchange of 3D models in real-time. Another communication dimension, latency, controls the VE’s interactive and dynamic nature. For a distributed environment, where a real-world emulation is required, it must operate in real-time in terms of human perception. Both of the delay of an individual and the variation in the length of the delay are important, particularly in closely coupled tasks that require a high degree of correlation. Network latency can be reduced to a certain extent by using dedicated links, improvements in routers, faster interfaces, and faster computers. Finally, communications reliability often forces a compromise between bandwidth and latency. Reliability means that the system sent data is always received correctly. Unfortunately, error recovery schemes are required to guarantee delivering, which can introduce large amounts of delay. Another problem in building a distributed environment is determining where to put the data relevant to the state of the virtual world and its objects. These decisions affect the VE communication requirements, and reliability. A common method for large VEs is to initialize the state of every system participating in the distributed environment with a homogenous world database containing information about the terrain, model geometry, textures, and VE behavior.

The question of possible use of autonomous agents in VEs has to be answered with regard to different types of agents, as well as different types of VEs [Ziemke, 1998]. First of all, artificial intelligence (AI) techniques are of course not required in all VEs. In architectural VR scenarios, for example, commonly only visited by avatars, representing human visitors, there probably is no need for any type of autonomous agents, or AI techniques in general, unless, possibly, as a rather passive population. In many other environments operationally autonomous agents might play the role of side-actors, as, for example, in the ALIVE system [Maes et al., 1996], which allows the interaction of humans and a VE inhabited by artificial agents. If, however, there is a need for VEs to be populated by more flexible and life-like agents, in particular where humans are supposed to cooperate or compete
with artificial agents, *e.g.*, for training purposes, then there will be a need for agents with a certain degree of behavioral autonomy and some capacity for self-organization. After all, how realistic could such a scenario be if only the humans could learn, but not their virtual collaborators and opponents? Hence, AI issues, such as the question of how intelligent or adaptive, and thereby how realistic, an artificial agent can ever be, are relevant for the realization of realistic VEs of this type.

Areas of behavior-oriented AI and VEs research could in fact complement each other, and both could profit from a closer cooperation [Ziemke, 1998]. The contribution behavior-oriented AI can make to VEs lies in the development of models for the realization of behavioral adaptively and complexity, and thereby more realistic behavior in, for example, virtual animals or humans. For behavior-oriented AI, due to its emphasis of agent-environment interaction, the ultimate validation of theories / models of intelligent behavior can only be provided by physical agents [Ziemke, 1998]. The limitations of physical experimentation, however, make the synthesis of physical life-like agents unfeasible, at least in the near future. Hence, possibly as an intermediate step, VEs would be extremely useful tools for behavior-oriented AI experimentation if they could provide sufficiently life-like agents, environments, and modes of interaction between them.

Affordable commercial simulators, are now available for practicing tasks such as threading flexible endoscopes down a virtual patient’s throat or manipulating long surgical instruments [Sorid and Moore, 2000]. Companies and universities are also developing systems that simulate more complex procedures, such as suturing tissue and inserting a catheter into a vein. These VR trainers can be adjusted to the user, can be used in any time, without the need for supervision. In addition, they can prepare students for surgical tasks, because complications can be simulated in a safe manner. For the user to interact with the graphics, there must be software algorithms that can calculate the whereabouts of the virtual instrument and determine whether it has collided with a body part or anything else. Models of how various tissues behave when cut, prodded, punctured, are also needed.

In the Uniformed Services University of the Health Sciences, U.S. Military’s Medical School in Bethesda, [http://www.usuhs.mil/], there is a large collection of medical simulators. In the center’s “emergency room”, the simulators surround a synthetic patient. In a typical training scenario, the instructor programs a mannequin to bleed internally. The mannequin can inhale air and exhale carbon dioxide, and its pulse can be made to fluctuate or fade, for instance. Students can make their diagnosis by observing the mannequin’s reactions, then, turning to the VR simulators to perform a correct treatment.
Appendix IV: Virtual software editing systems

For building the virtual reality (VR) interface required for this work, several VR softwares were examined. Overview describing tools that are currently used for writing VR applications is presented. For each, there is a summary describes some basic operations followed by several strengths and weaknesses (Table 1).

“Iris Performer” (Performer) is a high performance graphics “API” (Application Interface) running on “SGIs” [http://www.sgi.com/]. It results in a very high performance graphics application and can load many types of file formats. The loaders preserve the model hierarchy allowing users to manipulate the data scene. “Performer” has many visual simulation features that are invaluable for developing VR applications with a visual simulation focus. Although “Performer” is not a VR development environment, and runs only on “SGIs”, it is used as the basis for very powerful custom solutions.

The “CAVE” library is a set of function calls for writing low-level VR applications in “C” or “C++”. It handles setup and initialization of processes and provides access to various input devices. It was originally created at the university of Illinois at Chicago’s electronic visualization laboratory (EVL) by Cruz-Neira, 1995, and provides a low-level “API” for creating VR applications for projection-based systems. The Strength of the “CAVE” library is its acceptance: it has been in use for many years and has gained a wide range of users and acceptance within the VR community. It does not include higher-level features like collision detection or built-in support for object behaviors. The standard version of the library makes use of “OpenGL” [http://www.opengl.org/] for graphics rendering. The “CAVE” library is not a cross-platform supported. It is limited to “SGI” systems, and forces the user to deal with shared memory issues in order to create even non-distributed applications that run on multiple screens. In addition, the “CAVE” library was not designed as a long-term solution for VR development. As such, its “APIs” are often difficult to be extended.

“World Toolkit” (WTK) is a standard library for writing several types of VR applications. Although other products may have better implementations of specific features satisfying VR requirements, “WTK” is one of the few packages that has an answer for the entire gamut of needs [WorldTookKit Release 8. 2000]. “WTK” is a VR C-based library. It manages the details of reading sensor inputs, rendering scene geometry and importing databases. An application developer needs only to worry about manipulating the simulation and changing the scene-graph based on user inputs. The “WTK” library is based on object-orient concepts even though it is written in “C” and has no inheritance or dynamic binding. It includes loaders for many popular data file formats and provides cross-platform support for 3D and stereo sound. “WTK” is a well-established development environment with large base of users. It has a solid cross platform support and in the “SGI” version, multi-pipe applications support
is provided. This allows “WTK” to control a device such as the “CAVE”, and to combine vast library of device drivers.

“Alice” [http://www.alice.org/] was chosen to be the major VR software used in this work. “Alice” is a rapid prototyping software for creating interactive computer graphics applications [Conway et al. 1993; Conway, 1997; Cooper et al., 2000; Dann et al., 2000]. It is designed as a tool to create interactive 3D. The “Alice” system is designed to enable rapid development and prototyping of interactive graphics applications. The developers of “Alice” chose “Python” as the language for writing “Alice” scripts. “Python” [http://www.python.org/] is a high-level, interpreted and object-oriented language [Lutz, 2001]. The world in “Alice” is organized as a hierarchical collection of objects. An interesting hierarchy feature in “Alice” is that parent / child relationships can change at run-time and it is possible to switch between multiple coordinate systems. Any object coordinate system can be based on other object local coordinate system. Object transformations can be specified relative to any other objects in the hierarchy due to the ability of “Alice” to switch coordinate systems [Conway, 1997]. Between the limitations of “Alice”, there is lack of performance compared with some other VR libraries (e.g. “Iris Performer”).

The above overview provides an insight into current VR development environments. Unfortunately, none of them seem to provide specific requirements. Although many of the systems work very well and provide innovative solutions to many of the requirements, each system has weak points as well. “Alice” and “CAVE” are examples for how current VR systems provide for rapid prototyping. By using “Python”, “Alice” is able to provide instantaneous feedback to developers as soon as a single line of code is changed. “Alice” provides an entire environment for rapid prototyping of running applications that go far beyond any of the other of the described packages and is an example of how application development should be like in the future, and is the main reason why it was chosen as the VR development tool for this work.

The strengths and the weaknesses of the described VR editing softwares is summarized in Table 1 [Bierbaum and Just, 1998]:
<table>
<thead>
<tr>
<th>VR editing system</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
</table>
| Iris Performer | **Performance**: Performer is designed to achieve maximum graphics performance on SGI systems.
 | **File Loaders**: Performer can load many popular file formats. The loaders preserve the model hierarchy so as to allow users to manipulate the scene data.
 | **Visual Simulation Features**: Performer has features such as fog, light points and terrain definition that are invaluable for developing visual simulation VR application.
 | **Not Cross platform**: Performer only runs on SGI machines.
 | **VR Display Devices**: Performer has no direct support for VR display devices. Application developers have to write the routines for computing viewing frustums, etc.
 | **VR Input Devices**: Performer has no support for VR input devices. Users must write device drivers for input devices.
 | **Distributed Applications and Environments**: Performer has no networking support because it is not designed to support connected applications. Because of this, it has no support for application distribution. |
| CAVE Library | **Hardware Independence**: The CAVE Library shields the developer from most of the details of VR hardware.
 | **Scalability**: The CAVE Library includes a simulator mode for rapid development of applications and running them without any of the special hardware. It is also capable of both distributed and non-distributed operation.
 | **Distributed Applications**: The display processes for CAVE Library applications can be distributed across multiple machines, to take advantage of extra processing power and additional graphics pipelines.
 | **Cross-platform Support**: The CAVE Library is not a cross-platform solution, being limited to SGI systems.
 | **Distributed Applications**: Support for load-balanced distributed applications is limited, as all input devices must be connected to the master machine, and the slave is only used for rendering.
 | **Ease of use for Advanced Applications**: The CAVE library sometimes forces the user to be aware of and deal with the details of multiple processes and shared memory issues in order to create even non-distributed applications that will run on multiple screens.
 | **Extensibility**: The CAVE library was not designed as a long-term solution for VR development. As such, its APIs are often difficult to extend in backwards-compatible ways. |
| World Toolkit (WTK) | **Widely Used**: WTK is a highly used development environment with a large user base.
 | **Cross Platform**: WTK has solid cross platform support.
 | **Device Drivers**: WTK has a vast library of device drivers. WTK supports nearly every device on the market.
 | **Device Abstraction**: Application code has to be changed and recompiled if there is a hardware change.
 | **Performance**: WTK does not perform as well as some other VR libraries, most notably the libraries based upon Iris Performer. |
| Alice | **Rapid Prototyping**: Alice is designed from the ground up with rapid prototyping in mind. It succeeds at making rapid prototyping easy and powerful. The interpreted scripting language makes it possible to easily test many scenarios very quickly.
 | **Easy to learn**: Alice targets non-technical users. Because of this, the product is very simple to learn and use. The scripting language (Python) is simple yet powerful. The GUI development environment is clear and easy to use as well.
 | **VR Devices**: Creation of VR applications requires an internal developer version that includes support for VR devices.
 | **Application Limitations**: Alice places limitations on the types of VR applications that can be developed. It would be difficult to create applications that deal with large amounts of data and require updating the geometry each frame. It would also be difficult to create any application that needs to have complete control over the geometry at the polygon and vertex level. This means, for example, that Alice may not be well suited to creating scientific applications. |
Appendix V: Robot learning

Conventional vision-based methods for grasping objects typically require quantitatively correct models of the robot’s own characteristics and of the relevant parts of the environments. Generating those models and maintaining their accuracy in a changing and unpredictable world is difficult and expensive. Object grasping independent of either the robot’s inbuilt quantitative models or pre-defined numerical values of any parameter does not need any explicit calibration and, therefore, promises robustness. A variety of methods have in recent years been developed for this challenging and difficult task. For example, Cipolla and Hollinghurst, 1997, avoid using an exact kinematic model of the manipulator and knowledge of the camera parameters by performing self-calibration at four known points, combined with the use of visual feedback. Graefe, 1995, and Nguyen, 1997 avoid the necessity of calibration for robots by a direct transition from visual input information to robot control commands. There has also been work done in the area of eliminating the need for calibration of robots, such as the calibration of the vision system. There is much work being done to increase the adaptability and flexibility of robots, such as making them independent of world coordinates or making them able to automatically adapt to various changing parameters. Algorithms have also been designed which allow robots to automatically begin learning the environment, allowing them to recognize typical situations that they might be in [Aycard and Washington, 2000].

A tool developed in the “LEGO” laboratory of Aarhus University, Denmark, called “Toybots” [Lund and Pagliarini, 2000] allows users to play with evolutionary robotics tool for supporting the evolution of populations of robots (e.g., pets); the users can select the behaviors they like better while the robots are acting in the real world. “Toybots” is basically an interface to a user-guided genetic algorithm in which the user selection substitutes the classical formal fitness function. This approach allows for personalized evolution according to the user’s tastes, and at the same time letting users learn about evolution in an intuitive way. The principle of using minimal simulation coupled with reinforcement learning-based re-training in the real world helps to bridge the gap between simulation and reality [Cañamero et al., 1999]. Complex behavior is achieved using a behavior-based system, where the users evolve both the basic behavior modules and the behavior arbitrators. These ideas have been applied in the interactive “LEGO-Mindstorms” football, where children can select behavioral sequences to configure their players, and in the adaptive “LEGO” pet robot [Lund and Pagliarini, 2000].

Scárdua et al., 2000, developed a team of agents capable of learning cooperative behavior solely by observing the impact of their actions in the environment. To achieve this goal, they have developed an agent capable of learning to choose its actions by observing environment rewards. Their first phase of the development, described in this paper, intends to assess a neural network as an action evaluator in the robotic soccer domain.
Bhanu et al., 2001, presents the design, implementation and testing of a real-time system using computer vision and machine learning techniques to demonstrate learning behavior in a miniature mobile robot. The miniature robot through environmental sensing learns to navigate a maze by the optimum route. Several reinforcement learning based algorithms, such as Q-learning, Q(λ)-learning, fast on-line Q(λ)-learning and DYNA structure, were considered.

Carreras et al., 2002, propose a Neural-Q_learning approach designed for on-line learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network (NN) allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for on-line robot learning.

Heisele et al., 2001, presented several methods for face recognition and evaluated them with respect to robustness against pose changes. They located facial components, extracted them, and combined them into a feature vector which was classified by support vector machines (SVMs). Kim and Kim, 2002, used SVMs for face recognition in real-time. Since SVMs were originally developed for two-class classification, their basic scheme is extended for multiple recognition by adopting one-per-class decomposition. In order to make a final classification from one-per-class SVM outputs, a NN was used as the arbitrator. A facial sex classification system using SVMs was developed by Moghaddam and Yang, 2001. The classification was tested with various kernels in order to explore the space of models and performance. A Gaussian radial basis function (RBF) was found to perform the best (in terms of error rate), followed by a cubic polynomial kernel as second best. By using a low resolution of 21-by-12 faces, they achieved a reliable sex classification. Text categorization is the process of sorting text documents into one or more predefined categories or classes of similar documents [Basu et al., 2003]. Basu et al., 2003, trained 600 random documents and compared SVMs to NN classification. They discovered significant differences in the performance of the SVMs over the NN. They concluded that SVMs is preferable and less complex.
Appendix VI: ART-1

General

The ART-1 basic architecture is shown in Figure 1.

![Figure 1. ART-1 basic architecture](image)

There are three groups of neurons: an input processing field (F1 layer), the cluster units (F2 layer), and a mechanism for control and reset. F1 layer can be considered to consist of two parts, the input and the interface portions, F1(a) and F1(b). To control similarity of patterns placed on the same cluster, there are two sets of connections, top-down and bottom-up, between each unit in F1(b) and each cluster unit in F2. F1(b) combines input signals from F1(a) and F2 layer to measure similarity between an input signal and the weight vector for the specific cluster unit. The F2 layer is a competitive layer: the cluster unit with the largest activation becomes the candidate to learn the input pattern. This cluster unit is allowed to learn the input pattern depends on how similar its top-down weight is to the input vector. The reset unit makes the decision, and other supplemental units are also needed to control the processing of information in the network.

General operational procedure of ART-1 is shown in Figure 2.
At any time, an F2 unit is in one of three states: 1) Active: “on”; 2) Inactive: “off”, but available to participate in competition, and 3) Inhibited: “off”, prevented from participating in any further competition during the presentation of the current input vector. A learning trial consists of the presentation of one input pattern. The calculations in Step 2 constitutes a learning trial. The similarity degree for assigning a pattern to the same cluster unit is controlled by the vigilance parameter ρ, a user-tunable parameter $0 \leq \rho \leq 1$. The vigilance parameter defines the class sizes. High vigilance means that patterns need to be very similar in order to be considered for the same cluster. Low vigilance means that patterns that are quite dissimilar might end up in the same cluster. When equal to one, the prototype vectors have to match the input vectors perfectly. In this situation every input vector produces a new class equal to itself. Once an acceptable cluster unit has been selected for learning, the bottom-up and top-down signals are maintained for an extended period, during which time the weight changes occur (resonance).

ART-1 is designed to cluster binary input vectors. The architecture of ART-1 network consists of computational and supplemental units. The learning process is designed such that that patterns are not necessarily presented in a fixed order and the number of patterns for clustering may be unknown in advance. Updates for both the bottom-up and top-down weights are controlled by differential equations. However, this process may be finished in a learning trial. In other words, the weights reach the equilibrium during each learning trial. The computational units are shown in Figure 3.

Figure 2. ART general operational procedure

0. Initialize parameters.
1. While the stopping condition is not satisfied, do Steps 2-9.
 2. For each input vector, do steps 3-8.
 3. Process F1 layer.
 4. While reset condition is true, do steps 5-7.
 5. Find a candidate unit to learn the current input pattern: F2.
 6. F1(b) units combine their inputs from F1(a) and F2.
 7. Test reset condition:
 If reset is true, the current candidate unit is rejected (inhibited); go to step 4. Otherwise, the current candidate unit is accepted for learning; proceed to step 8.
 8. Learning: weight changes.
 9. Test stopping condition.
The architecture of the computational units consists of F1 units (input and interface units), F2 (cluster units), and a reset unit that carries out user control over the degree of similarity. Each unit in F1(a) layer is connected to the corresponding unit in F1(b). Each unit in F1(b) is connected to each unit in F2 by two weighted pathways: t_{ji}: the top-down weight from unit Y_j in F2 to unit X_i in F1(b), and b_{ji}: the bottom-up weight from unit X_i in F1(b) to unit Y_j in F2. The F2 layer is a competitive layer where only the uninhibited node with the largest activation has a nonzero value. The reset unit R controls the vigilance matching.

The supplemental units are shown in Figure 4.
The supplemental units are important because they provide a mechanism to perform computation using the neural network principle. Units in the ART-1 network need to respond differently at different stages of the process. But a biological neuron does not have a method to decide what to do and when. So does the implementation of a reset mechanism. Gain control units, G1 and G2, and the reset unit, R, are introduced to solve the above problem. “+” and “-” express the excitatory and the inhibitory signals. A signal is sent whenever any unit in the designated layer is “on”. Each unit in either F1(b) or F2 has three possible sources receiving signals. Such a unit is “on” if and only if it receives at least two excitatory signals. This is called the “2/3” rule.

One of the main drawbacks of ART-1 is that it only works when the input patterns are binary [He et al., 2000]. ART-2 can cope with grayscale (continuous) input patterns [Carpenter and Grossberg, 1987], but is problematic: 1) It is considerably more complex than ART-1 and 2) It is very hard to design and tune the parameters successfully for a particular application.

ART-1 learning algorithm

Notation

- \(n \) : number of components in the input vector.
- \(m \) : maximum number of clusters that can be formed.
- \(b_{ij} \) : bottom-up weights (from F1(b) unit \(X_i \) to F2 unit \(Y_j \)).
t_{ji}: top-down weights (from F2 units Y_j to F1(b) unit X_i).

ρ: vigilance parameter.

s: binary input vector.

x: activation vector for F1(b) layer (binary).

$\|x\|$: norm of vector x, defined as the sum of the binary components x_i.

Algorithm description

Step 0. Initialize parameters: $L > 1$ (constant), $0 < \rho \leq 1$.

Initiates weights: $0 < b_g(0) < \frac{L}{L-1+n}$, $t_{ji} = 1$.

Step 1. While stopping condition is false, do steps 2-13.

Step 2. For each training input do steps 3-12.

Step 3. Set activations of all F2 units to zero.

Set activations of all F1(a) units to input vector s.

Step 4. Compute the norm of s: $\|s\| = \sum s_i$.

Step 5. Send input signal from F1(a) to F1(b) layer: $x_i = s_i$.

Step 6. For each F2 node that is not inhibited:

If $y_j \neq -1$, then $y_j = \sum b_g x_i$.

Step 7. While reset is true, do steps 8-11.

Step 8. Find J such that $y_j \geq y_j$ for all nodes j.

If $y_j = -1$, then all nodes are inhibited

(This pattern cannot be clustered).

Step 9. Recompute activation x of F1(b): $x_i = s_i t_{ji}$.

Step 10. Compute the norm of vector x: $\|x\| = \sum x_i$.

Step 11. Test for reset:

If $\|x\| < \rho$, then $y_j = -1$ (inhibit node J) and go to step 7.

If $\|x\| \geq \rho$, then proceed to step 12.

Step 12. Update the weights for node J:
\[b_{ij}^{(\text{new})} = \frac{Lx_i}{L-1+\|x\|}, \]

\[t_{j_i}^{(\text{new})} = x_i, \]

Step 13. Test for stopping condition.

Comments

1) The zero input is prohibited \((i.e., s_i \in \{0,1\} \text{ and } \sum s_i > 0)\).

2) Step 3 removes all inhibitions from the previous learning trial.

3) In step 6, setting \(y = -1\) for an inhibited node will prevent that node from being a winner (since all weights and signals that are in the net are non-negative a unit with a negative activation can never have the largest activation).

4) In step 8 (winner-take-all), take \(J\) to be the smallest such index in case of a tie.

5) In step 9, unit \(X_i\) is “on” only if it receives both an external signals \(s_i\) and a signal sent down from \(F2\) to \(F1\), \(t_{ji}\).

6) In step 13, a stopping condition might be one of the following: 1) No weight changes; 2) No unit reset and 3) Maximum number of epochs reached.
Appendix VII: Support vector machines

Support vector machines (SVMs) are powerful classification systems based on regularization techniques with excellent performance in many practical classification problems [Vapnik, 1998; Evgeniou et al., 2000].

In binary classification problems, \(l \) experiments \{\((x_i, y_i), ..., (x_i, y_i)\)\} are given. This is the training set, where \(x_i \) is a vector corresponding to the expression measurements of the \(i^{th} \) experiment or sample. For example, in a binary bag classification problem, this vector may have 7 components, and \(y_i \) is a binary class label, which will be \(\pm 1 \). The components are: 1) Area; 2) Centroid; 3) Bounding box; 4) Major axis length; 5) Minor axis length; 6) Eccentricity and 7) Orientation. A multivariate function from the training set that will accurately label a new sample, \(f(x_{new}) = y_{new} \), should be estimated.

Multiple class prediction proposed in this research for classifying several kinds of bags is intrinsically more difficult than binary prediction because the classification algorithm has to learn to construct a greater number of separation boundaries or relations [Mukherjee, 2003]. In binary classification, an algorithm can cut the appropriate decision boundary for only one of the classes; the other class is simply the complement. In multiclass classification, each class has to be defined explicitly. The multiclass problem can be decomposed into a set of binary problems, and then combined to make a final multiclass prediction [Mukherjee, 2003]. The basic idea behind combining binary classifiers is to decompose the multiclass problem into a set of easier and more accessible binary problems. The main advantage in this strategy is that any binary classification algorithm can be used. Besides choosing a decomposition scheme and a classifier for the binary decompositions, it is desired to devise a strategy for combining the binary classifiers and providing a final prediction. The problem of combining binary classifiers has been studied [Dietterich and Bakiri, 1991, Hastie and Tibshirani, 1998; Allwein et al., 2000; Guruswami and Sahai, 1999], however, the literature is inconclusive, and the best method for combining binary classifiers for any particular problem is open [Mukherjee, 2003]. A geometric interpretation of the SVMs illustrates how this idea of smoothness or stability gives rise to a geometric quantity called the margin which is a measure of how well separated the two classes can be [Mukherjee, 2003]. Firstly, it is assumed that the classification function is linear

\[
f(x) = w \cdot x = \sum_{i=1}^{n} w_i x_i
\]

where \(x_i \) and \(w_i \) are the \(i^{th} \) elements of the vectors \(x \) and \(w \), respectively. The operation \(w \cdot x \) is a dot product. The label of a new point \(x_{new} \) is the sign of the above function, \(y_{new} = \text{sign}[f(x_{new})] \). The classification boundary, all values of \(x \) for which \(f(x) = 0 \), is a hyperplane defined by its normal vector.
Assume there are points from two classes that can be separated by a hyperplane and x is the closest data point to the hyperplane, define x_0 to be the closest point on the hyperplane to x. This is the closest point to x that satisfies $w \cdot x = 0$ (Figure 1).

This yields:

$$w \cdot x = k$$ for some k, and

$$w \cdot x_0 = 0$$

Subtracting these two equations, $w \cdot (x - x_0) = k$ is obtained.

Dividing by the norm of w (the norm of w is the length of the vector w):

$$\frac{w}{\|w\|} \cdot (x - x_0) = \frac{k}{\|w\|}$$ is obtained, where $\|w\| = \sqrt{\sum_{i=1}^{n} w_i^2}$.

Noting that $w/\|w\|$ is a unit vector (a vector of length 1), and the vector $x - x_0$ is parallel to w, it is concluded that

$$\|x - x_0\| = \frac{|k|}{\|w\|}$$

![Figure 1. The black line is the hyperplane separating the rectangles from the circles defined by its normal vector w. The circle on the dashed line is the point x closest to the hyperplane, and x0, the closest point to x on the hyperplane](image)

The objective is to maximize the distance between the hyperplane and the closest point, with the constraint that the points from the two classes fall on opposite sides of the hyperplane. The following optimization problem satisfies the objective:

$$\max_{w} \min_{x_i} \frac{y_i (w \cdot x_i)}{\|w\|} \quad \text{subject to} \quad y_i (w \cdot x) > 0 \quad \text{for all } x_i$$
Note that \(y(w \cdot x) = \|k \| \) when the point \(x \) is the circle closest to the hyperplane in Figure 1. It is required that for the point \(x_i \) closest to the hyperplane, \(k = 1 \). This fixes a scale and unit to the problem and results in a guarantee that \(y_i (w x_i) \geq 1 \) for all \(x_i \). All other points are measured with respect to the closest point, which is distance 1 from the optimal hyperplane. Therefore, equivalently the problem to be solved is:

\[
\max \min_{w, x_i} \frac{y_i (w \cdot x_i)}{\| w \|} \quad \text{subject to} \quad y_i (w \cdot x_i) \geq 1
\]

An equivalent, but simpler problem [Vapnik, 1998] is

\[
\min_w \frac{1}{2} \| w \|^2 \quad \text{subject to} \quad y_i (w \cdot x_i) \geq 1
\]

Note that so far, only hyperplanes that pass through the origin were considered. In many applications, this restriction is unnecessary, and the standard separable (i.e., the hyperplane can separate the two classes) SVM problem is written as:

\[
\min_{w, b} \frac{1}{2} \| w \|^2 \quad \text{subject to} \quad y_i (w \cdot x_i + b) \geq 1
\]

where \(b \) is a free threshold parameter that translates the optimal hyperplane relative to the origin. The distance from the hyperplane to the closest points of the two classes is called the margin and is \(1/\| w \|^2 \). SVMs find the hyperplane that maximizes the margin. Figure 2 illustrates the advantage of a large margin.

Figure 2. (a) The maximum margin hyperplane separating two classes. The solid black line is the hyperplane \((w \cdot x + b = 0)\). The two dashed lines are those for the points in the two classes closest to the hyperplane \((w \cdot x + b = \pm 1)\). A new point, the blank rectangle, is classified correctly in (a). Note, the larger the margin the greater the deviation allowed or margin for error. (b) A non-maximum margin hyperplane separating the two classes. Note, that the same new point is now classified incorrectly. There is less margin for error.
In practice, data sets are often not linearly separable. To deal with this situation, slack variables that allow violating the original distance constraints should be added. The problem becomes:

$$\min_{w, b, \xi} \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \quad \text{subject to} \quad y_i (w \cdot x_i + b) \geq 1 - \xi_i \quad (1)$$

where \(\xi_i \geq 0 \) for all \(i \). This new formulation trades off the two goals of finding a hyperplane with large margin (minimizing \(\|w\| \)), and finding a hyperplane that separates the data well (minimizing the \(\xi_i \)).

This formulation is called the soft margin SVM. It is no longer simple to interpret the final solution of the SVM problem geometrically. Figure 3 illustrates the soft margin SVM.

SVMs can also be used to construct nonlinear separating surfaces. The basic idea here is to non-linearly map the data to a feature space of high or possibly infinite dimensions, \(x \rightarrow \phi(x) \). Then the linear SVM algorithm can be applied in this feature space. A linear separating hyperplane in the feature space corresponds to a nonlinear surface in the original space. Equation 1 can be rewritten using the data points mapped into the feature space, and Equation 2 is obtained:

$$\min_{w, b, \xi} \frac{1}{2} \|\phi(x)\|^2 + C \sum_i \xi_i \quad (2)$$
\(\xi_i \geq 0 \) for all \(i \), where the vector \(w \) has the same dimensionality as the feature space and can be thought of as the normal of a hyperplane in the feature space. The solution to the above optimization problem has the form:

\[
f(x) = w\phi(x) + b = \sum_{i=1}^{l} c_i \phi(x_i) \cdot \phi(x) + b \tag{3}
\]

since the normal to the hyperplane can be written as a linear combination of the training points in the feature space,

\[
w = \sum_{i=1}^{l} c_i \phi(x_i).
\]

For both the optimization problems (Equation (2)) and the solution (Equation (3)), the dot product of two points in the feature spaces needs to be computed. This dot product can be computed without explicitly mapping the points into feature space by a kernel function, which can be defined as the dot product for two points in the feature space:

\[
K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \tag{4}
\]

The solution to the optimization problem now has the form:

\[
f(x) = \sum_{i=1}^{l} c_i K(x_i, x_j) + b \tag{5}
\]

Most of the coefficients \(c_i \) will be zero; only the coefficients of the points closest to the maximum margin hyperplane in the feature space will have nonzero coefficients. These points are the support vectors. Figure 4 illustrates a nonlinear decision boundary and the idea of support vectors.

Figure 4. The curve is the nonlinear decision boundary given by the SVM. The blank circles and the blank rectangles are the support vectors. Only these points contribute in defining the nonlinear decision boundary.
The following example illustrates the connection between the mapping into a feature space and the kernel function. Assume that the area measured in pixels for two bags is, Briefcase Area (BA) and Suitcase Area (SA). For each sample, there is an area vector \(x = (x_{BA}, x_{SA}) \). The following mapping \(\phi(x) \) is used:

\[
\phi : x \rightarrow \{x_{BA}^2, x_{SA}^2, \sqrt{2} x_{BA} x_{SA}, x_{BA}, x_{SA}, 1\}
\]

If there are two samples \(x \) and \(z \), then:

\[
K(x, z) \equiv \phi(x) \cdot \phi(z) = (x \cdot z + 1)^2
\]

\[
= x_{BA}^2 z_{BA}^2 + x_{SA}^2 z_{SA}^2 + 2\sqrt{2} x_{BA} x_{SA} z_{BA} z_{SA} +
\]

\[
x_{BA} z_{BA} + x_{SA} z_{SA} + 1
\]

is obtained, which is called a second order polynomial kernel. Note, that this kernel uses information about both areas of individual bags and also areas of pairs of bags. The following two kernels, the polynomial and Gaussian kernel, are commonly used:

\[
K(x, z) = (x \cdot z + 1)^p \quad \text{and} \quad K(x, z) = \exp(-\|x - z\|^2 / 2\sigma^2)
\]

Combining binary classifiers

Modern approaches for combining binary classifiers can be stated in terms of what is called output coding [Dietterich and Bakiri, 1991, Hastie and Tibshirani, 1998; Allwein et al., 2000; Guruswami and Sahai, 1999]. The basic idea behind output coding is the following: given \(k \) classifiers trained on various partitions of the bag classes, a new example is mapped into an output vector. Each element in the output vector is the output from one of the \(k \) classifiers, and a codebook is then used to map from this vector to the class label. For example, given three classes, the first classifier may be trained to discriminate classes 1 and 2 from 3, the second classifier is trained to discriminate classes 2 and 3 from 1, and the third classifier is trained to discriminate classes 1 and 3 from 2. A common output coding that was proved to be accurate [e.g., Rifkin et al., 2002], the one-versus-all (OVA) [Mukherjee, 2003] will be used. In the OVA approach, given \(k \) bag classes, \(k \) independent classifiers are constructed where the \(i^{th} \) classifier is trained to separate samples belonging to class \(i \) from all others.

The codebook is a diagonal matrix, and the final prediction is based on the classifier that produces the largest confidence (margin) [Rifkin et al., 2002]:

\[
\text{class} = \arg \max_{i=1,k} f_i
\]

where \(f_i \) is the signed confidence measure of the \(i^{th} \) classifier. Leave-one-out cross validation and an independent test might be used to test the methodology. The confidence of the final call is the margin of the winning SVM. When the largest confidence is positive the final prediction is considered a “high
confidence” call. If negative it is a “low confidence” call that can also be considered a candidate for a no-call because no single SVM claims the sample as belonging to its recognizable class. Accuracy error rates will be analyzed in terms of totals and also in terms of high and low confidence calls.
Appendix VIII: Reinforcement learning

Algorithms

Of the many reinforcement learning (RL) algorithms, perhaps the most widely used are Q-learning [Watkins, 1989; Watkins and Dayan, 1992] and Sarsa [Rummery and Niranjan, 1994; Sutton, 1996]. Suppose the system observes a current state s, executes action a, receives immediate reward r, and then observes a next state s'. The Q-learning algorithm updates the current estimate, $Q_k(s,a)$, of $Q^*(s,a)$ using the following equation:

$$Q_{k+1}(s,a) = (1-\alpha_k)Q_k(s,a) + \alpha_k [r + \gamma \max_{a' \in \mathcal{A}} Q_k(s',a')]$$ (1),

where α_k is a time-varying learning-rate parameter. The values of all the other state-action pairs remain unchanged in this update. If in the limit the action-values of all admissible state-action pairs are updated infinitely often, and α_k decays with increasing k while obeying the usual stochastic approximation conditions, then $\{Q_k\}$ converges to Q^* with probability of 1 [Jaakkola, 1994; Bertsekas and Tsitsiklis, 1996].

Sarsa is similar to Q-learning except that the maximum action-value for the next state on the right-hand side of (1) is replaced by the action-value of the actual next state-action pair [Sutton, 1996]:

$$Q_{k+1}(s,a) = (1-\alpha_k)Q_k(s,a) + \alpha_k [r + \gamma Q_k(s',a')]$$ (2),

where a' is the action executed in state s'. This algorithm is called Sarsa due to its dependence on s, a, r, s', and a'. In particular, an estimate for $Q^*(s,a)$ is obtained by combining the immediate reward r with a utility estimate for the next state, $U(s') = \max_{a' \in \mathcal{A}} [Q(s',a')]$. The sum

$$r + \gamma U(s')$$ (3),

called a 1-step corrected estimator, is an unbiased estimator for $Q^*(s,a)$ when $Q = Q^*$, since, by definition

$$Q^*(s,a) = E[R(s,a) + \gamma V^*(T(s,a))]$$ (4),

where $V^*(s) = \max_{a \in \mathcal{A}} Q^*(s,a)$. The 1-step estimate is combined with the old estimate for $Q(s,a)$ using a weighted sum:

$$Q_{k+1}(s,a) \leftarrow (1-\alpha_k)Q_k(s,a) + \alpha_k [r + \gamma U(s')]$$ (5),

where α_k is the learning rate. Finally, the system's control policy is updated using Equation 10 described later, and the cycle repeats.
Modeling robot-environment interaction

It is assumed that the robot-environment interaction can be modeled as a Markov Decision Process (MDP). In MDP, the robot and the environment are modeled by two synchronized finite state automatons interacting in a discrete time cyclical process model (Figure 1).

![Diagram of basic model of robot-environment interaction](image_url)

Let \(S \) denote the set of possible environmental states, and \(A \) denotes the set of possible actions. It is assumed that both \(S \) and \(A \) are discrete and finite. The dynamics of state transitions are modeled by a transition function, \(T \), which maps state-action pairs into next states (\(T : S \times A \rightarrow S \)). In general, the transition may be probabilistic. If \(s_t \) denotes the state at time \(t \), and \(S_{t+1} \) be the random variable denoting the state at time \(t + 1 \), then \(S_{t+1} = T(s_t, a_t) \). \(T \) is usually specified in terms of a set of transition probabilities, \(P_{s,a}(s') \), where \(P_{s,a}(s') = P(T(s,a) = s') \) (6).

Rewards generated by the environment are determined by a reward function, \(R \), which maps state into scalar rewards (\(R : S \rightarrow \mathbb{R} \)). The reward function is probabilistic and depends on the number of items fell from a bag during lift and shaking operations. If \(R_t \) be the random variable denoting the reward received at time \(t \), then \(R_t = R(a_t) \).

Notice that the system has a degree of control over the temporal evolution of the process since it chooses an action at each time step. It is assumed that in selecting control actions the system's decision is based solely upon the value of the current state. Under these circumstances the system behavior can be specified by a control policy, which describes the action to execute given the current state. Formally, a policy \(f \) is a function from states to actions (\(f : S \rightarrow A \)) where \(f(s) \) denotes the action to be
performed in state s. The system's objective is to learn a control policy that maximizes some measure of the total reward accumulated over time. In principle, any number of reward measures can be used, however, the most prevalent measure is one based on a discounted sum of the reward received over time. This sum is called the return and is defined for time t as

$$\text{return}(t) = \sum_{n=0}^{\infty} \gamma^n r_{t+n} \quad (7)$$

where γ, called the temporal discount factor, is a constant between 0 and 1, and r_{t+n} is the reward received at time $t+n$. Because the process may be stochastic, the system's objective is to find a policy that maximizes the expected return. For a fixed policy f, $V_f(s)$ is defined as the value function for f, to be the expected return, given that the process begins in state s and follows policy f thereafter. The system's objective is to find a policy, f^*, that for every state maximizes the value function. That is, find f^*, such that

$$V_f^*(s) = \max_f V_f(s) \quad \forall s \in S \quad (8).$$

An important property of MDPs is that f^* is well defined and guaranteed to exist. In particular, the optimality theorem from dynamic programming [Bellman, 1957] guarantees that for a discrete time, discrete state Markov decision problem there always exists a deterministic policy that is optimal. Furthermore, a policy f is optimal if and only if it satisfies the relation

$$Q_f(s, f(s)) = \max_{a \in A} (Q_f(s, a)) \quad \forall s \in S \quad (9)$$

where $Q_f(s, a)$, called the action-value for state-action pair (s, a), is defined as the return the robot expects to receive given that it starts in state s, applies action a next, and then follows policy f thereafter [Bellman, 1957, Bertsekas, 1987]. Intuitively, a policy is optimal if and only if in each state, s, the policy specifies the action that maximizes s's action-value. That is,

$$f^* = a \quad \text{such that} \quad Q_{f^*}(s, a) = \max_{a' \in A} [Q_{f^*}(s, a')] \quad \forall s \in S \quad (10).$$

For a given MDP, the set of action-values for which Equation 9 holds is unique. These values are said to define the optimal action-value function Q^* for the MDP. If an MDP is completely specified a priori (including the transition probabilities and reward distributions) then an optimal policy can be computed directly using techniques from dynamic programming [Bellman, 1957, Ross, 1983, Bertsekas, 1987]. Because the interest here is robot learning, it is assumed that only the state space S and set of possible actions A are known a priori and that the statistics governing T and R is unknown. Under these circumstances the system cannot compute the optimal policy directly, but must explore its environment and learn an optimal policy by trial and error.
Appendix IX: VR robotic environment

Figure 1. Web-based interface
Figure 2. VR hierarchy
Appendix X: Operational control panels

Speed control

The “Speed” control panel (Figure 1) changes the speed of the real robot motion. The three buttons “Velocity=20%”, “Velocity=50%” and “Velocity=100%” represent values of speeds correspond to a percentage of the robot full speed which is 3.21 m/s according to the real “A255” robot specifications [A255 Robot System, 1998]. When the system is powered-up, the speed setting is 50%.

Figure 1. Speed control panel

Grid control

The “3DGrid” control panel consists of an option button set (Figure 2). By choosing one at a time of the options Layer0 to Layer8, a grid that contains 64 points appears in the virtual reality (VR) model (Figure 3b-j). Each one of the associative points of layer1 to layer8 is located exactly 30cm in “Alice” coordinates above the center of each one of the 64 checkerboard squares. Layer0 represents the 64 points that on the surface of the VR checkerboard. Clicking on a spatial point sends the VR robot gripper over there. The “Hide All” option hides the layer points (Figure 3a). The “Show All” option shows the entire layer points (Figure 3k). Figure 4 shows an example in which the robot gripper touches the four extremist points of the highest layer (layer8).

Figure 2. 3DGrid control panel
(a) All the layers are hidden

(b) Layer0 - checkerboard surface points

(c) Layer1

(d) Layer2

(e) Layer3

(f) Layer4

(g) Layer5

(h) Layer6

(i) Layer7

(j) Layer8
(k) All layers are shown

Figure 3. 3D layers

(a) Layer8 close right point
(b) Layer8 close left point
(c) Layer8 far right point
(d) Layer8 far left point

Figure 4. Layer8 extremist points

Views control

Using the “Views” control (Figure 5) enables the human operator (HO) to change the field-of-view over the VR environment. There are three types of possible views: the close, the side and the front (Figure 6).
Shake control

By using the “Shake” control panel, the HO can choose two pairs of spatial points (ShakePoint1, ShakePoint2, and ShakePoint3, ShakePoint4) for shaking a bag, and another point located on the robot workspace for picking it up (PickUpPoint) (Figure 7). Clicking on the red cylinder, which is located on the VR checkerboard and represents a bag (Figure 8) causes the VR robot to move there. Clicking on the “PickUpPoint” button will send the location coordinates of the bag to the real robot server that stores them. Choosing the four spatial points by using the “3Dgrid” control panel (example is
shown in Figure 9) and using the four buttons “ShakePoint1”, “ShakePoint2”, “ShakePoint3” and “ShakePoint4” defines two pairs of points for shaking a bag. These four point coordinates are sent to the robot server and stored there. The “Shake Batch” button causes the real robot to move toward the location of the bag that was previously stored. Then it moves through each of the four points and their coordinates are stored in the robot controller. After the points are stored in the robot controller, a shaking action is performed in such a way that the robot moves from the first point to the second several times and then from the third point to the forth additional several times (example is shown in Figures 10 and 11). If the HO desires performing more bag shaking, he may choose the buttons “ShakeMore-1-2” that cause the robot to move for another cycle of shaking between the first and the second points, and “ShakeMore-3-4” that does the same for the third and the forth points. The “ShakeMore-1-2-3-4” button causes the robot to move between the track of all the four points several times. The “New Shake” button resets the points and causes both the real and the VR robots to move toward their starting location (Figure 12).
Figure 8. Bag located on the VR checkerboard represented by a red cylinder

(a) First point of pair1 (b) Second point of pair1
(c) First point of pair2 (d) Second point of pair2

Figure 9. Spatial points example

Point1 Point2

Figure 10. Shaking action through two points
Off-line planning control

Path planning is performed through the “Off-line Planning Control Panel” (Figure 13). By using the off-line control panel buttons, a HO can manipulate the VR robot arm location in positive or negative X and Y increments. The value of an increment is constant and was chosen to be on the one hand large enough for accomplishing a task in a reasonable time, and on the other hand not to be too large, for allowing the VR robot to reach accurate positions in the VR scene. A value of 7.5mm (a quarter of a checkerboard length) was determined to be reasonable. The buttons “X+” and “X-” move the VR robot across the X axis direction, and the buttons “Y+” and “Y-” move it across the Y axis direction. The gripper is assumed to be perpendicular to the workspace when moving the VR robot. Other possibilities in the off-line control panel include the commands “Pick”, “Path Point” and “Release”. When a HO wants to pick up an object, he has to manipulate the VR robot to be close enough to it (1cm as “Alice” reports between the end of the gripper and the center of gravity of the object was
chosen to be a reasonable distance). If the distance is larger, the “Pick” command is not performed. If it is performed, the information that includes the command “Pick” and the VR coordinates, Xvr and Yvr of the object are stored in the computer memory. If the HO wants the gripper holding an object to pass through a point in the VR scene, he should manipulate the VR robot to do it. If the object is close enough to the checkerboard (50mm as “Alice” reports was chosen as a reasonable distance), pressing “Path Point” will cause the command “Path Point” and the coordinates (Xvr, Yvr) of the object to be stored in the computer memory as another part of the path planning. If the HO wants to release the object in a desired point in the VR scene, he should manipulate the VR robot there and press “Release”. If the object is close enough to the checkerboard (50mm as “Alice” reports was chosen as a reasonable distance), pressing “Release” releases the object in this location, the command “Release” and the coordinates (Xvr, Yvr) of the object will be stored in the computer memory as another part of the path, and so on. When a path is planned according to the HO's satisfaction, he may use the “Send Batch” command. Pressing on the “Send Batch” command will: 1) Transform all the VR coordinates to real coordinates of all the locations in the path according to the pre-calculated transformation matrix described in Appendix XII and 2) Send the stored path planning information to the real robot over the Internet that will perform the task. The commands “Pick”, “Path Point” and “Release” will be performed in the real robotic scene as shown in Figure 14. ΔZ is a pre-defined value that represents how high the real robotic arm is above the checkerboard when performing a command and was chosen to be 30mm. The “New Batch” button resets the points and causes both the real and the VR robots to move toward their starting location.
Direct control

Direct control over both the VR and real robots is performed through the “Direct Control Panel” that is shown in Figure 15. By using the “Direct Control Panel”, a HO can manipulate both the VR and the real robots to move in the X, Y, and Z directions in real-time. It also allows opening and closing the gripper. The increment of a movement is a pre-defined value and it was set to a reasonable value of 7.5mm (a quarter of a checkerboard length). The “Starting Point” button sends both the VR and real robots to their starting position.
High level to low level language control

By using the “High Level (HL) to Low Level (LL) Language” control panels exist in the VR interface, a HO can plan complex robot trajectories. A trajectory consists of a combination of three HL commands: pick an object, touch the object in a path point(s) located on the robotic platform and release an object. The system is capable of using up to three plans that can be run independently. These plans can be changed during system operation and in real-time, which gives the system the flexibility of unlimited HL to LL number of plans. When a plan was designed by the HO through the HL to LL control panel shown in Figure 16, he can send it as a batch to the real robot controller which transfers the HL to LL commands, then the real robot performs the trajectory. Examples for HL to LL plans are shown in Figures 17, 18 19 and 20.
Figure 16. High level to low level language control panel
(a) Jump command - robot starting position

(b) Jump command - first robot point

(c) Jump command - second robot point

Figure 17. High level to low level language - jump command in VR scene
Figure 18. High level to low level language - jump command in real scene

(a) Triple jump command - robot starting position

(b) Triple jump command - first robot point
Figure 19. High level to low level language - triple jump command in VR scene
Figure 20. High level to low level language - triple jump command in real scene
Appendix XI: Kinematics

Top view over the robot arm is shown in Figure 1. “H” represents the sum of lengths of the shoulder and the elbow. This distance is the length starting from the robot base-point \(P_B \) to the gripper end point \(P_2 \).

![Diagram of robot arm](image)

Figure 1. Top view over the robot arm

The x and the y values are the horizontal and vertical values of the robot gripper position related to the robot base-point.

The trigonometric equation for \(\theta_B \) is:

\[\theta_B = \arctan \frac{y}{x} \]

The relationship between \(H \), \(x \) and \(y \) is:

\[H = \sqrt{x^2 + y^2} \]

The side view of the VR robotic chain is shown in Figure 2. It is assumed that the gripper is always perpendicular to the robot workspace.
Figure 2. Side view over the robot arm

The forward kinematics (FK) equation for P1 is:

\[P_x = L_1 \cos(\theta_1) \]
\[P_y = L_1 \sin(\theta_1) \]

The FK equation for P2 is:

\[P_{x_2} = L_1 \cos(\theta_1) + L_2 \cos(\theta_2 - \theta_1) \]
\[P_{y_2} = L_1 \sin(\theta_1) - L_2 \sin(\theta_2 - \theta_1) \]

Using the following trigonometry identities:

\[\cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) \]
\[\sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta) \]

Yields:

\[P_{x_2} = L_1 \cos(\theta_1) + L_2 [\cos(\theta_2) \cos(\theta_1) + \sin(\theta_2) \sin(\theta_1)] \]
\[P_{y_2} = L_1 \sin(\theta_1) - L_2 [\sin(\theta_2) \cos(\theta_1) - \cos(\theta_2) \sin(\theta_1)] \]
\[P_{x_2} = L_1 \cos(\theta_1) + L_2 \cos(\theta_2) \cos(\theta_1) + L_2 \sin(\theta_2) \sin(\theta_1) \]
\[P_{y_2} = L_1 \sin(\theta_1) - L_2 \sin(\theta_2) \cos(\theta_1) - L_2 \cos(\theta_2) \sin(\theta_1) \]

Squaring both sides:

\[P_{x_2}^2 = L_1^2 \cos^2 \theta_1 + L_2^2 \cos^2 \theta_1 \cos^2 \theta_2 + L_2^2 \sin^2 \theta_1 \sin^2 \theta_2 + 2L_1L_2 \cos \theta_1 \cos \theta_2 \]
\[+ 2L_1L_2 \sin \theta_1 \sin \theta_2 \cos \theta_1 \cos \theta_1 \]
\[+ 2L_2^2 \sin \theta_1 \sin \theta_1 \cos \theta_1 \]
\[+ 2L_2^2 \sin \theta_1 \sin \theta_2 \cos \theta_1 \cos \theta_1 \]
\[Py^2 = L_1^2 \sin^2 \theta_1 + L_2^2 \cos^2 \theta_1 \sin^2 \theta_2 + L_2^2 \sin^2 \theta_1 \cos^2 \theta_2 - 2L_1L_2 \sin \theta_1 \cos \theta_1 \sin \theta_2 - 2L_1L_2 \sin^2 \theta_1 \cos \theta_2 - 2L_2^2 \sin \theta_1 \sin \theta_2 \cos \theta_1 \cos \theta_2 \]

Re-arranging:

\[Px^2 + Py^2 = L_1^2 (\cos^2 \theta_1 + \sin^2 \theta_1) + L_2^2 \cos^2 \theta_2 (\cos^2 \theta_1 + \sin^2 \theta_1) + L_2^2 \sin^2 \theta_1 (\cos^2 \theta_1 + \sin^2 \theta_1) - 2L_1L_2 \cos \theta_2 (\cos^2 \theta_1 + \sin^2 \theta_1) \]

\[Px^2 + Py^2 = L_1^2 + L_2^2 - 2L_1L_2 \cos \theta_2 \]

\[\cos \theta_2 = \frac{L_1^2 + L_2^2 - Px^2 - Py^2}{2L_1L_2} \]

\[\theta_2 = \arccos \left(\frac{L_1^2 + L_2^2 - Px^2 - Py^2}{2L_1L_2} \right) \]

Solving \(\theta_1 \):

\[\tan(\theta_3) = \frac{y}{x} \]

\[\tan(\theta_4) = \frac{L_2 \sin(\theta_2)}{L_1 + L_2 \cos(\theta_2)} \]

\[\theta_1 = \theta_3 + \theta_4 \]

Using the identity \(\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} \) and doing some substitution yields:

\[\tan(\theta_1) = \tan(\theta_3 + \theta_4) \]
\[\theta_3 = \arctan \left(\frac{y}{x} \right) = \frac{\cos y}{\sin x} \]

\[\theta_4 = \arctan \left(\frac{L_2 \sin(\theta_2)}{L_4 + L_2 \cos(\theta_2)} \right) \]

\[\tan(\theta_i) = \frac{y + \frac{L_2 \sin(\theta_2)}{x + L_2 \cos(\theta_2)}}{1 - \left(\frac{y}{x + L_2 \cos(\theta_2)} \right)} \]

Multiplying by x yields:

\[\tan(\theta_i) = \frac{y + \frac{xL_2 \sin(\theta_2)}{L_4 + L_2 \cos(\theta_2)}}{x - \left(\frac{yL_2 \sin(\theta_2)}{L_4 + L_2 \cos(\theta_2)} \right)} \]

\[\tan(\theta_i) = \frac{y(L_4 + L_2 \cos(\theta_2)) + xL_2 \sin(\theta_2)}{x(L_4 + L_2 \cos(\theta_2)) - yL_2 \sin(\theta_2)} \]

\[\theta_1 = \arctan \left(\frac{y(L_4 + L_2 \cos(\theta_2)) + xL_2 \sin(\theta_2)}{x(L_4 + L_2 \cos(\theta_2)) - yL_2 \sin(\theta_2)} \right) \]

Now, given any position (x, y and z), the angles required to reach it are calculated.
Appendix XII: Transformation matrix

Table 1. Intersection coordinates

<table>
<thead>
<tr>
<th>Point Num.</th>
<th>VR Robot Coordinate (cm)</th>
<th>Real Robot Coordinates (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xy**</td>
<td>Yy**</td>
</tr>
<tr>
<td>0</td>
<td>-21.15</td>
<td>18.16</td>
</tr>
<tr>
<td>1</td>
<td>-21.15</td>
<td>13.62</td>
</tr>
<tr>
<td>2</td>
<td>-21.15</td>
<td>9.08</td>
</tr>
<tr>
<td>3</td>
<td>-21.15</td>
<td>4.54</td>
</tr>
<tr>
<td>4</td>
<td>-21.15</td>
<td>-4.54</td>
</tr>
<tr>
<td>5</td>
<td>-21.15</td>
<td>-9.08</td>
</tr>
<tr>
<td>6</td>
<td>-21.15</td>
<td>-13.62</td>
</tr>
<tr>
<td>7</td>
<td>-21.15</td>
<td>-18.16</td>
</tr>
<tr>
<td>8</td>
<td>-25.69</td>
<td>18.16</td>
</tr>
<tr>
<td>9</td>
<td>-25.69</td>
<td>13.62</td>
</tr>
<tr>
<td>10</td>
<td>-25.69</td>
<td>9.08</td>
</tr>
<tr>
<td>11</td>
<td>-25.69</td>
<td>4.54</td>
</tr>
<tr>
<td>12</td>
<td>-25.69</td>
<td>-4.54</td>
</tr>
<tr>
<td>13</td>
<td>-25.69</td>
<td>-9.08</td>
</tr>
<tr>
<td>14</td>
<td>-25.69</td>
<td>-13.62</td>
</tr>
<tr>
<td>15</td>
<td>-25.69</td>
<td>-18.16</td>
</tr>
<tr>
<td>16</td>
<td>-30.23</td>
<td>18.16</td>
</tr>
<tr>
<td>17</td>
<td>-30.23</td>
<td>13.62</td>
</tr>
<tr>
<td>18</td>
<td>-30.23</td>
<td>9.08</td>
</tr>
<tr>
<td>19</td>
<td>-30.23</td>
<td>4.54</td>
</tr>
<tr>
<td>20</td>
<td>-30.23</td>
<td>-4.54</td>
</tr>
<tr>
<td>21</td>
<td>-30.23</td>
<td>-9.08</td>
</tr>
<tr>
<td>22</td>
<td>-30.23</td>
<td>-13.62</td>
</tr>
<tr>
<td>23</td>
<td>-30.23</td>
<td>-18.16</td>
</tr>
<tr>
<td>24</td>
<td>-34.77</td>
<td>18.16</td>
</tr>
<tr>
<td>25</td>
<td>-34.77</td>
<td>13.62</td>
</tr>
<tr>
<td>26</td>
<td>-34.77</td>
<td>9.08</td>
</tr>
<tr>
<td>27</td>
<td>-34.77</td>
<td>4.54</td>
</tr>
<tr>
<td>28</td>
<td>-34.77</td>
<td>-4.54</td>
</tr>
<tr>
<td>29</td>
<td>-34.77</td>
<td>-9.08</td>
</tr>
<tr>
<td>30</td>
<td>-34.77</td>
<td>-13.62</td>
</tr>
<tr>
<td>31</td>
<td>-34.77</td>
<td>-18.16</td>
</tr>
</tbody>
</table>

* vr - Virtual Reality
** r - Real
Figure 1. Intersection points taken from the real robotic environment for creating the transformation matrix
Figure 2. Intersection points taken from the VR environment for creating the transformation matrix

In the aligning a pair of shapes method, given two similar shapes, \(x_1 \) (the virtual reality (VR) environment) and \(x_2 \) (the real environment), a rotation \(\theta \), a scale \(s \), and a translation \((t_x, t_y)\) should be chosen for mapping \(x_2 \) onto \(M(x) \) so as to minimize the weighted sum:

\[
E = (x_1 - M(x_2))^T W (x_1 - M(x_2))
\]

where:

\[
M \begin{pmatrix} x_{jk} \\ y_{jk} \end{pmatrix} = \begin{pmatrix} (s \cos \theta)x_{jk} - (s \sin \theta)y_{jk} + t_x \\ (s \sin \theta)x_{jk} + (s \cos \theta)y_{jk} + t_y \end{pmatrix}
\]

and \(W \) is a diagonal matrix of weights for each point.

When \(a_x = s \cos \theta \) and \(a_y = s \sin \theta \) then the least squares approach (differentiating with respect to each of the variables \(a_x \), \(t_y \), \(t_x \), \(a_y \)) leads to a set of four linear equations:
\[
\begin{pmatrix}
X_2 & -Y_2 & W & 0 \\
Y_2 & X_2 & 0 & W \\
Z & 0 & X_2 & Y_2 \\
0 & Z & -Y & X_2 \\
\end{pmatrix}
\begin{pmatrix}
a_x \\
a_y \\
t_x \\
t_y \\
\end{pmatrix}
=
\begin{pmatrix}
X_1 \\
Y_1 \\
C_1 \\
C_2 \\
\end{pmatrix}
\]

where:
\[
X_i = \sum_{k=0}^{n-1} w_k x_{ik},
\]
\[
Y_i = \sum_{k=0}^{n-1} w_k y_{ik},
\]
\[
Z = \sum_{k=0}^{n-1} w_k (x_{2k}^2 + y_{2k}^2),
\]
\[
W = \sum_{k=0}^{n-1} w_k,
\]
\[
C_1 = \sum_{k=0}^{n-1} w_k (x_{ik} x_{2k} + y_{ik} y_{2k}),
\]
\[
C_2 = \sum_{k=0}^{n-1} w_k (y_{ik} x_{2k} + x_{ik} y_{2k}).
\]

The vector equation shown in Figure 3 represents the structure of the matrix.

\[
\begin{pmatrix}
a_x & -a_y & t_x \\
a_y & a_x & t_y \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
x_{vr} \\
y_{vr} \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
x_r \\
y_r \\
1 \\
\end{pmatrix}
\]

Figure 3. Transformation matrix vector equation

The \(a_x, a_y \), variables are the scaling factors and \(t_x, t_y \) are translations. The calculated transformation matrix is shown in Figure 4.

\[
\begin{pmatrix}
-1.3216 & -0.0000 & -1.4515 \\
0.0000 & -1.3216 & 0.0000 \\
0.0000 & 0.0000 & 1.0000 \\
\end{pmatrix}
\]

Figure 4. Calculated transformation matrix

In creating the transformation matrix, the vector \((X_{vr}, Y_{vr})\) is considered as being accurate, because it was calculated based on planning the VR checkerboard. If it is required to change the rotation, scale or translation of any of the environments, a new updated transformation matrix should be calculated.
Table 2. Intersection points and their corresponding parameters (cm)
<table>
<thead>
<tr>
<th>Point</th>
<th>Output of “Alice”</th>
<th>Output of Matrix</th>
<th>Measurements</th>
<th>Errors</th>
<th>Distance from Origin (Base of the Robot) ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xv r</td>
<td>Yv r</td>
<td>Xr r</td>
<td>Yr, m</td>
<td>E*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>26.</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>18.</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>03</td>
<td>9.0</td>
<td>2</td>
<td>6</td>
<td>26.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>26.</td>
</tr>
<tr>
<td>21</td>
<td>08</td>
<td>4.6</td>
<td>2</td>
<td>7</td>
<td>26.</td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>9.1</td>
<td>2</td>
<td>6</td>
<td>26.</td>
</tr>
<tr>
<td>21</td>
<td>02</td>
<td>13.</td>
<td>1</td>
<td>5</td>
<td>26.</td>
</tr>
<tr>
<td>20</td>
<td>97</td>
<td>18.</td>
<td>2</td>
<td>3</td>
<td>26.</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>5.9</td>
<td>3</td>
<td>2</td>
<td>32.</td>
</tr>
<tr>
<td>25</td>
<td>76</td>
<td>8.8</td>
<td>3</td>
<td>8</td>
<td>33.</td>
</tr>
<tr>
<td>25</td>
<td>98</td>
<td>13.</td>
<td>2</td>
<td>4</td>
<td>32.</td>
</tr>
<tr>
<td>25</td>
<td>4.5</td>
<td>8.8</td>
<td>3</td>
<td>8</td>
<td>32.</td>
</tr>
<tr>
<td>25</td>
<td>9.0</td>
<td>8.1</td>
<td>3</td>
<td>4</td>
<td>32.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.15</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.37</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.50</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>9.1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.33</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>43</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.96</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.96</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>9.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.33</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.50</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.37</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>18</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>Unreachable</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>13</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.00</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>9.1</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46.09</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>4.6</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.90</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>4.6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.90</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>9</td>
<td>.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>48</td>
<td>.</td>
<td>.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.1</td>
<td>.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9</td>
<td>.</td>
<td>2</td>
<td>14.01</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>68</td>
<td>18</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>27</td>
<td>.</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

* $E = [(X_r - X)^2 + (Y_r - Y)^2]^{0.5}$

** $En = (E/6) * 100$

*** Distance from Origin (Base of the Robot) = $[X^2 + Y^2]^{0.5}$
Figure 5. Off-line path planning example
Figure 6. Off-line path planning flow chart example
Table 3. Path performing measurements
<table>
<thead>
<tr>
<th>Experiment Num.</th>
<th>Was the Path Performed Successfully?</th>
<th>Coordinates (cm)</th>
<th>Errors</th>
<th>Coordinates (cm)</th>
<th>Errors</th>
<th>Coordinates (cm)</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1.2</td>
<td>0.1</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>9</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>1.2</td>
<td>0.1</td>
<td>7</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>Yes</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
<td>Xr, m</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Xr,m & Yr,m - Manually Measured Coordinates
** E=[(Xr,m-Xr)^2+(Yr,m-Yr)^2]^{0.5}

*** En=(E/6)*100
Figure 7. Point 0 and point 16, used in the real environment for the repeatability test

Table 4. Repeatability test using point 0 and point 16
| Measurement Num. | X (mm) | Y (mm) | X (mm) | Y (mm) | Distance Between Point 0 to Point 16 (mm) *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264.9951</td>
<td>-240.016</td>
<td>325.0674</td>
<td>180.0395</td>
<td>424.3296</td>
</tr>
<tr>
<td>2</td>
<td>264.9922</td>
<td>-240.028</td>
<td>325.0372</td>
<td>180.0228</td>
<td>424.3202</td>
</tr>
<tr>
<td>3</td>
<td>264.9999</td>
<td>-239.992</td>
<td>325.0429</td>
<td>179.9518</td>
<td>424.2149</td>
</tr>
<tr>
<td>4</td>
<td>264.9922</td>
<td>-240.028</td>
<td>325.0435</td>
<td>179.9151</td>
<td>424.2145</td>
</tr>
<tr>
<td>5</td>
<td>265.0132</td>
<td>-240.004</td>
<td>325.0686</td>
<td>179.9666</td>
<td>424.2426</td>
</tr>
<tr>
<td>6</td>
<td>265.0208</td>
<td>-239.969</td>
<td>325.1305</td>
<td>180.0003</td>
<td>424.2495</td>
</tr>
<tr>
<td>7</td>
<td>264.9999</td>
<td>-239.992</td>
<td>324.9964</td>
<td>180.0002</td>
<td>424.2562</td>
</tr>
<tr>
<td>8</td>
<td>264.9999</td>
<td>-239.992</td>
<td>325.0429</td>
<td>179.9518</td>
<td>424.2149</td>
</tr>
<tr>
<td>9</td>
<td>265.0208</td>
<td>-239.969</td>
<td>325.064</td>
<td>179.9635</td>
<td>424.2037</td>
</tr>
<tr>
<td>10</td>
<td>265.0076</td>
<td>-239.957</td>
<td>325.0529</td>
<td>179.9944</td>
<td>424.2226</td>
</tr>
</tbody>
</table>

* Distance Between Point 0 to Point 16 = [(X_{16}-X_0)^2+(Y_{16}-Y_0)^2]^{0.5}