Vertical characteristics of peroxyacetyl nitrate (PAN) from a 250-m tower in northern China during September 2018

Yulu Qiu, Weili Lin, Ke Li, Lei Chen, Qing Yao, Yingxiao Tang, Zhiqiang Ma

Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Shangdianzi Regional Atmosphere Watch Station, Beijing, China
College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Tianjin Environmental Meteorology Center, Tianjin, 300074, China

Abstract
Peroxyacetyl nitrate (PAN), formed through photochemical reactions between volatile organic compounds (VOCs) and NOx, is the second-most important photochemical pollutant. Although several studies have investigated ground-level PAN in northern China, the vertical characteristics of PAN in this region have yet to be examined. In this study, measured concentrations of PAN and ozone (O3) near the surface and at 220 m were obtained from a 250-m observation tower in Tianjin during September 2018. Results show that the mean PAN concentrations at 220 m are 5.3–19.1% higher than ground-level values during the night (20:00–7:00), which can be attributed to difference in vertical mixing and chemical processes. When the inversion layer is below 220 m, the two layers (220 m and ground level) are separated into the residual layer and inversion layer, between which turbulent exchange is weak. Thus, a vertical gradient for PAN exists during the night. After sunrise, the inversion layer breaks up, and PAN concentrations become more homogeneous due to strong daytime vertical mixing. Role of chemical processes is examined using WRF-Chem model, and it is found that the PAN family—PAN and CH3C(O)O2 radicals—decompose quickly near the surface in the evening due to strong NO emission sources, while those at 220 m decompose more slowly and could also be produced by the nighttime oxidation between VOCs and O3. Modeling results further show that nighttime high PAN concentrations in the residual layer can occur throughout all of northern China.
1. Introduction

In recent years, photochemical pollution in megacities of China has attracted increasing concerns (Xue et al., 2014a, 2014b; Zhang et al., 2014b; Chan et al., 2017; Wang et al., 2017; Li et al., 2019; Qiu et al., 2019). The two most important photochemical pollutants, ozone (O_3) and peroxyacetyl nitrate (PAN), are both formed through photochemical reactions between volatile organic compounds (VOCs) and NO$_x$ ($NO_2=NO+NO_2$). High concentrations of PAN, which have been observed recently in China, have been proved to be responsible for plant injury (Taylor, 1969; Temple and Taylor, 1983) and eye irritation (Heuss and Glasson, 1968). Moreover, PAN becomes rather unstable at high temperatures due to its thermal decomposition property (Seinfeld and Pandis, 2006). Thus, PAN could serve as a reservoir for NO$_x$ in the middle and upper troposphere or at low temperatures (Singh and Hanst, 1981; Singh et al., 1986; Fischer et al., 2010).

Several observational studies conducted in China have examined ground-level PAN features (Liu et al., 2010; Wang et al., 2010; Zhang et al., 2011; Gao et al., 2014; Zhang et al., 2014a; Zhang et al., 2015a; Xu et al., 2015; Zhang et al., 2017). Zhang et al. (2017) analyzed the diurnal variation of PAN concentrations during summer in Beijing from 2006 to 2014 and discovered that PAN concentrations peaked at 14:00 due to the presence of photochemical reactions. By comparing measured PAN concentrations at the suburban site of Lanzhou with values at the remote site of Waliguan in summer 2006, Zhang et al. (2009a) found that the average values of PAN were 0.76 ± 0.89 ppb and 0.44 ± 0.16 ppb, respectively, and concluded that PAN pollution events at Waliguan very likely resulted from the transport of air masses from Lanzhou. By analyzing near-surface PAN in Beijing in August 2007, Liu et al. (2010) demonstrated that the mixing ratios of PAN and O_3 during the day are quite positively correlated. Zhang et al. (2014a), however, reported that a negative correlation existed between PAN and O_3 in Beijing during the winter of 2010, which agrees well with the results of Qiu et al. (2019).

Previous knowledge about PAN in China has been exclusively confined to ground level. Until now, there has been no study exploring the vertical distribution of PAN in China, though a few studies in China have focused on the vertical characteristics of O_3 in the planetary boundary layer (PBL) through the utilization of tower observations (Han et al., 2009; Sun et al., 2010), aircraft (Ding et al., 2008; Chen et al., 2013), and lidar instruments (Ma et al., 2011; Chi et al., 2018). Despite the lack of research concerning the vertical features of PAN in China, there have been several studies investigating the vertical distributions of PAN in other regions (Roberts et al., 2004; Lee et al., 2012). Roberts et al. (2004) investigated the vertical characteristics of PAN in spring of 2002 off the west coast of North America using aircraft observation data and found that PAN showed a slight increase with altitude below 2 km. Using observations and the HYSPLIT model, Lee et al. (2012) concluded that high PAN concentrations were mainly observed in air masses with prior sinking motions within 2 km above sea level. Thus, PAN concentrations below 500 m were clearly lower than those at higher altitudes. This suggests the possibility that PAN concentrations above ground level are very likely to be higher than those near the surface in certain circumstances. As the second most important photochemical pollutant, it is vital to understand PAN’s vertical characteristics, especially in polluted urban regions.

Northern China is suffering from serious aerosol pollution (Qiu et al., 2017; Li et al., 2018) and photochemical pollution (Li et al., 2019; Qiu et al., 2019). Tianjin, located about 120 km southeast of Beijing, is one of the megacities in northern China, with a population of more than 15 million at the end of 2016. Like Beijing and Hebei province, Tianjin has been plagued by aerosol pollution in recent years (Han et al., 2012; Zhao et al., 2013; Wang et al., 2014; Zhu et al., 2016; Ding et al., 2018), and it has also been confronted with the challenge of photochemical pollution (Han et al., 2013; Liu et al., 2016; Chen et al., 2018; Li et al., 2019). For example, Li et al. (2019) pointed out that O_3 concentrations at ground level in Beijing-Tianjin-Hebei region exhibited a significant increasing trend of approximately 3 ppb a$^{-1}$ from 2013 to 2017, implying the urgency for future air quality management in this region.

This study, based on measurements from a 250-m tower during September 2018, is the first to present PAN’s vertical characteristics in the mixing layer in northern China. The difference and correlation between PAN and O_3 in the vertical direction are presented. We also analyzed the cause of the difference between PAN concentrations near the surface and at 220 m using meteorological parameters and a regional chemical transport model (WRF-Chem). This research aimed to provide information regarding PAN’s behavior below the PBL in order to more fully comprehend photochemical levels in Beijing-Tianjin-Hebei region.
100, 120, 140, 160, 180, 200, 220, and 250 m). These variables consisted of temperature, relative humidity (RH), wind direction (WD), and wind speed (WS). Hourly averaged data were used in this study. We also calculated the heights of the inversion layer using the observed vertical profiles of temperature, which were determined by the top of the positive temperature vertical gradient level, following the method of Han et al. (2012).

2.2. WRF-Chem model

To determine the cause of the difference between PAN concentrations near the surface and at 220 m, this study utilized the WRF-Chem model, which simultaneously simulates variations of atmospheric chemical species and meteorological fields (Grell et al., 2005; Fast et al., 2006; Chapman et al., 2009). The domain configuration, shown in Fig. 1, covers all of northern China and has a horizontal resolution of 9 km. There are 40 vertical layers in total, including 15 layers below 1 km above the ground, in order to better represent the vertical profiles of atmospheric species in the PBL.

Based on our previous work, the CBM-Z gas-phase scheme (Zaveri and Peters, 1999) performs much better in simulating PAN in northern China than the Regional Acid Deposition Model version 2 (RADM2) gas scheme (Stockwell et al., 1990), due to the discrepancy in calculating reaction rate coefficients of PAN formation through CH3C(O)O2 (PA) radicals and NO2 (Qiu et al., 2019). For this reason, we utilized the CBM-Z scheme in this study to simulate PAN. Dry depositions of trace gases and aerosol particles were based on the methods of Wesley (1989) and Binkowski and Shankar (1995), respectively. The detailed chemical and physical schemes adopted in this study are listed in Table 1.

For anthropogenic emissions, we utilized the Multi-resolution Emission Inventory for China (MEIC) for 2012 (http://www.meicmodel.org), which was developed by Tsinghua University (Zhang et al., 2009b; Li et al., 2014; Zheng et al., 2014; Liu et al., 2015). This inventory includes anthropogenic emission rates of SO2, NOx, CO, NH3, VOCs, black carbon (BC), primary organic carbon (POC), primary PM2.5, and PM10 and has been widely used to simulate aerosols and gas species over northern China (Zhang et al., 2015b; Qiu et al., 2017). Biogenic emissions were calculated online from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006).

The simulation period extended from September 14, 2018 through September 19, 2018, a time when there was an obvious discrepancy of PAN concentrations between those near the surface and those at 220 m. The first 48 h were considered to be the spin-up time. Therefore, we used simulated results from September 16 to 19 to make the following analysis in this study. The initial and boundary meteorological conditions were provided by the National Centers for Environmental Prediction (NCEP) FNL 1° × 1° reanalysis data. The corresponding conditions for chemical species were from the results of the Whole Atmosphere Community Climate Model (WACCM) (Marsh et al., 2013).

3. Results

3.1. Observed vertical distributions of PAN, O3, and NOx

The observation period in this study included almost the entire month of September. In Beijing-Tianjin-Hebei region, September is the transition month when summer ends and fall begins. The Tianjin Meteorological Bureau announced that September 22 was the day on which Tianjin entered into autumn of 2018. Fig. 3 shows the observed time series of temperature, RH, and wind for the two layers in September 2018. Meteorological data in the upper levels of the tower were missing during September 7–16 due to power supply failure. It can be seen that Tianjin was affected by cold air masses around September 6, September 14, and September 21, when temperatures dropped sharply, accompanied by strong northerlies and dry air. After the third temperature drop occurred, Tianjin entered into autumn. Thus, September could indeed be considered as the transition period between summer and autumn.

Fig. 4 shows the observed concentrations of PAN, O3, NO2, and NO from the 250-m tower for the period September 5–28, 2018. In general, the O3 mixing ratios at 220 m were higher than those at ground level, while NO2 concentrations exhibited the opposite behavior. The averaged concentrations for these species during the study period are shown in Table 2. The averaged O3 concentration at 220 m was 45.6 ppb, which was 31.8% higher than that at ground level. NO2 had the
opposite spatial relationship, with higher mixing ratios near surface than at higher levels in the PBL, possibly due to the relatively strong NOx emission source at ground level. For PAN, the difference between its concentration at 220 m and near the surface was smaller than that of other two species, with averaged concentrations at 220 m slightly higher (4.3%) than those at ground level. Although the mean concentration of PAN at 220 m was only 4.3% higher than that near the surface, the difference between two layers might show obvious diurnal variation. Fig. 5 shows the observed diurnal variations for PAN, O3 and NO2 at the two layers averaged over the entire study period. It can be seen that the PAN concentrations at the two levels featured the same general diurnal characteristics, with maximum values at about 14:00. However, PAN concentrations exhibited higher values during the night (20:00–7:00) at 220 m than those at surface. During the day, there was a small discrepancy between PAN concentrations at the two heights due to relatively strong vertical mixing. After reaching a maximum in the afternoon, PAN concentrations near the surface decreased more quickly than those at higher levels. After sunset, the concentration gradient between these two layers increased. The difference of nighttime PAN concentrations between 220 m and near the surface ranged from 0.05 to 0.13 ppb (5.3–19.1%), with mean value of 0.08 ppb (9.5%). The diurnal variation of O3 was found to be similar to that of PAN. Statistical results showed that nighttime O3 concentrations at 220 m were 98.0% higher than those at ground level (Table 2). This discrepancy between these two layers was much higher than that of PAN (9.5%). NO2 exhibited characteristics that were the opposite of the other two species, with higher concentration near the surface due to intensive anthropogenic emissions.

Table 2
Statistical results of observed concentrations (ppb) of PAN, O3, and NO2 in Tianjin averaged from September 5–28, 2018. The daytime and nighttime periods represent 8:00–19:00 and 20:00–07:00, respectively.

<table>
<thead>
<tr>
<th>Period</th>
<th>PAN (ppb)</th>
<th>O3 (ppb)</th>
<th>NO2 (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At ground level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime</td>
<td>1.02 ± 0.58</td>
<td>48.2 ± 22.6</td>
<td>14.3 ± 9.08</td>
</tr>
<tr>
<td>Nighttime</td>
<td>0.84 ± 0.55</td>
<td>20.5 ± 16.3</td>
<td>24.8 ± 9.02</td>
</tr>
<tr>
<td>Average</td>
<td>0.93 ± 0.57</td>
<td>34.6 ± 24.1</td>
<td>19.5 ± 10.4</td>
</tr>
<tr>
<td>At 220 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime</td>
<td>1.03 ± 0.58</td>
<td>50.6 ± 22.1</td>
<td>11.5 ± 8.50</td>
</tr>
<tr>
<td>Nighttime</td>
<td>0.92 ± 0.60</td>
<td>40.6 ± 19.2</td>
<td>9.50 ± 6.03</td>
</tr>
<tr>
<td>Average</td>
<td>0.97 ± 0.59</td>
<td>45.6 ± 21.3</td>
<td>10.5 ± 7.43</td>
</tr>
</tbody>
</table>

The findings associated with NO2 and O3 agree well with results previously reported by Han et al. (2009).

3.2. Observed changes of vertical gradients of nighttime PAN, O3, and NO2

As mentioned in Section 3.1, the difference of PAN concentrations between two layers was more obvious during the night. Fig. 6 displays the time series of observed vertical gradients for PAN, NO2, and O3 concentrations averaged during the night, along with the corresponding inversion layer heights. Results show that the vertical gradients for PAN...
concentrations between the two layers increased after September 15. In Fig. 6, nighttime vertical gradients for PAN ranged from −0.18 to 0.08 ppb (−13.9–5.7%) before September 15 and increased to 0.01–0.36 ppb (2.4–46.6%) after September 15. Although the absolute vertical gradients of nighttime O₃ concentrations exhibited little change with time, relative values increased noticeably. Nighttime O₃ concentrations at 220 m were 14.9–131.0% higher than those at ground level before September 15, while the ratios increased to 18.0–414.7% after September 15. These ratios were higher than those of PAN. For NO₂, the vertical gradients did not show significant changes with time.

The changes of nighttime vertical gradients of PAN and O₃ concentrations might be related to changes in inversion layer height during the transition season. As shown in Fig. 6, the vertical gradients of PAN and O₃ had generally negative correlations with inversion layer height, although observation data for the inversion layer were missing from September 8–15. This result, in combination with the changes in vertical turbulent exchange associated with the transition from summer to autumn, could account for the vertical gradient variations of O₃. It should be noted that the titration effect for O₃ (O₃ + NO → NO₂ + O₂) near the surface is much stronger than that at higher levels, which could be attributed to strong sources of NO emissions at ground level (Fig. 4). This phenomenon is more common at night due to the effect of the nocturnal PBL. At night, when the inversion layer is below 220 m, the tower top is in the residual layer. At that time, O₃ at 220 m could maintain its daytime characteristics and thus be less affected by NO emitted from the surface. The difference between O₃ concentrations at 220 m and near the surface could be enhanced by weak vertical mixing. For PAN, vertical gradients were obvious after September 16, especially when the inversion layer heights were lower. In addition to the effect of nocturnal PBL, chemical processes may also play a role. In Sections 3.3 and 3.4, we use the WRF-Chem model to explore this possibility.

3.3. Simulated vertical gradients of nighttime PAN and O₃

The simulated results used here were from September 16–19, when PAN concentrations at 220 m and near the surface exhibited remarkable discrepancies (Fig. 6). Fig. 7 compares simulated and observed concentrations for the two photochemical pollutants from September 16–19. It can be seen that observed nighttime PAN concentrations at 220 m were notably higher than those at ground level on September 8–15. During the transition season, as shown in Fig. 6, the vertical gradients of PAN and O₃ concentrations might be related to changes in inversion layer height during the transition season. As shown in Fig. 6, the vertical gradients of PAN and O₃ had generally negative correlations with inversion layer height, although observation data for the inversion layer were missing from September 8–15. This result, in combination with the changes in vertical turbulent exchange associated with the transition from summer to autumn, could account for the vertical gradient variations of O₃. It should be noted that the titration effect for O₃ (O₃ + NO → NO₂ + O₂) near the surface is much stronger than that at higher levels, which could be attributed to strong sources of NO emissions at ground level (Fig. 4). This phenomenon is more common at night due to the effect of the nocturnal PBL. At night, when the inversion layer is below 220 m, the tower top is in the residual layer. At that time, O₃ at 220 m could maintain its daytime characteristics and thus be less affected by NO emitted from the surface. The difference between O₃ concentrations at 220 m and near the surface could be enhanced by weak vertical mixing. For PAN, vertical gradients were obvious after September 16, especially when the inversion layer heights were lower. In addition to the effect of nocturnal PBL, chemical processes may also play a role. In Sections 3.3 and 3.4, we use the WRF-Chem model to explore this possibility.

3.4. Chemical processes driving nighttime enhancement of vertical gradients of PAN

In the WRF-Chem model, changes in gas concentrations with time could be attributed to changes in chemical reactions, horizontal and vertical advection, vertical mixing, and deposition. The integrated process analysis in the WRF-Chem has been applied in investigating formation of haze and photochemical pollution events in China (Jiang et al., 2012; Gao et al., 2018). Since wet deposition is not included in the simulation due to negligible precipitation during the simulation period, there are only three processes in the simulation, namely, advection, chemical reactions, and vertical mixing (including dry deposition). Given that the WRF-Chem model is capable of simulating the nighttime vertical gradients of PAN, we can utilize the simulation to examine the cause of concentration changes within an hour. Fig. 8

Table 3

Observed and simulated gradients (ppb) of PAN concentrations between 220 m and ground level during the night in Tianjin. Values in brackets represent relative differences (%).

<table>
<thead>
<tr>
<th></th>
<th>Sep 16–17</th>
<th>Sep 17–18</th>
<th>Sep 18–19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed PAN</td>
<td>0.36 (46.6%)</td>
<td>0.10 (9.3%)</td>
<td>0.05 (4.0%)</td>
</tr>
<tr>
<td>Simulated PAN</td>
<td>0.05 (6.3%)</td>
<td>0.08 (7.8%)</td>
<td>0.18 (13.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sep 16–17</th>
<th>Sep 17–18</th>
<th>Sep 18–19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed O₃</td>
<td>14.9 (13.9%)</td>
<td>14.0 (13.9%)</td>
<td>14.0 (13.9%)</td>
</tr>
<tr>
<td>Simulated O₃</td>
<td>14.9 (13.9%)</td>
<td>14.0 (13.9%)</td>
<td>14.0 (13.9%)</td>
</tr>
</tbody>
</table>

Fig. 7. Observed (left) and simulated (right) time series of PAN and O₃ concentrations (ppb) in Tianjin from September 16–19, 2018.
In order to better compare the change of PAN levels. Fig. 9 shows the calculated lifetime of the PAN family during the simulation period. The purple lines denote the corresponding PAN concentrations. Fig. 8c presents the corresponding difference between Fig. 8b and a. Gray shades denote nighttime periods (20:00-07:00). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

shows the PAN budget at 220 m and near the surface in Tianjin during the simulation period. It can be seen that the chemical reactions for PAN are, as expected, more intense during the day than at night. The vertical gradient of simulated PAN levels shows an increase in the evening, and is maintained overnight. The diagnostic process analysis in Fig. 8 indicates that the difference between the two layers in the evening and at night may be the result of chemical processes. For example, from nightfall to midnight on September 16, the chemical loss of PAN concentration at ground level ranged from \(-0.03\) to \(-0.11\) ppb/hr, but PAN at 220 m actually exhibited a slight increase over that period. The same phenomenon also occurred on September 17 and September 18 during the simulation period.

3.4.1. Role of different PAN lifetimes

As illustrated above, the difference between PAN concentrations of the two layers during the night could be the result of chemical processes. Chemical processes for PAN and PA radicals consist of formation and decomposition. Thermal decomposition is the main loss pathway for PAN in the PBL (Seinfeld and Pandis, 2006). For PA radicals, it could react readily with NO. The two reactions are as follows:

\[
\text{PAN} + M \rightarrow \text{PA} + \text{NO}_2 + M
\]

(1)

\[
\text{PA} + \text{NO} \rightarrow \text{NO}_2 + \text{CH}_2\text{O} + \text{CO}_2
\]

(2)

PA radicals can react with NO2 quickly to form PAN:

\[
\text{PA} + \text{NO}_2 + M \rightarrow \text{PAN} + M
\]

(3)

We considered the lifetime of the PAN family (PA radicals and PAN) in order to better compare the change of PAN levels. Fig. 9 shows the calculated lifetime of the PAN family during the simulation period. The calculation of the PAN family lifetime follows the method in Seinfeld and Pandis (2006):

\[
\tau_{\text{PAN}} = \frac{1}{k_1[\text{NO}]} \left(1 + \frac{k_2[\text{NO}_2] + k_3[\text{NO}]}{k_1} \right)
\]

(4)

where \(k_1, k_2,\) and \(k_3\) represent the reaction rate coefficients of reactions (1), (2), and (3), respectively. From Eq. (4) we can see that the lifetime of the PAN family is not only determined by rate coefficients but is also affected by the ratios of \(\text{NO}_2/\text{NO}\) and \(1/\text{NO}\). Due to the strong emission source of NO near surface, simulated \(\text{NO}_2/\text{NO}\) ratios at 220 m are several times to thousands of times higher than those at ground level during the night (Fig. 9), leading to the relatively long lifetime of the PAN family at 220 m. This could explain the quicker reduction in PAN concentration near the surface as a result of chemical processes in the evening. For the PAN family at higher levels, existence times could be much longer, and their corresponding concentrations might be higher.

3.4.2. Role of nighttime oxidation of VOCs by \(O_3\)

From the diagnostic analysis in Fig. 8, we can also see that weak chemical production at 220 m exists at night. Previous studies (e.g., Fischer et al., 2014), have proven that PA radicals form primarily through the oxidation and photolysis of acetaldehyde (ALD2), acetone (AN02), and methylglyoxal (MGLY). These reactions, however, generally occur during the day. In addition, PA radicals can be produced from oxidation by \(\text{NO}_3\) and \(O_3\) at night (Sandar et al., 2006). In this study, we employed the CBM-Z gas-phase scheme, in which reaction rates are determined following the method of Zaveri and Peters (1999).

To confirm the role of \(\text{NO}_3\) and \(O_3\) in PA formation during the night at higher levels, we calculated \(k\) values and reaction rates of PA formation by \(\text{NO}_3\) and \(O_3\) during the night at 220 m using modeling results (Fig. 10). Overall, the calculated \(k\) values for OH radicals were largest during the day, with values of approximately \(1-3 \times 10^{-11}\) cm molecule\(^{-1}\) s\(^{-1}\), which were much higher than the nighttime \(k\) values of \(O_3\) (0.1–5 \times 10\(^{-17}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)) and \(\text{NO}_3\) (2 \times 10\(^{-15}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)). However, simulated nighttime \(\text{NO}_3\) and \(O_3\) concentrations were much higher than those of the daytime OH radicals. Assuming that all of the VOC species have the same concentration, reaction rates of PA formation for OH are controlled by reaction rates: \(k\) [oxidant]. In Fig. 10, calculated \(k\) [OH] values are in the range of \(4-9 \times 10^{-13}\) during the day, while \(k\) [O3] and \(k\) [NO3] are in the range of \(0.2-11.0 \times 10^{-13}\) and approximately \(1.7 \times 10^{-15}\) during the night. Thus, oxidation by \(O_3\) might be a possible way to form PAN at 220 m. However, the production of PA due to oxidation by \(O_3\) during the night is still much weaker than the chemical production during the day. The reasons for this are: (1) Only \(k\) [O3] by internal olefin carbons (OLEI) are higher than \(k\) [OH]; all of the others have lower values; (2) In addition to oxidation by OH radicals, photolysis of VOC can also produce PA radicals during the day. Since simulated \(O_3\) concentrations are near zero at ground level, the reaction with \(O_3\) of PA formation might be significantly suppressed near the surface. Therefore, the oxidation of VOCs by \(O_3\) during the night could also contribute to some extent to the high PAN levels at 220 m.

4. Discussions and implications

Combining the observation data with the modeling results yields this possible explanation for the difference between PAN concentrations at ground level and the top of the tower (as illustrated in Fig. 11): When the inversion layer builds up in the evening but remains below 220 m during the night, the ground level is in the inversion layer and the tower top is in the residual layer. In this situation, PAN in the inversion layer and in the residual layer would hardly interact with one another. During the evening, the concentrations of PAN and PA radicals at ground level are sharply reduced due to thermal decomposition and reaction with NO, respectively. In the residual layer, however, this decomposition effect becomes less important due to the low NO concentration, and the lifetime of the PAN family is much longer than that near the surface. In addition, there exists weak chemical production of PA radicals due to the reactions of VOCs and \(O_3\) in the residual layer, resulting from high \(O_3\) concentrations in that layer. As such, nighttime PAN concentrations in the residual layer are higher than those at ground level. After sunrise, the inversion layer breaks up, and PAN concentrations of PAN family...
concentrations become more homogeneous in the mixing layer. Since the above results are only for Tianjin, the next question is whether the vertical gradient of PAN occurs across all of northern China. Fig. 12 shows the simulated differences between nighttime PAN concentrations at 220 m and ground level in northern China from September 16–19, 2018. The results indicate that nocturnal PAN concentrations at 220 m exhibited higher levels over most parts of northern China, suggesting that the observed characteristics of the PAN profiles below the PBL might be a common phenomenon across all of northern China. In addition, this study also emphasizes the importance of nighttime chemical reactions by O3 and NO3 radical in the middle and upper PBL. For O3, it is not only a photochemical pollutant, but also an oxidant. Although the reaction rate coefficient for O3 is much smaller compared with other radicals, the relatively higher concentrations might also lead to higher reaction rate. As shown in Section 3.3, the observed vertical gradient of PAN was underestimated in the model simulation. After investigating the cause of PAN's vertical characteristics below PBL, we find that emission rates of NOx and simulated O3 concentrations are both important for simulated differences of PAN concentrations at the two levels. For example, simulated nighttime difference of O3 concentrations at two layers on Sep 16–17 was 14.7 ppb, which was much lower than observed results (36.7 ppb), thus leading to smaller vertical differences in simulated PAN. Besides, the lifetime of PAN family is very sensitive to NOx, but the coarse time resolution (monthly) and horizontal resolution (0.25° × 0.25°) of the emission inventory could induce some uncertainties in simulated vertical distributions of PAN with highly spatiotemporal variations. As such, further improvements in emission inventory and representation of other related species (such as O3 and NOx)
NO$_3$ are needed in better simulating the vertical feature of PAN below PBL.

5. Conclusions

In this study, observed vertical concentrations of PAN, O$_3$, and NO$_x$ were obtained from a 250-m tower in Tianjin during September 2018. This was the first time that the vertical characteristics of PAN have been reported in China. In addition, we also utilized the WRF-Chem model in order to determine the cause of PAN's vertical characteristics. Our main findings are summarized below.

(1) In general, the observed averaged O$_3$ mixing ratio at 220 m in September 2018 was 45.6 ppb, which was 31.8% higher than that at ground level. The PAN concentration at 220 m was slightly higher (4.3%) than that at ground level. The differences between the concentrations of PAN and O$_3$ at 220 m and near the surface were relatively large during the night, with values ranging from 5.3 to 19.1% and 47.0–149.7%, respectively.

(2) The observed vertical gradients of PAN and O$_3$ concentrations exhibited generally negative correlations with inversion layer height. For PAN, the vertical gradients became large after September 16, especially when the inversion layer height was lower.

(3) Overall, the current WRF-Chem model could reproduce vertical gradients of pollutants at the two layers during nighttime to some extent, though simulated magnitude of the difference should be further improved. Utilizing this model, it was determined that the difference in nighttime PAN concentrations between the two layers might be the result of chemical processes. The shorter lifetime of the PAN family near the surface might explain the quick reduction in PAN concentration due to chemical processes in the evening. In addition, the weak production of PA radicals via reactions between VOCs and O$_3$ also contributes to some extent to PAN formation at 220 m during the night.

(4) The modeling results indicated that the high PAN concentration in the residual layer is the combined result of weak vertical mixing and chemical production. Further, the modeled high PAN concentration in the residual layer during the night could occur throughout all of northern China. Besides, although the reaction rate coefficient for oxidation by O$_3$ is much smaller compared with other radicals, the relatively higher concentrations might possibly lead to higher reaction rate in the middle and upper PBL. Further efforts should be made to improve the model performance and investigate the chemical process above the ground.

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

Acknowledgements

This study was supported by the Beijing Municipal Natural Science Foundation (Grant No. 8194078), the National Natural Science Foundation of China (Grant No. 41475135, 91744206), and the Beijing Nova Program (Grant No. xx2017079). We also acknowledge use of NCAR/ACOM WACCM global model output available at https://www2.acom.ucar.edu/gcm/wacccm. All of the observational data and modeling results have been archived by the corresponding author, Prof. Zhiqiang Ma (zqma@iium.cn) and are available upon request.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2019.05.066.

