Introduction of coordinates

Maintaining choices of \(l_0, l_1, \) and \(0, 1 \in \mathbb{A} \), choose a line \(l_2 \neq l_1 \) with \(0 \in l_2 \), and another point \(0 \neq P \in l_2, 1 \in l_2 \). We assign homogenous coordinates to elements of \(\mathbb{P} \) as follows.

1. If \(a \in l_1 \) and \(a \in l_2 \), then we assign \(a \) the coordinate \([a, 0, 1] \).

2. If \(0 \neq P \in l_2 \) and \(P \neq \infty \), there is
a unique dilatation \(\phi \) with \(\phi(0) = 0 \) and \(\phi(1) = p \). Writing \(a = \phi(1) \), we give

\(p \) the coordinate \([0, a, 1] \).

(3) We declare that \(l_1 \cap \lambda_\infty = \{ [1, 0, 0] \} \) and \(l_2 \cap \lambda_\infty = \{ [0, 1, 0] \} \).

(4) If \(p \neq \lambda_\infty \), we give \(p \) the coordinate \([a, b, 1] \), where

\[
[a, 0, 1] \cap \lambda_\infty = l_1 \cap \lambda_\infty \cap \phi([0, 1, 0])
\]

and

\[
[0, b, 1] \cap \lambda_\infty = l_2 \cap \lambda_\infty \cap \phi([1, 0, 0])
\]
(5) If \(p \neq l_\infty \) and \(p \neq l_1, ul_2 \), we give \(p \) the coordinates \([1, m, 0]\), where \([1, m, 1]\) is the intersection of \(l_2 \) with the line through \([1, 0, 0]\) and the intersection of \(l(1, [0, 1, 0]) \) and \(l(0, p) \).

Observation: Assigning coordinates in this way gives a bijection \(P \to \mathbb{P}^2 \).
The bijection \(P \to \mathbb{D}P^2 \) is an isomorphism.

This theorem amounts to finding equations describing lines \(\ell \) in terms of the coordinates we've introduced. First, we describe translations and dilations in coordinates.

Notation As before, \(T_\alpha \) is the translation taking \(0 = [0,0,1] \) to \(\alpha = [\alpha,0,1] \), and \(T_{\alpha'} \) is the translation taking the same point to \([0,0,1] \).
Lemma \(\mathcal{T}_a' = \mathcal{C}_{-\mathcal{T}'; \mathcal{F}_a} \)

Proof The RHS is the unique translation sending 0 to \(\mathcal{F}_a(1) = [0, a, 1] \) (by definition).

It follows from the result of the last class that \(\mathcal{T}_a' \rightarrow \mathcal{T}_a' \) is a homomorphism from \(\text{Trans}_1 \) to \(\text{Trans}_2 \).

Proposition If \(\mathcal{T} \) is a translation with

\[
\mathcal{T}([0,0,1]) = [a,b,1], \text{ then }
\]

\[
\mathcal{T}([x,y,1]) = [x+a, y+b, 1].
\]
Proof We have $Z = Z_a Z_b$ by definition, so

$$Z([x, y, 1]) = Z_x Z_y([0, 0, 1])$$

$$= Z_a Z_b Z_x Z_y([0, 0, 1])$$

$$= Z_a Z_x Z_b' Z_y'([0, 0, 1])$$

$$= Z_a Z_x Z_{b+y}([0, 0, 1])$$

$$= [x + a, y + b, 1]. \ \
\Box$$
If \(\varphi \) is a dilatation fixing \(0 = (0, 0, 1) \), then \(\varphi = \varphi_a \) for some \(a \in D \), and

\[
\varphi \left(\left[x, y, 1 \right] \right) = \left[x_0, y_0, 1 \right].
\]

Proof: Define \(a = \varphi(1) \). Then \(\varphi = \varphi_a \), and

\[
\varphi \left(\left[x, y, 1 \right] \right) = \varphi_a \cdot x \cdot \varphi_y \left(\left[0, 0, 1 \right] \right)
\]

\[
= \varphi_a \cdot x \cdot \varphi_y \cdot \varphi_a^{-1} \left(\left[0, 0, 1 \right] \right)
\]

\[
= \varphi_a \cdot x \cdot \varphi_a^{-1} \cdot \varphi_y \cdot \varphi_y^{-1} \varphi_a^{-1} \left(\left[0, 0, 1 \right] \right)
\]

\[
= T \cdot x \cdot \varphi_y \cdot \varphi_y^{-1} \varphi_a^{-1} \left(\left[0, 0, 1 \right] \right).
\]
Thus in coordinates, lines in \((P,L)\) are the solution sets to non-zero equations of the form

\[ax + by + cz = 0. \]

\textit{Corollary} \((P,L)\) is isomorphic to \(\mathbb{P}^2\).
Proof

(1) By definition, a point lies on \(l \) if and only if its \(z \) coordinate is zero, so \(l = \{ z = 0 \} \).

(2) Also by definition, \(l_1 = \{ y = 0 \} \) and \(l_2 = \{ x = 0 \} \).

(3) Let \(l \) be a line different from \(l_1 \) and \(l_2 \) passing through \([0,0,1] \). Then \(l \) is determined by its intersection
with \(d\), which is of the form \([1, m, 0]\) for some \(m \in \mathbb{D}\). By definition, \([1, m, 1] \in d\), and, if \([x, y, 1]\) is any other point, there is a unique dilatation \(\phi\) fixing 0 with \(\phi([1, m, 1]) = [x, y, 1]\). By the proposition, \(\phi = \phi_d\) for some \(d \in \mathbb{D}\), and

\[
\phi([1, m, 1]) = [d, md, 1].
\]
Thus, \([x, y, 1] = [d, m d, 1]\), or \(y = mx\), so \(l \subseteq \{y = mx\}\). Conversely, if \(y = mx\), the dilatation \(y \rightarrow y\) sends \([1, m, 1]\) to \([x, y, 1]\), so \(\{y = mx\} \subseteq l\), and equality holds.

(4) If \(l\) does not contain \([0, 0, 1]\), then \(l\) intersects a line \(\{y = mx\}\) on \(l_2\) by the previous case. The intersection of \(l\) with \(l_2\) is necessarily of the
form $[0, b, 1]$, so T_1 defines a bijection $\{y = mx^3\} \rightarrow e$. It follows from the proposition that $L = \{y = mx + b\} \cup \{[1, m, 0]\}$, or $L = \{mx - y + bz = 0\}$. \qed