Incidence geometry

Definition: An incidence geometry is a set P, whose elements are called points, together with a set L of subsets of P, whose elements are called lines, subject to the following axioms:

(I1) every pair of distinct points is contained in a unique line;

(I2) every line contains at least two distinct points;

(I3) there exist three points not contained in the same line.
Termmology Let \((P,L)\) be an incidence geometry.

- If \(A \in P\), \(l \in L\), and \(A \in l\), say \(A\) lies on \(l\).
- If \(A, B \in P\), write \(AB\) for the unique element of \(L\) containing \(A + B\).
- Say \(A, B \in P\) are collinear if \(A, B \in l\) for some \(l \in L\).
- Say \(l_1, l_2 \in L\) intersect if \(l_1 \cap l_2 \neq \emptyset\).
- etc.

A few basic results are accessible.
Prop. 1 Lines intersect in at most one point.

Proof If \(A \neq B \) lie on \(l_1 + l_2 \), and if \(A \neq B \), then \(l_1 \parallel AB = l_2 \) by (II).

Prop 2 Given a line \(l \) and a point \(A \) on \(l \), there exists a point on \(l \) distinct from \(A \).

Proof By (II) \(l \) contains two points \(P \neq Q \).

If \(P \neq A \neq Q \), either \(P \) or \(Q \) suffices.

If \(A = P \), \(Q \) suffices, and vice versa.

Prop 3 Given a line \(l \), there exists a point not on \(l \).
Proof By (I3), there are non-collinear points A, B, C. If two, one, or none lie on l, we're done, but not all three lie on l by non-collinearity.

Interpretations + Models

Ex (3-point plane)

$P = \{A, B, C\}$

$L = \{\{A, B\}, \{B, C\}, \{A, C\}\}$
Ex (4-point plane)

\[P = \{1, 2, 3, 4\} \]
\[L = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\} \]

Ex (5-point plane)

\[P = \{A, E, I, O, V\} \]
\[L \text{ the set of all subsets with two elements} \]
Ex (Wend 5-point plane)

\[P = \{1, 2, 3, 4, 5\} \]

\[L = \{\{1,2,3\}, \{2,3,4\}, \{3,4,5\}, \{1,4,5\} \} \]

Ex (Fano plane)

\[P = \{1, \ldots , 7\} \]

\[L = \{\{1,4,6\}, \{4,5,3\}, \{5,2,3\}, \{1,7,5\}, \{4,7,3\}, \{6,7,1\} \} \]
Ex (Euclidean plane)

\[P = \mathbb{R}^2 \]

L the set of solution sets of all equations of the form \[x = c \]

\[y = mx + b, \]

where \(c, m, b \) are real numbers.

Prop The Euclidean plane is an incidence geometry.

Proof Homework.
Non-example

\[P = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \} \]

\[L \text{ the set of great circles} \]

Parallel postulates

Definition Let \((P, L)\) be an incidence geometry. We say \(L_1, L_2 \in L\) are parallel if they do not intersect (or if \(L_1 = L_2\)).

- **No parallels**
- **Unique parallels**
- **Multiple parallels**
Elliptic parallel postulate: There are no parallel lines.

Euclidean parallel postulate: For any line \(l \) and point \(A \) not on \(l \), there is a unique line through \(A \) parallel to \(l \).

Hyperbolic parallel postulate: For any line \(l \) and point \(A \) not on \(l \), there are at least two distinct lines through \(A \) parallel to \(l \).

Note: There are other options (weird 5-point plane).

Note: These are independent of the axioms.