Problem Set 1.

(4) There are many possible solutions.
 (a) The pair $\{(1,2,3), \emptyset\}$ satisfies I_2 and I_3 but not I_1 (note that, since there are no lines, I_2 is satisfied vacuously).

 (b) Adding the empty set to the set of lines of the 3-point plane produces an example satisfying I_1 and I_3 but not I_2.

 (c) The pair $\{(1,2), \{\{1,2\}\}\}$ satisfies I_1 and I_2 but not I_3.

(5) (a) Let $\langle P, L \rangle$ be an incidence geometry such that P has three elements, say $P = \{A, B, C\}$. By I_3, $P \notin L$, and I_2 implies that no set with fewer than two elements lies in L. Thus, the only subsets of P that could possibly lie in L are the subsets with two elements, and all three such subsets must in fact lie in L by I_1, so

 $$L = \{\{A, B\}, \{B, C\}, \{A, C\}\}.$$

 The function $A \mapsto 1$, $B \mapsto 2$, $C \mapsto 3$ defines an isomorphism of $\langle P, L \rangle$ with the 3-point plane by inspection.

 (b) Let $\langle P, L \rangle$ be an incidence geometry such that P has four elements, say $P = \{A, B, C, D\}$. The same argument as above shows that $P \notin L$ and that no subset with fewer than two elements lies in P. There are now two cases.

 (i) There are no lines containing three points. In this case, I_1 implies that L is the set of subsets with two elements, so $\langle P, L \rangle$ is isomorphic to the 4-point plane.

 (ii) There exists a line containing three points. If there is a line containing three points, then the uniqueness clause of I_1 implies that there is only one such, which we may take to be $\{A, B, C\}$ without loss of generality, and I_1 implies that

 $$L = \{\{A, B, C\}, \{A, D\}, \{B, D\}, \{C, D\}\}.$$

Problem Set 2.

(5) There are many possible approaches.

 (a) The vertical line in question is the set $\{(1,0), (1,1), (1,2), (1,3)\}$, but the first coordinate of every point on the line through $(0,0)$ and $(2,1)$ is even.

 (b) The vertical line through $(0,0)$ is parallel to the first line but not parallel to the second; therefore, parallelism is not transitive.
Problem Set 3.

(2) As a matter of notation, we write m_ℓ for the line in (P_ℓ, L_ℓ) that is $m \in L$ with its point of intersection with ℓ removed.

(a) We first show that (P_ℓ, L_ℓ) is an incidence geometry. Distinct points $p, q \in P_\ell$ lie on m_ℓ if and only if they lie on m; therefore, 11 holds in (P_ℓ, L_ℓ), since it holds in (P, L). Each $m \in L$ contains at least three points, so each m_ℓ contains at least two, which is 12. For 13, it suffices to show the existence of three non-collinear points in (P, L), none of which lie on ℓ. Choose $p_1, p_2 \in \ell$ and $p_3 \notin \ell$ (here we use 12 and 13 in (P, L), respectively). By strengthened 12, the lines $\ell(p_1, p_3)$ and $\ell(p_2, p_3)$ each contain further points q_1 and q_2, respectively. Then $p_3, q_1,$ and q_2 are non-collinear, since otherwise 11 implies that $\ell(p_1, p_3) = \ell(p_2, p_3) = \ell$, a contradiction.

To check the Euclidean parallel postulate, fix m_ℓ and $p \notin m_\ell$. A line m_ℓ' is parallel to m_ℓ if and only if the intersection of m and m_ℓ' lies on ℓ. Since there is a unique line through p and the intersection of m with ℓ, there is a unique such parallel, as required.

Define a function $f : \mathcal{P}_\ell \to P$ by setting $f(p) = p$ for $p \in P_\ell$ and defining $f([m_\ell])$ to be the point of intersection of m and ℓ for $m_\ell \in L_\ell$. To see that f is well-defined, we must check that the definition of f on ideal points is independent of the choice of representative m_ℓ for the pencil $[m_\ell]$ of parallel lines, but this follows from our earlier characterization of lines parallel to m_ℓ. To see that f is a bijection, we exhibit the inverse function g, the definition of which is clear on $P_\ell \subseteq P$, and which sends a point $p \in \ell$ to the ideal point $[m_\ell]$, where m is any line through p different from ℓ (all such lie in a common pencil, by our discussion). Now, f sends the line m_ℓ to m and the line ℓ_∞ to ℓ, and vice versa for g, so f is an isomorphism.

(b) Let $m, m', \text{ and } \ell$ be distinct lines in (P, L). Then m_ℓ and m'_ℓ are in bijection, since (P_ℓ, L_ℓ) is an affine plane, and m and m' differ from these lines by the addition of a single point, so they are also in bijection.

(c) Let (P, L) be a finite projective plane. By the previous part, every line has a common number of points, which we call $n + 1$. Then (P_ℓ, L_ℓ) is an affine plane of order n, therefore having n^2 points and $n(n + 1)$ lines. Since (P, L) differs by the addition of $n + 1$ additional points and one additional line, the number of points and the number of lines in (P, L) are both $n^2 + n + 1$.

Problem Set 4.

(4)

(a) Yes, this follows from two applications of the statement “the dual of a projective plane is a projective plane.”

(b) The set P^{**} is the set of pencils of lines through points of P. A subset of pencils is an element of L^{**} if and only if it is the set of pencils through the points of a line in L.

(c) Define a function $f : P \to P^{**}$ by declaring $f(p)$ to be the pencil of lines through p. No two points have the same pencil, since assuming otherwise quickly leads to a
Problem Set 5.

(5)

(a) Let \(X \neq X' \) be planes. By S4, the intersection \(X \cap X' \) contains the line \(\ell \). On the other hand, if \(p \in X \cap X' \) does not lie on \(\ell \), then S2 guarantees that \(p \) and any two points on \(\ell \) lie in a unique plane \(X'' \), so \(X = X'' = X' \), a contradiction. Thus, the reverse inclusion \(X \cap X' \subseteq \ell \) also holds, hence equality.

(b) Let \(p_1 \neq p_2 \) be any two points. By S5, there are four non-coplanar points \(q_1, q_2, q_3, \) and \(q_4 \), no three of which are collinear. Some of these points may coincide with \(p_1 \) or \(p_2 \); regardless, no more than two may lie on \(\ell(p_1, p_2) \). We proceed by cases.

If exactly two of the four points lie on \(\ell(p_1, p_2) \), then we may take these points to be \(q_1 \) and \(q_2 \) without loss of generality. It suffices for this case to prove that the set \(\{p_1, p_2, q_1, q_2\} \) is non-coplanar. Assuming otherwise, part (a) guarantees that the plane \(X \) containing it intersects the plane through \(q_1, q_2, \) and \(q_3 \) in a line (we use that these three points are non-collinear in order to guarantee the existence of this plane, and we use that the four points are non-coplanar to guarantee its distinctness from \(X \)). Since this line is necessarily \(\ell(p_1, p_2) = \ell(q_1, q_2) \), it follows that \(q_1, q_2 \in X \), contradicting the assumption that \(\{q_1, \ldots, q_4\} \) is non-coplanar.

If exactly one of the four points lies on \(\ell(p_1, p_2) \), then we may take this point to be \(q_1 \) without loss of generality. It suffices in this case to prove that the set \(\{p_1, p_2, q_1, q_i\} \) is non-coplanar for some \(i \in \{3, 4\} \). Assuming otherwise, part (a) guarantees, if the two resulting planes \(X_3 \) and \(X_4 \) are distinct, that they intersect in a line, which is necessarily \(\ell(p_1, p_2) \), contradicting the assumption that \(q_2 \notin \ell(p_1, p_2) \). On the other hand, if \(X_3 = X_4 \), then it follows that \(q_1 \in X_3 \), and the four are coplanar, another contradiction; indeed, the plane containing \(q_1, q_2, \) and \(p_1 \) (which are non-collinear since \(q_2 \notin \ell(p_1, p_2) \)) intersects \(X_3 \) in a line, which is necessarily \(\ell(p_1, p_2) \), containing \(q_1 \).

If none of the four points lie on \(\ell(p_1, p_2) \), we claim that the set \(\{p_1, p_2, q_1, q_i\} \) is non-coplanar for some \(i \in \{2, 3, 4\} \). Otherwise, we obtain three planes \(X_2 \), and \(X_3 \), and \(X_4 \). Not all three can be the same, since \(\{q_1, \ldots, q_4\} \) is non-coplanar; however, if (without loss of generality) \(X_2 \neq X_3 \), then \(X_2 \cap X_3 \) is a line that is necessarily equal to \(\ell(p_1, p_2) \). It follows that this line contains \(q_1 \), contrary to assumption.

(c) Let \(\ell \) be a line and \(p_1 \) and \(p_2 \) two points thereon. If \(p_3 \) and \(p_4 \) are the two points guaranteed by part (b), then planes containing \(\{p_1, p_2, p_3\} \) and \(\{p_1, p_2, p_4\} \) exist by the non-collinearity clause and are distinct by the non-planarity clause. By part (a), their intersection is a line, which is necessarily \(\ell = \ell(p_1, p_2) \).

(6) Suppose that \((P, L) \) satisfies P6. Then \((P, L) \) satisfies P5 as well and is therefore isomorphic to the projective plane over a division ring, which is a field by P6. It follows that \((P, L) \) is self-dual, so the dual of P6, which holds in the dual of \((P, L) \), must also
hold in \((P,L)\).

Problem Set 6.

(1) Depending on which variant of the definition of “isomorphism” one works with, the solution looks slightly different. This argument uses the phrasing “\(f\) is an isomorphism if \(f\) is a bijection and \(S \subseteq P_1\) is a line if and only if \(f(S) \subseteq P_2\) is a line.”

Supposing that \(f\) is an isomorphism, let \(S \subseteq P_1\) be a collinear set, so \(S \subseteq \ell\) for some line \(\ell \in L_1\). Then \(f(S) \subseteq f(\ell)\), and the latter is a line, so \(f\) preserves collinearity. On the other hand, if \(T \subseteq P_2\) is a collinear set, so that \(T \subseteq m\) for some \(m \in L_2\), then \(f^{-1}(T) \subseteq f^{-1}(m)\); therefore, to conclude that \(f^{-1}\) preserves collinearity, it suffices to show that \(f^{-1}(m)\) is a line. But \(f(f^{-1}(m)) = m\) is a line, and \(f\) is an isomorphism, so the claim follows.

Conversely, suppose that \(f\) and \(f^{-1}\) both preserve collinearity, and let \(\ell \in L_1\) be a line. Then \(f(\ell) \subseteq m\) for some line \(m \in L_2\), since \(f\) preserves collinearity, and \(f^{-1}(m) \subseteq \ell\), since \(f^{-1}\) does so. It follows that \(\ell \subseteq \ell'\), so the two lines are equal by \(\text{II}\); therefore, \(f(\ell) = m\), a line. On the other hand, suppose that \(S \subseteq L_1\) is a subset such that \(f(S) \subseteq L_2\) is a line. Since \(f^{-1}\) preserves collinearity, it follows that \(S\) is collinear, so \(S \subseteq \ell\) for some \(\ell \in L_1\). Since \(f\) preserves collinearity, \(f(\ell) \subseteq m\) for some line \(m \in L_2\). As before, it follows that \(f(S) = f(\ell) = m\), so \(S = \ell\) is a line. Thus, \(f\) is an isomorphism.

(b) Consider the 4-point plane and the incidence geometry with four points \(P = \{1, 2, 3, 4\}\) and \(L = \{\{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}\}\). The identity function on \(\{1, 2, 3, 4\}\) preservers collinearity when viewed as function from the set of points of the 4-point plane to the set of points of \((P,L)\), but its inverse (also the identity function) does not.

Problem Set 7.

(4) Since \(H\) is non-empty, there is an element \(h \in H\), hence \(h^{-1} \in H\), since \(H\) is closed under the formation of inverses. By closure under multiplication \(hh^{-1} = e \in H\).

(b) We choose a bijection of \(g: P \xrightarrow{\approx} \{1, \ldots, n\}\). Define a function \(\overline{g}: \text{Aut}(P,L) \to S_n\) by \(\overline{g}(f) = g \circ f \circ g^{-1}\), which is well-defined since the composite of bijections is again a bijection. Since \(g \circ f_1 \circ g^{-1} \circ g \circ f_2 \circ g^{-1} = g \circ f_1 \circ f_2 \circ g^{-1}\), \(\overline{g}\) is a group homomorphism, and it follows that the set \(H_g\) of permutations \(\sigma \in S_n\) such that \(\sigma = \overline{g}(f)\) for some automorphism \(f\) is in fact a subgroup of \(S_n\), and \(\overline{g}\) restricts to a group homomorphism from \(\text{Aut}(P,L)\) to \(H_g\), which is surjective by definition and also injective, since \(g \circ f_1 \circ g^{-1} = g \circ f_2 \circ g^{-1}\) implies that \(f_1 = f_2\) after composing on the left with \(g^{-1}\) and on the right with \(g\). Therefore, \(\text{Aut}(P,L)\) is isomorphic to this subgroup \(H_g\).

(c) The subgroup \(H_g\) and the isomorphism depend on the choice of bijection \(g\). There is no canonical ordering of the points of an incidence geometry, so this choice cannot be eliminated.
(d) If $\sigma \in S_3$ is any permutation, then $\{i,j\}$ is a set of distinct elements of $\{1,2,3\}$ if and only if $\{\sigma(i),\sigma(j)\}$ is a set of distinct elements. Since the lines of the 3-point plane are precisely the sets of two distinct elements, we conclude that every permutation is an automorphism, i.e., that the subgroup in question is S_3 itself.

(e) Replacing $\{1,2,3\}$ with $\{1,2,3,4\}$ in the previous argument shows that the automorphism group of the 4-point plane is isomorphic to S_4.

(f) The same argument shows that the automorphism group of the n-point plane is isomorphic to S_n.

(g) Suppose that $\sigma_1(4) = \sigma_2(4) = 4$. Then $\sigma_1(\sigma_2(4)) = \sigma_1(4) = 4$, and $\sigma_1^{-1}(4) = \sigma_1^{-1}(\sigma_1(4)) = 4$, so the set of elements with this property is closed under multiplication and the formation of inverses. It is also non-empty; for example, it contains the permutation that switches 1 and 2 and leaves 3 and 4 fixed. Therefore, this subset is a subgroup. This subgroup is isomorphic to S_3, since a permutation fixing 4 is determined by its values on $\{1,2,3\} \subseteq \{1,2,3,4\}$, and since any permutation of 1, 2, and 3 determines an element of S_4 by declaring its value on 4 to be 4.

(h) Let $P = \{1,2,3,4\}$ and $L = \{\{1,2,3\}, \{1,4\}, \{2,4\}, \{3,4\}\}$. Let $H \leq S_4$ denote the stabilizer subgroup of 4, as in the previous problem. We claim that $\text{Aut}(P,L) = H$ (we may write an equals sign rather than an isomorphism here, since the set of points in this specific example is $\{1,2,3,4\}$, rather than an abstract set with four elements). Both $\text{Aut}(P,L)$ and H are subgroups of S_4, so it suffices to show that each contains the other. Any permutation fixing 4 sends lines to lines by inspection, so $H \subseteq \text{Aut}(P,L)$. On the other hand, suppose that f is a bijection that does not fix 4, so $f(4) = 1$ without loss of generality. Then $f(\{1,2,3\}) = \{4,2,3\}$, which is not a line; therefore, f is not an automorphism. It follows that $\text{Aut}(P,L) \subseteq H$, as required.

(i) The automorphism groups of the 3-point plane and the weird 4-point plane are both isomorphic to S_3, but the two are certainly not isomorphic, having different numbers of points.