WORKSHEET 3/5/18

(1) Find the best fit line for the points (1,0), (2,1), and (3,3).

Solution We have
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. We calculate that $(A^T A)^{-1} = \frac{1}{6} \begin{bmatrix} 3 & -6 \\ -6 & 14 \end{bmatrix}$, so
 $\vec{x}^* = \frac{1}{6} \begin{bmatrix} 3 & -6 \\ -6 & 14 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

The best fit line is y = x.

(2) The following table shows the percentage of classes attended by Harvard students:

Year (y)	Percentage of Classes Attended (p)
1 (Freshman)	100
2 (Sophomore)	90
3 (Junior)	60
4 (Senior)	10

We suspect that p(y) looks like ky^n for some constants k and n, and we would like to find k and n.

- (a) Do you expect k and n to be positive or negative? What number should k be close to?
- (b) How might we express this problem as a linear system?
- **Solution** (a) Since p(y) is positive, we expect k to be positive. Since p(y) is decreasing, we expect n to be negative. Since p(1) = 100, k should be close to 100. (b) The equations

$$k \cdot 1^{n} = 100$$
$$k \cdot 2^{n} = 90$$
$$k \cdot 3^{n} = 60$$
$$k \cdot 4^{n} = 10$$

aren't linear, but we can fix this by taking the natural logarithm to get

c	+	$n\ln 1$	$= \ln 100$
c	+	$n\ln 2$	$= \ln 90$
c	+	$n\ln 3$	$= \ln 60$
c	+	$n\ln 4$	$= \ln 10,$

where $c = \ln k$. This now a linear system in c and n.

(3) Find the best fit degree 2 polynomial for the points (-1, 1), (0, 0), (1, 2), and (2, 5).

WORKSHEET 3/5/18

Solution We have
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 5 \end{bmatrix}$. We calculate that $(A^T A)^{-1} = \frac{1}{20} \begin{bmatrix} 5 & -5 & -5 \\ -5 & 9 & 3 \\ -5 & 3 & 11 \end{bmatrix}$ so

$$\vec{x}^* = \frac{1}{20} \begin{bmatrix} 5 & -5 & -5\\ -5 & 9 & 3\\ -5 & 3 & 11 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 4\\ -1 & 0 & 1 & 2\\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 2\\ 5\\ 5 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 25\\ 8\\ 6 \end{bmatrix}.$$

The best fit polynomial is $y = \frac{1}{20}(25x^2 + 8x + 6)$.

(4) Without using Gram-Schmidt, find the matrix of orthogonal projection onto the span of $\begin{bmatrix} 1\\2\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 0\\0\\1 \end{bmatrix}. \text{ (Hint: if you forgot the formula, think of this as a least squares problem).}$ Solution We have $A = \begin{bmatrix} 1 & 0\\2 & 0\\0 & 1 \end{bmatrix}.$ We calculate that $(A^T A)^{-1} = \begin{bmatrix} \frac{1}{5} & 0\\0 & 1 \end{bmatrix}$, so the projection is given

$$A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 1 & 0\\ 2 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{5} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0\\ 0 & 0 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 & 0\\ 2 & 4 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

- (5) Let A be an $m \times n$ matrix.
 - (a) Show that $\ker(A) = \ker(A^T A)$ (Hint: If a vector \vec{x} is in the kernel of $A^T A$, then $A\vec{x}$ is in the image of A and in the kernel of A^T).
 - (b) Use part (a) to conclude that $\ker(A) = \{\vec{0}\}$ if and only if $A^T A$ is invertible.
- **Solution** (a) If $A\vec{x} = \vec{0}$, then $A^T A\vec{x} = A^T \vec{0} = \vec{0}$, so the kernel of A is contained in the kernel of $A^T A$. In order to show that they're the same, we need to show that the kernel of $A^T A$ is contained in the kernel of A. So suppose that \vec{x} is a vector such that $A^T A \vec{x} = \vec{0}$; then $A\vec{x}$ is both in the image of A and in the kernel of A^T . Since $\ker(A^T) = \operatorname{im}(A)^{\perp}$, it follows that $A\vec{x}$ is orthogonal to every vector in im(A)—so $A\vec{x}$ is orthogonal to itself! The only vector orthogal to itself is the zero vector, so $A\vec{x} = \vec{0}$, which is to say that \vec{x} is in the kernel of A. (b) By part (a), $\ker(A) = \vec{0}$ if and only if $\ker(A^T A) = \{\vec{0}\}$, which is equivalent to the statement that $A^{T}A$ has a pivot in every column (by rank-nullity). Since $A^T A$ is a square matrix, this condition is equivalent to invertibility.
 - (6) Decide whether each of the following statements is true or false. If the statement is true, explain why briefly; if the statement is false, give a counterexample (Hint: exactly one of the statements is false).
 - (a) The least squares solutions of $A\vec{x} = \vec{b}$ are exactly the solutions of $A\vec{x} = \text{proj}_{\text{im}(A)}(\vec{b})$.
 - (b) If \vec{x}^* is a least squares solution of $A\vec{x} = \vec{b}$, then $||\vec{b}||^2 = ||A\vec{x}^*||^2 + ||\vec{b} A\vec{x}^*||^2$.
 - (c) Every linear system has a unique least squares solution.
 - (d) Even if the system $A\vec{x} = \vec{b}$ is inconsistent, the system $A^T A \vec{x} = A^T \vec{b}$ is consistent.
 - (e) For any matrix A, $(\ker A)^{\perp} = \operatorname{im}(A^T)$.

Solution (a) True; this is the definition of a least squares solution. (b) True; if \vec{x}^* is a least squares solution, then $A\vec{x}^* = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$, so $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$ and $\vec{b} - \operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$ are orthogonal, and the equation in question follows from the Pythagorean theorem. (c) False; for example, every vector is a least squares to the system $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. (d) True; this is equivalent to asking whether $A\vec{x} = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$ has a solution, which is to ask whether $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$ is in the image of A—and it is! (e) True; we know already that $\operatorname{im}(A^T)^{\perp} = \operatorname{ker}((A^T)^T) = \operatorname{ker}(A)$, so apply "perp" to both sides of this equation.

The least squares solutions to the linear system $A\vec{x} = \vec{b}$ are the exact solutions to the normal equation

$$A^T A \vec{x}^* = A^T \vec{b}.$$

If ker(A) = $\vec{0}$, then there is a unique least squares solution, which is given by $\vec{x}^* = (A^T A)^{-1} A^T \vec{b}.$