WORKSHEET 3/5/18

(1) Find the best fit line for the points $(1,0),(2,1)$, and $(3,3)$.

Solution We have $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 3 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. We calculate that $\left(A^{T} A\right)^{-1}=\frac{1}{6}\left[\begin{array}{rr}3 & -6 \\ -6 & 14\end{array}\right]$, so

$$
\vec{x}^{*}=\frac{1}{6}\left[\begin{array}{rr}
3 & -6 \\
-6 & 14
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

The best fit line is $y=x$.
(2) The following table shows the percentage of classes attended by Harvard students:

Year (y)	Percentage of Classes Attended (p)
1 (Freshman)	100
2 (Sophomore)	90
3 (Junior)	60
4 (Senior)	10

We suspect that $p(y)$ looks like $k y^{n}$ for some constants k and n, and we would like to find k and n.
(a) Do you expect k and n to be positive or negative? What number should k be close to?
(b) How might we express this problem as a linear system?

Solution (a) Since $p(y)$ is positive, we expect k to be positive. Since $p(y)$ is decreasing, we expect n to be negative. Since $p(1)=100, k$ should be close to 100 . (b) The equations

$$
\begin{aligned}
& k \cdot 1^{n}=100 \\
& k \cdot 2^{n}=90 \\
& k \cdot 3^{n}=60 \\
& k \cdot 4^{n}=10
\end{aligned}
$$

aren't linear, but we can fix this by taking the natural logarithm to get

$$
\begin{aligned}
& c+n \ln 1=\ln 100 \\
& c+n \ln 2=\ln 90 \\
& c+n \ln 3=\ln 60 \\
& c+n \ln 4=\ln 10
\end{aligned}
$$

where $c=\ln k$. This now a linear system in c and n.
(3) Find the best fit degree 2 polynomial for the points $(-1,1),(0,0),(1,2)$, and $(2,5)$.

$$
\vec{x}^{*}=\frac{1}{20}\left[\begin{array}{rrr}
5 & -5 & -5 \\
-5 & 9 & 3 \\
-5 & 3 & 11
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 1 & 4 \\
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2 \\
5
\end{array}\right]=\frac{1}{20}\left[\begin{array}{r}
25 \\
8 \\
6
\end{array}\right] .
$$

The best fit polynomial is $y=\frac{1}{20}\left(25 x^{2}+8 x+6\right)$.
(4) Without using Gram-Schmidt, find the matrix of orthogonal projection onto the span of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. (Hint: if you forgot the formula, think of this as a least squares problem).
Solution We have $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 0 & 1\end{array}\right]$. We calculate that $\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}\frac{1}{5} & 0 \\ 0 & 1\end{array}\right]$, so the projection is given by

$$
A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(5) Let A be an $m \times n$ matrix.
(a) Show that $\operatorname{ker}(A)=\operatorname{ker}\left(A^{T} A\right)$ (Hint: If a vector \vec{x} is in the kernel of $A^{T} A$, then $A \vec{x}$ is in the image of A and in the kernel of A^{T}).
(b) Use part (a) to conclude that $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if $A^{T} A$ is invertible.

Solution (a) If $A \vec{x}=\overrightarrow{0}$, then $A^{T} A \vec{x}=A^{T} \overrightarrow{0}=\overrightarrow{0}$, so the kernel of A is contained in the kernel of $A^{T} A$. In order to show that they're the same, we need to show that the kernel of $A^{T} A$ is contained in the kernel of A. So suppose that \vec{x} is a vector such that $A^{T} A \vec{x}=\overrightarrow{0}$; then $A \vec{x}$ is both in the image of A and in the kernel of A^{T}. Since $\operatorname{ker}\left(A^{T}\right)=\operatorname{im}(A)^{\perp}$, it follows that $A \vec{x}$ is orthogonal to every vector in $\operatorname{im}(A)$-so $A \vec{x}$ is orthogonal to itself! The only vector orthgonal to itself is the zero vector, so $A \vec{x}=\overrightarrow{0}$, which is to say that \vec{x} is in the kernel of A. (b) By part $(\mathrm{a}), \operatorname{ker}(A)=\overrightarrow{0}$ if and only if $\operatorname{ker}\left(A^{T} A\right)=\{\overrightarrow{0}\}$, which is equivalent to the statement that $A^{T} A$ has a pivot in every column (by rank-nullity). Since $A^{T} A$ is a square matrix, this condition is equivalent to invertibility.
(6) Decide whether each of the following statements is true or false. If the statement is true, explain why briefly; if the statement is false, give a counterexample (Hint: exactly one of the statements is false).
(a) The least squares solutions of $A \vec{x}=\vec{b}$ are exactly the solutions of $A \vec{x}=\operatorname{proj}_{\text {im }(A)}(\vec{b})$.
(b) If \vec{x}^{*} is a least squares solution of $A \vec{x}=\vec{b}$, then $\|\vec{b}\|^{2}=\left\|A \vec{x}^{*}\right\|^{2}+\left\|\vec{b}-A \vec{x}^{*}\right\|^{2}$.
(c) Every linear system has a unique least squares solution.
(d) Even if the system $A \vec{x}=\vec{b}$ is inconsistent, the system $A^{T} A \vec{x}=A^{T} \vec{b}$ is consistent.
(e) For any matrix $A,(\operatorname{ker} A)^{\perp}=\operatorname{im}\left(A^{T}\right)$.

Solution (a) True; this is the definition of a least squares solution. (b) True; if \vec{x}^{*} is a least squares solution, then $A \vec{x}^{*}=\operatorname{proj}_{i m(A)}(\vec{b})$, so $\operatorname{proj}_{i m(A)}(\vec{b})$ and $\vec{b}-\operatorname{proj}_{i m(A)}(\vec{b})$ are orthogonal, and the equation in question follows from the Pythagorean theorem. (c) False; for example, every vector is a least squares to the system $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. (d) True; this is equivalent to asking whether $A \vec{x}=\operatorname{proj}_{i m(A)}(\vec{b})$ has a solution, which is to ask whether $\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})$ is in the image of A-and it is! (e) True; we know already that $\operatorname{im}\left(A^{T}\right)^{\perp}=\operatorname{ker}\left(\left(A^{T}\right)^{T}\right)=\operatorname{ker}(A)$, so apply "perp" to both sides of this equation.

The least squares solutions to the linear system $A \vec{x}=\vec{b}$ are the exact solutions to the normal equation

$$
A^{T} A \vec{x}^{*}=A^{T} \vec{b}
$$

If $\operatorname{ker}(A)=\overrightarrow{0}$, then there is a unique least squares solution, which is given by

$$
\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

