The picture ‘Yolanda’ provided | Inquirer
Opinion

BOSTON, Massachusetts—Next month we will mark the third anniversary of “Yolanda,” the deadliest tropical typhoon in our nation’s recorded history. As we revisit this memory, our preparations for better climate resiliency also need to be revisited, and adjusted as necessary. Climate vulnerabilities in terms of extreme weather, reduced water and food supply, droughts, and flooding will increase the disruptions and damage in the spaces we occupy. Understanding these risks and preparing for them have to be localized—in our households, communities, barangays, towns, cities and provinces.

Extreme weather events, such as stronger typhoons and longer droughts, will inevitably come with increasing frequency. While the Philippines is considered a climate hotspot, climate change will impact every locality in the country in various ways: Some will be exposed to repeated and worsening droughts, others to flooding or extreme heat.

At any rate, a disorganized, uncoordinated, and inefficient response during these weather events could shake our institutions and governance systems, and cost lives. Remember Yolanda in Eastern Visayas in 2013 and El Niño in Central Mindanao early this year.

Coastal flooding is where the vulnerabilities of our many communities are the most critical. The Philippines being an archipelago, its critical infrastructure will be subjected to rising sea levels and more intense coastal storms in the coming decades. Take note that its major cities are on the coasts. The risks with the interior communities, meanwhile, will include more frequent and extreme droughts, high temperatures that could lead to heat waves, and increasing heavy downpours. These will put us and our livelihoods, food systems, infrastructure, and social order at higher risks.

The exposure of our critical infrastructure systems to these hazards further magnifies our vulnerabilities because our energy, transportation, telecommunication, and water systems are highly interdependent. An impact on one can quickly cascade onto other infrastructure systems during an extreme event.

Yolanda provided us with this picture: Energy supply was totally cut off. Electricity was not immediately restored. Food and fuel were in short supply. Roads and an airport were physically damaged. These made the provision of immediate care, restoration of electricity and roads, and relief work in hardest-hit areas extremely challenging.

The most important aspect of a climate-resilient Philippines, therefore, is understanding the varied risks relevant for each community, and cascading this understanding to municipality, city, provincial, and interprovincial levels. This requires Filipinos to know the risks of climate change as it impacts (or may impact) their own lives.

This exercise involves producing long-term risk assessments, scenario analyses, and forecasts of local climate risks that span the potential changes in local land use, population movements, and infrastructure brought about by climate-induced changes in our physical world. Giving premium to local knowledge helps in dealing with the many associated uncertainties of current and future climate risks. Interconnecting these understandings with our socioeconomic circumstances, and relating them to those produced by our neighboring communities, are also essential. Only until we have a locally generated understanding of these risks and seamlessly integrated local action plans can we can bring ourselves closer to a climate-resilient Philippines.

Dr. Laurence Delina (ldelina@bu.edu), from South Cotabato, is a sustainability scientist at Boston University. His research is focused on climate change, energy security, and international development. He is the author of “Strategies for Rapid Climate Mitigation: war mobilisation as model for action?” (Routledge 2016).