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ABSTRACT: It is a common intuition from battery experts that
many shape features in the voltage profile image contain
abundant information related to battery performance. However,
such features are often too subtle for a human to extract by eye
inspection and further correlate with battery performance.
Using long cycling data from hundreds of large-format pouch
cells and a total of 2 million cycles tested over 1000 days, we
demonstrate here for the first time that it is advantageous to
accurately predict the capacity and remaining useful life in real
time by learning battery voltage profile images rather than
voltage values. A strategy of end-to-end performance prediction
of large-format battery cells is thus demonstrated to be feasible
using only a few of the previous cycles at any given time point
during the cycling test. Our work paves the way toward the
application of machine learning for real-time battery performance prediction and regulation for electric vehicle applications.

Li-ion batteries have made ever-increasing contributions
to the switch to sustainable energy, the environment,
and the climate in recent years, especially those used in

electric vehicles (EVs). EVs are an important part of the
current trend of global electrification. However, only 2% of
cars on the road nowadays are EVs, while the remaining 98%
are still gasoline cars. The slow electrification of cars is partly
impeded by the performance, cost, and safety issues of
batteries. A battery management system (BMS) is widely used
to monitor real-time battery conditions. Thus, there have been
great interest and effort in applying machine learning for
battery performance monitoring, prediction, and safety1−7 so
that such a functionality can be more widely incorporated into
the BMS in the future.
Machine learning has also been playing a more and more

important role in facilitating battery development. On the
material side, it has found success in the high-throughput
screening of candidate materials for better battery perform-
ance.8−11 On the practical side, it has also been demonstrated
that machine learning models can effectively learn from battery
testing data to forecast and evaluate battery performance and
detect battery failure.1,3,12 These methods not only save a
considerable amount of testing time but also have great
potential to enhance the safety of batteries. The application is
especially attractive for batteries installed in EVs, with the goal

of managing charging procedures and usage patterns for
performance enhancement and predicting and preventing
potential safety issues from a running battery in real time.
However, many of the current machine-learning studies of

battery performance prediction fall short connecting the small-
format coin cells tested under a specially designed lab
condition with the large-format pouch, prismatic, or cylindrical
cells, i.e., those used in EVs, which are tested under a more
general and practical condition. Furthermore, the existing
methods either require sophisticated measurements beyond
the simple galvanostatic constant-current electrochemical
measurement or are developed from a specially constructed
set of measurements. These methods thus often result in a
strong correlation with several predetermined factors, which
largely limits the generalization to broader scenarios. These
issues have impeded the application of machine learning
methods for practical battery performance predictions.
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In our previous study,1 we introduced a method of treating
battery cycling curves as 2D images to directly model their
correlation with the target quantities. However, the method
was developed based on coin cell data of short cycling tests
around 30−50 cycles from the research laboratory. In this
work, we developed an end-to-end approach for the first time
for battery data from an industrial large-format pouch cell of 60
Ah capacity with long cycling tests that add up to a total of 2
million 2D images of cycles tested over 1000 days. To obtain
better shape features of the cycling curves, we used the
embeddings computed by pretrained foundational convolu-
tional neural network models. Multiple factors are considered,
including the shape features, the temperature, and the
temperature fluctuation. We took advantage of the historical
cycling data at any time point during the cycling test and
achieved accurate modeling of two important and useful
targets: the state of health (SOH) and the remaining useful life.
We have demonstrated that the historical cycling information
plays a critical role in forecasting the battery performance. Our
result paves the way for the future application of machine
learning-based battery performance prediction to the BMS
systems of EVs and to the further understanding of battery
(electro)chemistry evolutions.
LG Energy Solution collected the test cases from a total of

356 individual large-format 60 Ah pouch cells for EV battery
application (Figure 1a). For each cell, this consisted of
extended cycling test up to 27 000 cycles, and thus a total of 2
million aging cycles from 356 pouch cells with a capacity of 60

Ah were tested over 1000 days. Tests are performed at
different temperatures, state of charge (SOC) ranges, and
charge or discharge rates, making the data set a valuable
platform to apply machine learning models to understand how
complicated practical testing environment can affect battery
performance. These cycles with different testing conditions will
be referred to as the “aging cycles” (Figure 1b and c). For
every battery tested, reference performance tests (RPTs) are
conducted repeatedly at certain intervals of cycles to monitor
the cell capacity and resistance under a standardized condition
(25 °C and cycling rate of C/3). Cycles measuring the
standard capacity will be referred to as the “RPT cycles”
(Figure 1b and c).
One example battery testing case is shown in Figure 2 and SI

Figure S1a. The results show the typical voltage curve shape of
a LiNixMnyCozO2 (NMC) cathode paired with a graphite
anode in a normalized voltage range (Figure 2). For this
particular battery, the aging test was performed at a 2C rate
(black), while the RPT cycles were performed at a C/3 rate
(red). In addition, normalized currents, normalized capacity,
and the actual testing temperatures are also presented in SI
Figure S1b−d, respectively. For this particular battery, low-
temperature cycling tests were performed around 10−17.5 °C,
while the RPT tests were performed at room temperature
around 25 °C. The small temperature fluctuations of the RPT
tests are normal and are caused by the heat generated from the
cycling of cells.

Figure 1. (a) Global view of all data containing a total of 356 NMC−graphite pouch cell batteries with a capacity of 60 Ah monitored over
1000 days and 1000 kWh at various aging conditions, summing up to a total of 2 million aging cycles. (b) Normalized capacity (Q) versus
normalized cumulative capacity for an example set of 50 batteries. The green curve highlights a particular battery test, where the spikes are
from the RPT cycles and the remaining decay sections are the aging cycles that reflect capacity fading. (c) Illustration of actual aging and
RPT periods for a particular battery test. (d) Illustration of our approach to representing the voltage profile of each cycle (left) using a
binary image (right).
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Beyond the measured electrochemical data, including the
voltage profile and capacity, we identified the testing
temperature as another important factor related to battery
performance. As shown in Figure 3a, we visualized the battery
temperature fluctuation at each cycle for each battery of the
356 pouch cell batteries. As shown in Figure 3b, we plotted the
correlation between the temperature fluctuation at a given
cycle and the capacity decreasing speed after this cycle. The
overall correlation reaches 0.53, suggesting that temperature
fluctuation has a nonnegligible influence on battery perform-
ance and can thus be integrated into the battery performance
prediction.
In order to obtain the embedding features for these cycling

curve images, or the cycling curve matrices, we take advantage
of open-sourced foundational convolution neural network
models (e.g., the Tensorflow13 Hub). These are very deep
convolutional neural networks trained on a benchmark natural
image data set, ImageNet,14 with more than 10 million images
describing objects across 1000 classes. Studies have demon-
strated that such foundation models possess general image-

understanding capabilities ranging from astronomical images15

to medical images,16 and other industrial images.
As illustrated in Figure 4a, we performed feature extraction

using a ResNet-5017 model with 50 layers and obtained a

1000-dimensional embedding vector for each cycling curve
image. Figure 4b shows a schematic diagram of the ResNet-50
model to which we feed the cycling curve images as the input
images and then record the output vector from the second-to-
last layer. Since the model has been well trained to recognize
images, we reduce the cycling curve image to a 1000-
dimensional vector, which not only condenses the information
contained in the cycling curves but also enlarges the difference
between different cycling curve images as much as possible. In
order to make our model more scalable with a faster
computational speed, we apply a principal component analysis,
which reduces the dimension of the embedding feature vector
from 1000 to 32 or 64 for later study. We will refer to these as

Figure 2. Profile of normalized cycling voltage curves from an
example battery tested for 1000 cycles. Darker curves correspond
to later cycles. Red curves are from the reference performance
tests (RPT).

Figure 3. Temperature fluctuation statistics for all batteries. (a) Temperature fluctuation for each cycle of every battery of the 356 pouch cell
batteries. A different color was applied automatically for each cell. (b) Correlation between the temperature fluctuation in each cycle and the
capacity decreasing speed after the corresponding cycle.

Figure 4. (a) Schematic of obtaining embedding features of cycling
curve images from ResNet and using them for performance
prediction. (b) Diagram of a ResNet-50 model with 50 residual
convolution layers.17 The cycling curve images we prepared are
used as “Input Image” to the model, and the output of the
“Average Pooling” layer is taken as computed feature vector for
our cycling curve image. (c) Illustration of the different forecast
schemes studied, where three schemes are labeled as (1), (2), and
(3) beside the three arrows. Scheme (1) is about using information
from a single or several aging cycles to predict the capacity of the
reference performance test, while scheme (2) uses several
consecutive cycles in history. Scheme (3) is related to the
prediction of the remaining useful life, i.e., the cumulative capacity
before the RPT capacity drops below 80%.
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the 32-dimensional and 64-dimensional shape features in the
following sections.
Figure 4c shows the diagram of several possible prediction

schemes related to capacity prediction. We considered various
time spans of information used for the prediction, including
using the immediate aging cycle before the RPT test or a few
aging cycles before the RPT test. To construct the input−
output pairs to model, we use the capacity of each of the RPT
cycle from every battery as the target and use the information
on the aging cycles before the RPT cycle to construct the input
features. We start with only the shape features of the aging
cycling curves and then combine them with the capacity
(feature Q) and the mean and variance of temperature (feature
T) of the aging cycles. We feed these features into a random
forest as the regression model, which learns to output the
correct value for the RPT capacity.
Figure 5a and b show the per-example training and testing

result distribution using just 32 shape features of a single aging

cycle before the RPT cycle as the input, where the plotted (x,
y) are (predicted value, true value). We see that using just 32
shape features can already achieve decent training accuracy, as
indicated by the fact that the data points are well-aligned along
the y = x line. To further increase the generalization capability
of our method, we tested a few different strategies. We find
that simply adding more input features does not improve the
learning result, as shown in the second row of Table 1, as the
64-dimensional shape features achieve the same result as 32-
dimensional shape features. Instead, we find that using

different types of information is helpful. As shown in the
third and fourth rows of Table 1, we combined the shape
feature with the capacity and temperature fluctuations of the
aging cycles, respectively, and observed 10% reductions in both
training and test errors.
As the battery performance is highly history-dependent, it

turns out that the historical information can indeed provide
critical ingredients to our modeling. For the 35-dimensional
features of each cycle (32 for shape, 1 for capacity Q, and 2 for
temperature T), we first considered stacking these features of
three consecutive aging cycles together before the target RPT
cycle, making a concatenated 105-dimensional feature. Going
from one cycle to three cycles as the input, we observed
another 20% reduction in both training and test errors (Table
1). Further increasing the number of cycles from 3 to 10 does
not bring extra advantage, suggesting that the short-range
historical correlation is already captured by the 3 aging cycles
before the RPT cycle. We note that the lack of low-Q samples
in the data set, due to the high capacity and cyclability of these
high-quality batteries, may cause additional spread in the low-
Q regime in the test data. A more complete data set with more
low-Q and medium-Q samples will further reduce the overall
spread and increase the prediction.
For another practically important quantity, the remaining

useful life, we are concerned with how much of the capacity we
can have in future cycles before the standard RPT capacity
drops to below 80% of the initial RPT capacity. Since only a
small fraction of batteries have RPT capacities below 80% in
our data, we define the average decreasing rate D of the
capacity after a given cycle as an equivalent quantity to the
remaining useful life

D
Q Q

Q

(RPT) (RPT)

(aging)
c f

c
f=

where “c” and “f” in the summation stand for “current” and
“final” RPT cycles, respectively. Similar to our previous
modeling of the RPT capacity, for each battery, all RPT
cycles with a sufficient number of previous aging cycles are
constructed as an example, where the aging cycles are used as
input and the average decreasing rate D is used as the target.
Then, we applied similar techniques compared to those for the
RPT capacity prediction to model the average decreasing rate.
The results in Table S1 carry a message similar to that we

obtained from modeling the RPT capacity. The best result is
also obtained by combining the shape, capacity, and temper-
ature features when averaging these features over a few of the
previous aging cycles. In Figure S2, the per-example training
and test result distributions are also similar to those from
modeling the RPT capacity. Note that the error from modeling
the remaining useful life is about three times larger than that
from modeling the RPT capacity. This is caused by the fact
that the distribution of the capacity decreasing rate is about
three times wider than that of the RPT capacity. Thus, the
relative error of modeling these two tasks should be close. The
result suggests that our model and methodology is capable of
both tasks, namely, predicting both capacity and remaining
useful life with high accuracy given the right training dataset of
batteries.
It is worth noting that these battery cycling data are in fact

temporal sequences. Although ResNET itself does not contain
temporal information, we included the temporal information
both inside each cycle and across different cycles in our

Figure 5. (a) Per-example training and (b) test error of the RPT
capacity prediction.

Table 1. Result of the RPT SOH Estimation Using Previous
Aging Cyclesa

input features total feature length training error test error

1 cycle 32 0.007 0.033
1 cycle 64 0.007 0.033
1 cycle 33 (+Q) 0.006 0.030
1 cycle 35 (+Q + T) 0.006 0.029
1 cycle only Q 1 0.012 0.058
1 cycle only T 2 0.012 0.053
stacking 3 cycles 105 (+Q + T) 0.005 0.024
stacking 10 cycles 350 (+Q + T) 0.005 0.025

aThe input shape features have a dimension of either 32 or 64. Q is
the scalar value of the relative capacity, and T is the temperature
feature consisting of the mean and variance of the temperature of the
corresponding cycle. “1 cycle” refers to using the information of the
aging cycle right before the RPT test cycle, and “stacking 3 cycles”
means concatenating the features from the last three aging cycles
before the RPT test cycle.
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algorithm. First, since we represent each cycling curve as
images (e.g., Figure 1d), the temporal information within each
cycle is modeled as spatial information that can be captured by
the features produced from ResNET. For temporal informa-
tion from cycle to cycle, we applied a straightforward method
of stacking the features of consecutive cycles together, creating
a temporal feature order for the model to learn. That said, it is
worth trying in the future a recurrent neural network (RNN)
or attention mechanisms that are also good at modeling
sequences. Technically, we showed that averaging the features
over some histories is the best approach for the prediction
accuracy, emphasizing the importance of historical cycling
information in forecasting the battery performance. Since the
historical cycling information reflects the (electro)chemical
evolution history, its correlation with the future capacity and
remaining useful life reflects the general stability and
predictable instability of electrochemical reactions in commer-
cial large-format pouch cells. Our work paves the way toward
the application of machine learning for real-time EV battery
performance prediction and regulation in the future.

■ METHODS
Battery Cycling Data. LG Energy Solution collected the

test cases from a total of 356 individual large-format 60 Ah
pouch cells for EV battery application. For each cell composed
of a NMC cathode and a graphite anode, it consists of an
extended cycling test up to 27000 cycles; thus, there are a total
of several million cycles in the dataset. The data were collected
over 1000 days and 1000 kWh at various aging conditions.
More details can be found in the main text regarding Figure 1
and Figure 2.
Machine Learning. Following previous literature,1 we

prepared each test cycle (see Figure 1d) as a 224 × 224 binary
image matching the standard resolution of ResNet. The region
between the charge and discharge curve is given the value 1,
and the rest is given the value 0. The Resnet model we used to
compute embedding features for the cycling curve images was
constructed through the Keras18 Applications API, with model
parameters pretrained on ImageNet as described previously.17

We use decision trees to perform the regression modeling
mainly due to their robustness. A decision tree starts with the n
input features {x1, x2, ..., xn}, where each node of the tree
applies a conditional statement on the value of a feature,
moving to a subsequent node based on the truth of that
statement. The optimization of the tree includes choosing both
the feature and the threshold for the criteria for each node that
overall best split the set of items. Instead of measuring the
error, better metrics such as the cross entropy and the Gini
index are generally used to measure the goodness of the choice
of the criteria and the data split.8,19 We use an ensemble model
of individual decision trees, the extremely randomized tree
model.20 In such models, a number of N trees are initialized
simultaneously (N = 30 in our setting). Each tree in the
ensemble is fed with training data sampled from the training
set. A random subset of candidate features is used from which
thresholds are drawn at random for each candidate feature, and
the best of these randomly generated thresholds is picked as
the splitting rule.
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