Research Article

Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2-Type Manganese-Rich Sodium Cathodes

Biwei Xiao, Xiang Liu, Xi Chen, Gi-Hyeok Lee, Miao Song, Xin Yang, Fred Omenya, David M. Reed, Vincent Sprenkle, Yang Ren, Cheng-Jun Sun, Wanli Yang, Khalil Amine, Xin Li,* Guiliang Xu,* and Xiaolin Li*

Utilizing both cationic and anionic oxygen redox reactions is regarded as an important approach to exploit high-capacity layered cathode materials with earth abundant elements. It has been popular strategies to effectively elevate the oxygen redox activities by Li-doping to introduce unhybridized O 2p orbitals in Na$_2$MnO$_2$-based chemistries or enabling high covalency transition metals in P2-Na$_{0.66}$Mn$_x$TM$_{(1-x)}$O$_2$ (TM = Fe, Cu, Ni) materials. Here, the effect of Li doping on regulating the oxygen redox activities P2-structured Na$_{0.66}$Ni$_{0.25}$Mn$_{0.75}$O$_2$ materials is investigated. Systematic X-ray characterizations and ab initio simulations have shown that the doped Li has uncommon behavior in modulating the density of states of the neighboring Ni, Mn, and O, leading to the suppression of the existing oxygen and Mn redox activities and the promotion of the Ni redox. The findings provide a complementary scenario to current oxygen redox mechanisms and shed lights on developing new routes for high-performance cathodes.

1. Introduction

Recent decades have witnessed a global endeavor on decarbonization and an exponential growth of demand on renewable energy. To transform these intermittent clean energy resources into reliable and dispatchable electricity, rechargeable batteries that have been utilized extensively in portable electronics and electric vehicles are also being exceeded as a major energy storage approach for electric grids. While Li-ion battery (LIB) continues to dominate the market, there is also an urgent need to search for alternatives considering the increasing concern on the raw material/supply chain sustainability. Sodium-ion battery (SIB) is the natural next-in-line technology because it not only shares similar mechanism to LIBs and can be conveniently adapted to the current battery manufacturing systems, but also has the intrinsic advantage on material abundance and global distribution.[1–4] Layered oxide cathode materials on the basis of intercalation chemistry have been extensively used in LIBs. Among them, manganese-rich materials with both the cationic and anionic oxygen redox reactions can deliver high electrochemical performance without using critical elements.[5,6] The case can be replicated to the exploration of high performance SIB materials, where various materials with oxygen redox have been reported.[7–10] Unlike the LIB materials with O3 structure, the SIB materials include both O3 and P2...
structures ("P" and "O" stand for the Na-ion occupations on trigonal prismatic and octahedral sites, respectively).7,20 Conventional wisdom believed that extra Li doped in the transition metal (TM) layer of these materials triggers oxygen redox activities. The oxygen redox are related to the oxygen lone pair states in the A–O–A′ configuration, where A is one type of alkaline metal (Li or Na) and A′ is a species in the TM layer that does not hybridize with the oxygen 2p orbital.11,12 Li–O–Li, Na–O–Na, Na–O–Li, Na–O–Mg, and Na–O-vacancy have been found responsible for the oxygen redox activity in O3 layered Li-rich materials, O3 layered Na-rich materials, Li- and/or Mg-doped P2 layered sodium materials and their vacancy-containing derivatives.8,11–16

Recent extensive studies on sodium layered materials have brought up a new mechanism regarding the oxygen redox, as some materials that are not supposed to have the A–O–A′ local configuration also display oxygen redox activities. For example, P2-structured Na\textsubscript{2}Mn\textsubscript{1.5}Ni\textsubscript{0.5}O\textsubscript{2} and its Fe and Cu-doped analogues have been observed to have such activities at a plateau level at the high voltage region.17–20 High covalency of the TM layers at charged state leads to substantially increased oxygen density near the Fermi level, which triggers the oxygen redox.3,17,21 The high voltage plateau in P2-structured Na\textsubscript{x}Ni\textsubscript{y}Mn\textsubscript{1−y}O\textsubscript{2} historically have been ascribed to the P2–O2 phase transition and Li doping has been considered to diminish/eliminate the high voltage plateau and phase transition.22–26 With the acknowledgement of Li largely reside in the TM layer, the incorporation of lighter Li around Mn thus reduces the intensity of first shell Mn–TM scattering, corroborating the superstructure.10 The Mn3+–Mn4+ configuration, where A is one type of alkaline metal (TM) layer of these materials triggers oxygen redox activities. For example, P2-structured Na\textsubscript{2}Mn\textsubscript{1.5}Ni\textsubscript{0.5}O\textsubscript{2} and its Fe and Cu-doped analogues have been observed to have such activities at a plateau level at the high voltage region.17–20 High covalency of the TM layers at charged state leads to substantially increased oxygen density near the Fermi level, which triggers the oxygen redox.3,17,21 The high voltage plateau in P2-structured Na\textsubscript{x}Ni\textsubscript{y}Mn\textsubscript{1−y}O\textsubscript{2} historically have been ascribed to the P2–O2 phase transition and Li doping has been considered to diminish/eliminate the high voltage plateau and phase transition.22–26 With the acknowledgement of Li largely reside in the TM layer, the incorporation of lighter Li around Mn thus reduces the intensity of first shell Mn–TM scattering, corroborating the superstructure.
Figure 2a,b shows the 1st charge/discharge curves and their corresponding dQ/dV curves of NNMO and NLNMO at 0.1C (1C = 160 mA g⁻¹). NNMO shows a pair of plateaus above 4.2 V. Almost 40% of the charge capacity is from the charge plateau above 4.2 V while the discharge capacity from that plateau is relatively low indicating a poor redox reversibility. It is also interesting to note that the discharge curve to 1.5 V has over 1/3 capacity from the region below 2.2 V. NLNMO does not have the high voltage plateau, and the discharge capacity below 2.2 V is substantially lower. The dQ/dV curves (Figure 2b) show that the NNMO displays three active regions at low, medium, and high voltage ranges (green, teal, and brown colored regions labeled with I, II, and III), and most of the capacity is derived from the low and high ranges. In comparison, the NLNMO shows a much more concentrated capacity originated from the medium voltage range, and the high voltage plateau has been largely suppressed. Figure 2c,d shows the charge/discharge curves and corresponding dQ/dV curves of NNMO and NLNMO after 25 cycles. NNMO loses most of its high voltage redox activities. While the charge/discharge curves of NNMO and NLNMO show similar capacity, the NLNMO shows greatly elevated voltage between 1.5 and 3 V.

Figure 2e,f shows the comparison of the cycling performances and average discharge voltages of NNMO and NLNMO. NNMO shows slightly higher capacity than NLNMO yet it decays fast in the initial few cycles due to the presence of the high voltage plateau. From about the 10th to the 100th cycle, NNMO and NLNMO display stable performance with similar capacity. The NLNMO shows a large boost of average discharge voltage over the long-term cycling. As shown in Figure 2f, except for the first activation cycle where the average voltages in both materials appear to be very close because of the high voltage plateau in NNMO, the NLNMO sample demonstrates higher average voltage than NNMO. At stable cycling, the average discharge voltage of NLNMO is ≈10% higher than NNMO, reaching ≈3.25 V. The elevation of average voltage leads to an improvement of energy density from 407 to 440 Wh kg⁻¹ and round-trip efficiency from 83% to 90% despite having the same capacity as summarized in Figure S2 in the Supporting Information. The same trend is also observed in the tests under

(LHCE). Figure 1. Characterization of the pristine NNMO and NLNMO materials. a,b) Powder XRD patterns with Rietveld refinement (insets: HAADF and ABF-STEM images of NNMO and NLNMO, magnified super-structure diffraction region of NNMO and NLNMO). c,d) Mn and Ni K edge XANES of NNMO and NLNMO. e,f) Fourier-transformed Mn and Ni K edge XAS of NNMO and NLNMO.
IC in LHCE, and 0.5C in PC-based electrolyte (Figure S3, Supporting Information), indicating that it is independent from the rate and electrolyte. Study of the NLNMO with 5% substitution (Figure S4 and Table S3, Supporting Information) further verifies the Li doping effect. The electrochemical performance (e.g., charge–discharge curve and average voltage) shows mixed features of NNMO and NLNMO with 10% Li doping.

To discuss the electrochemical activities of the oxygen, we have employed the high-efficiency mapping of the resonant inelastic X-ray scattering (mRIXS) at the O K-edge, which could distinguish the latticed oxidized oxygen signals from the strong TM–O hybridization entangled in the pre-edge features in conventional XAS experiments.[30–34] The mRIXS characterization has been demonstrated to be a powerful technique for detecting the lattice oxidized oxygen states in charged SIB electrodes,[4,19] which have strong and broad TM–O hybridization feature and oxidized oxygen feature distinguished at the fingerprinting energies around 524 eV emission and 531 eV excitation, consistent with the O-K mRIXS features of standard oxidized oxygen references such as peroxide and O2.[35,36] Figure 3a,b displays the O-K mRIXS results of NNMO and NLNMO at 4.4V after the 1st charge. Besides the typical broad TM–O hybridization features around 525 eV emission energy in both maps, the charged NNMO electrode displays a finite amount of intensity at the fingerprinting energies of oxidized oxygen (red circle in Figure 3a). In contrast, no intensity of oxidized oxygen could be detected for NLNMO (red circle in Figure 3b). Such a contrast could be better illustrated by integrating the mRIXS intensity into the RIXS cuts and the mRIXS super-partial fluorescence yield (sPFY) spectra, as shown in Figures S5 (Supporting Information) and could be consistently observed through the 2nd cycle charged electrodes (Figure S6, Supporting Information).

It is important to note that, although many oxygen redox compounds display the high-voltage plateau associated with the oxygen redox reactions, the plateau itself should not be simply taken as a signature of oxygen redox reactions as they could be just from oxygen release and strong surface reactions.[37] Therefore, such a reliable spectroscopic characterization of mRIXS is critical. Additionally, it has been found that the thermal stability also can be associated with the oxygen electrochemical activities.[38] Oxygen redox can lead to destabilized lattice oxygen, which may release in the form of oxygen upon heating. Figure S7a (Supporting Information) shows the mass spectrometry results on the oxygen release from thermal treatments of charged NNMO and NLNMO samples. NNMO exhibits a
strong oxygen release peak at \(\approx 290 \) °C, which is greatly suppressed in NLNMO. The CO\(_2\) release (Figure S7b, Supporting Information) at the same temperature range is also suppressed in NLNMO following the low O\(_2\) release. Our spectroscopic and thermal stability tests consistently suggest that Li substitution suppressed the oxygen redox activities in the NNMO system when charged to high voltages.

The mechanism of the oxygen redox in the NNMO material and its suppression in NLNMO is intriguing. O 2p orbital holes usually are critical to activate the anion redox of Na\(_x\)MnO\(_2\)-based chemistries and hence Li, Mg, and vacancy have been introduced to enhance nonhybridized oxygen.\(^{[8-10,13,27,39]}\) In the cases where there is no unhybridized oxygen 2p orbitals created, oxygen 2p orbital holes are formed by leveraging the reductive coupling mechanism, for instance, hybridizing the oxygen with highly electronegative cations like Ni\(^{4+}\). The electrons in the O 2p orbital can jump to the Ni 3d orbitals, leaving holes in the O 2p orbital.\(^{[12,21]}\) The oxygen redox in the NNMO analogous materials is a result of this mechanism.\(^{[20]}\) However, the fact that NLNMO with unhybridized O 2p orbital through Li–O–Na configuration display a suppressed oxygen redox implies that the interaction of Li with the various TMs plays a crucial role.

In situ XRD and ex situ XAS have been carried out to investigate the different phase transitions and binding environment evolutions of the TMs in NNMO and NLNMO. Side-by-side comparison of the in situ XRD results (Figures S8 and S9, Supporting Information) shows that NNMO has additional (002) peak broadening and intensity drop at the end of charge.
while NLNMO mainly exhibits the peak shifting to low degree. Another significant difference is that the shift of the NLNMO (100) and (102) peaks to low angle during charge is more significant than that of NNMO while it is the opposite for the reverse shift during discharge. The shift of NNMO (100) and (102) peaks to high angle during discharge continues to below 2.0 V, leading to a more severe P2 to P2’ transition and a significantly long tail plateau at the end of discharge curve. These results suggest higher degree of TM oxidation in NLNMO during charge while higher degree of reduction in NNMO during discharge.

To further specify the change of the TMs valence, Mn and Ni K edge XAS of NNMO and NLNMO at different states of charge (SOCs) have been systematically investigated. Figure 3c-f is the ex situ XANES results. In NNMO (Figure 3c), the Ni valence at pristine state locates between NiO and LiNiO2 (solid black, dash purple, and teal traces), indicating a valence between 2+ to 3+. When charged to 4.4 V, the Ni is oxidized to a position between LiNiO2 (Ni3+) and charged LiNi0.8Mn0.2Co0.1O2 (NMC811, Ni4+) (solid red, dash teal and brown traces) as can be told from the positive shift of the edge jump. Upon discharging to 3.0 V, the Ni is reduced to the original state, further discharging to 1.5 V does not generate any more changes (solid green and blue traces). The result indicates that the long tail plateau at the end of discharge is not caused by the reduction of Ni. In NLNMO (Figure 3d), however, different degree of Ni redox participation is observed. While the Ni in the pristine NNMO and NLNMO appear to be at the same valence between 2+ and 3+ (solid black, dash purple, and teal traces), the charging process involves different Ni oxidation. When charged to 4.4 V, NLNMO shows higher edge jump position compared to NNMO, which almost overlaps with that of the charged NMC811 (solid red and dash brown traces), demonstrating a final valence of 4+. When discharged to 3.0 V, the position is higher than the pristine NLNMO, the difference disappears when further discharged to 1.5 V (solid blue trace).

Determining subtle valence changes in Mn is rather tricky due to the involvement of multiple scattering processes.

In NNMO (Figure 3e), charging from pristine state (solid black trace) to 4.4 V (solid red trace) triggered slight edge shift to higher energy position, as well as absorption shape change. This indicates that the contribution from Mn during the charging process is limited. After discharging to 3.0 V (solid green curve), the edge position and line shape return to the pristine state. Further discharging to 1.5 V (solid blue curve) leads to a major shift of edge position to a lower valence between MnO2 (Mn4+, dash brown trace) and Mn2O3 (Mn3+, dash purple trace). Such observation indicates that the long tail plateau at 1.5-3.0 V in NNMO during discharging originated from the reduction of Mn. In NLNMO (Figure 3f), charging from pristine state (solid black trace) to 4.4 V (solid red trace) did not cause any edge jump or position shift, implying the absence of Mn oxidation during charging. Discharging to 3 V (solid green trace) did not involve any energy shift either. Only further discharging to 1.5 V (solid blue trace) leads to slight Mn reduction, despite far less intensive compared to NNMO at the same SOC (dashed blue trace).

The above XANES results suggest that both Ni and Mn contribute to the redox activity in NNMO. Ni is active at medium to high voltage regions while Mn is active at low voltage region. In the case of NLNMO, Mn becomes largely suppressed, and Ni serves and the major redox center, and it is more active than the Ni in NNMO. The Mn K edge data of these two samples provide more information than just valences. The pre-edges of Mn K edge XAS corresponds to the transition from its 3s to the 3d orbitals that are largely hybridized with the O 2p orbitals, thus providing abundant information to the local hybridization structures.

In most of the in situ XAS studies, the Mn pre-edge intensity increases along with the charging process due to the gradually distorted MnO6 octahedra. In NNMO (Figure 3e, inset), the pre-edge peak of the sample charged to 4.4 V (solid red trace) shows less intensity than that of the pristine state (solid black trace), contradicting to conventional findings. Such abnormal observation further corroborates the participation of oxygen in the redox process, which results in the creation of local oxygen vacancies. The lack of Mn–O hybridization leads to a drop of pre-edge intensity. The NLNMO sample did not show such change (Figure 4d, inset), corroborating the suppression of oxygen redox.

It is known that the oxidation activities of the TM and oxygen upon charging relies on the relative energy of the TM against oxygen states. DFT calculation of the DOS for the fully sodiated and charged NNMO and NLNMO materials have been carried out to investigate the local electronic structure evolution of Ni, Mn, and O with and without the Li substitution. The supercell was constructed based on the formula of NaₙMₙ/₄Ni₃/₄O₂ (Figure S11, Supporting Information), with 12 TM ions (9 Mn and 3 Ni) per layer (labelled as NNMO in Figure 4). The number of x corresponds to the materials at different states of charge. Doping Li creates 1/12 Li composition in the TM layer, and we tried several typical scenarios of Li doping environment and found some unique electronic behaviors that can well match the above experiments from the supercell with the doped Li surrounded by 4 Mn and 2 Ni ions as immediate neighboring ions (labelled as NLNMO in Figure 4), while other local Li environments cannot match well, such as 5 Mn and 1 Ni ions.

As shown in Figure 4a,b, at fully sodiated state (Na1), both NNMO and NLNMO show some Mn and O DOS just below the Fermi level, projected from the top two occupied energy bands. When the Na composition is 2/3 (Na2/3), i.e., at the directly synthesized or low charge state, compared with the undoped case (Figure 4c), the Li doped supercell shows a significant DOS increase projected from those two bands that are mainly contributed by the Ni ions around the doped Li (Figure 4d). At the low Na composition of 1/6 or a high charge state (Na1/6), the DOS near Fermi level in NLNMO, compared with the NNMO (Figure 4e), is further contributed by the Ni ion that does not surround the Li (Figure 4f).

Quantitatively, the integrated DOS area of the top two bands below the Fermi level was leveraged to estimate its contribution to the redox activity. Figure 4g,h shows the integrated partial DOS intensity for each type of the ions in NNMO (Figure 4g), and in NLNMO (Figure 4h), respectively. We observe a clearly increased DOS of O upon desodiation in NNMO without Li doping, where the DOS intensities near Fermi level for the fully charged state of Na1/6 is increased by around 40% compared with Na2/3. While for fully charged NLNMO with Li doping...
at Na1/6, this change of O DOS is not observed. This suggests a more active oxygen redox activity in NNMO at high voltage state, consistent with our experimental results on the suppressed oxygen redox by Li doping at high voltage (Figures 2 and 3).

Similarly, the DOS trend of TMs in Figure 4g suggests that Mn is the main redox center at low voltages from Na1 to Na2/3, while there is a switch to Ni as the main redox center at high voltages from Na2/3 toward Na1/6 for NNMO, indicated by a suppression of Mn DOS intensity and a significant increase of Ni DOS. For NLNMO with Li doping, however, the switch to Ni redox accompanied by the Mn redox suppression seems to happen at a much lower voltage range from Na1 to Na2/3 (Figure 4h), as indicated by the already high Ni DOS intensity at Na2/3. From Figure 4h, we also notice that from Na2/3 toward Na1/6, there is likely a switch of Ni redox contribution from those Ni ions neighboring the doped Li ion to those away from it. The computational results here are consistent
with the experimental results of NLNMO showing higher average voltage of ~0.3 V in the low voltage range below 2.2 V (Figure 2), as Ni redox voltage is higher than the Mn redox. The result is also consistent with the XAS results in Figure 3.

The fact that the oxygen redox is suppressed with significantly more formation of Ni$^{4+}$ at a fully charged state with Li doping is very intriguing. The results provide complementary supports to the recent mechanism of high covalency of the TM layers leading to the substantial increases in the oxygen density near the Fermi level and triggering the oxygen redox of P2-structured Na$_2/(Mn_{1-y}Ni_y)O_2$. It also suggests that it is not universally applicable to use Li for the activation of oxygen redox. In Na$_x$MnO$_2$-based compositions, Li-doping can substantially increase the oxygen redox. However, when there is Ni in the TM layer, the doped Li may change the local electronic structures and suppress the oxygen redox by promoting the Ni ones instead.

3. Conclusions

We have synthesized P2-structured Na$_{0.66}$Ni$_{0.25}$Mn$_{0.75}$O$_2$ (NNMO) material with and without Li doping. By using them as model materials, we have demonstrated the effect of Li doping on the redox activities of TM and oxygen ions. mRIXS, XAS, MS, in-situ XRD experiments and DFT simulations have been systematically carried out side-by-side. While previous studies on the Li doped P2-structured Na$_x$Li$_y$Mn$_{1-y}$O$_2$ historically have ascribed the performance improvements versus undoped materials mainly to the inhibition of the P2–O2 phase transition, our work has elucidated an important additional role of Li doping on the redox engineering. First, we have furthered the understanding on the correlation of oxygen redox activity and unhybridized O 2p orbital. The introduction of unhybridized Li–O bonds to trigger oxygen redox works for Na$_x$MnO$_2$-based materials, yet it is not a universal case. With Ni in the TM layer, Li substitution modifies the cation redox reaction and suppresses the already existing oxygen redox instead. Second, we have provided a complementary scenario to the finding of the reductive coupling mechanism on oxygen redox activity. P2-structured Na$_2/(Mn_{1-y}Ni_y)O_2$ and its Fe and Cu-doped analogues have the oxygen redox activity enabled by high covalency of the TMs at charged state. However, the fact that NLNMO with more Ni$^{4+}$ formation displays suppressed oxygen redox implies that the detail interaction of Li with the TMs is complicated and plays a crucial role here. Further analysis of the fundamental driving force and the correlation of oxygen redox reactivity with the TM–O hybridization is needed. At last, we have demonstrated good electrochemical performances for the 10% Li doped cathode material. Although the suppressed oxygen and Mn redox activities by Li doping likely lead to reduced capacities at the initial few cycles, the capacity approach the same level quickly for both Li doped and undoped cases. Li doping, however, significantly enhanced Ni redox activity in the low voltage range and elevated the operating voltage and energy density. It also has improved thermal stability with much less O$_2$ releases upon heating. This is a critical factor that needs to be considered in future works involving the attempt of utilizing the oxygen redox activity. The understanding revealed in our work provides a guidance for the development of future high-performance alkaline-ion battery cathodes.

4. Experimental Section

Material Synthesis: The precursor of Mn$_{2/3}$Ni$_{2/3}$CO$_3$ spheres were synthesized through a carbonate co-precipitation approach. Typically, stoichiometric amount of MnSO$_4$·6H$_2$O (Sigma Aldrich, 99%) and NiSO$_4$·6H$_2$O (Sigma Aldrich, 99%) (molar ratio = 3:1) were dissolved in de-ionized water with a total concentration of 2 M (Solution A). 2.3 M Na$_2$CO$_3$ aqueous solution was used as the precipitant (Solution B). Afterwards, Solution B was pumped into Solution A placed in the continuous stirred tank reactor (CSTR, Eppendorf) with controlled pH and simultaneous N$_2$ feeding. The resulted powder was collected, fully washed with DI water, and dried at 120 °C under vacuum.

To synthesize P2 NNMO and NLNMO cathodes, desired amount of the above carbonate precursors were mixed with NaOH (Sigma Aldrich, 99%) and LiOH (Sigma Aldrich, 99%) at desired ratios, pressed into pellets and calcined at 700 °C for 1 h in O$_2$ atmosphere. The samples were then collected, ground, and stored in the glovebox for future use. Nonspherical NNMO was synthesized through a solid-state synthesis approach. Stoichiometric amount of Na$_2$CO$_3$, NiO, and Mn$_2$O$_3$ (Sigma Aldrich, 98%) was ball-milled for 12 h at 450 rpm, pressed into pellet and fired at 900 °C for 1 h in O$_2$ atmosphere.

Material Characterization: XRD—The powder XRD patterns were collected using a Rigaku Miniflex II XRD at a scan rate of 0.2° min$^{-1}$ from 10° to 120°. To avoid unnecessary exposure to air, all the powder samples were covered by Kapton film during measurement. In situ Synchrotron XRD—In situ high-energy XRD of the cathodes during charge/discharge were measured at Beamline 11-ID-C of Advanced Photon Source at Argonne National Laboratory. The wavelength is 0.1773 Å. Coin cells with holes for beam pass were used to make the in-situ cell. The holes at the top and bottom cases of the coin-cell were sealed with Kapton tape after cell assembly. The electrode had a mass loading of ~5 mg cm$^{-2}$. The in situ cell was rested for 5 h before doing in situ XRD. During the in situ experiment, an MACCOR cycler was used to discharge/charge the cell using a constant rate of 12 mA g$^{-1}$ between 1.5 and 4.4 V.

mRIXS—The RIXS spectra were measured by the iRIXS endstation at Beamline 8.0.1 of Advanced Light Source, Lawrence Berkeley National Laboratory. The spectra were collected through an ultrahigh efficiency modular spectrometer, the energy resolutions of emission energy and incident energy are 0.25 and 0.35 eV, respectively. Based on the collected RIXS spectra, the 2D mRIXS spectra were organized by the multistep modular spectrometer, the energy resolutions of emission energy and incident energy are 0.25 and 0.35 eV, respectively. Based on the collected RIXS spectra, the 2D mRIXS spectra were organized by the multistep data processing including normalization to beam flux and collecting time, etc. The intensity of the mRIXS is represented at color scale. For the further clarification of the oxygen redox feature in mRIXS spectra, the integrated RIXS cuts and mRIXS-super partial fluorescence yield (mRIXS-sPFY) spectra were generated based on the mRIXS spectra. The integrated RIXS cuts were made of the RIXS cuts collected by incident energies from 530.7 to 531.7 eV. The mRIXS-sPFY spectra were generated by integrating the mRIXS intensity between the emission energies from 522.5 to 524.5 eV.

Heating with Mass Spectrometry (MS)—The charged NNMO and NLNMO cathode powder was collected from coin cells after the 1st charge. The coin cells were disassembled in the glove box and loaded into a quartz capillary tube with a controllable heating unit. Ultrahigh-purity argon was used as the carrier gas and a residual gas analyzer was utilized to measure the outgassing of the cathode during heating. The heating rate was 10 °C min$^{-1}$ from room temperature to 600 °C.

XANES and EXAFS Characterizations—The XANES reveals the information on the oxidation state and coordination geometry of the absorbing atom, while the extended X-ray absorption fine structure spectroscopy (EXAFS) tells the local structure of the absorbing atom. The ex situ XAS characterization was utilized at Beamline 20-BM at APS of Argonne National Laboratory. The Ni, Co, and Mn K-edges were
collected at the transparent mode. The EXAFS data were extracted and normalized with established methods using the ATHENA software package, and the EXAFS data in the region of 0–6 Å were displayed.

SEM and HAADF-STEM—SEM images were acquired using Helios NanoLab 600i (Thermo Fisher Scientific, USA) operated at 2–30 kV. An aberration-corrected TEM (Titan from Fisher Thermal, USA) equipped with a HAADF detector was employed at 300 kV for HAADF scanning TEM (STEM).

Computation—All DFT calculations were carried out by the Vienna Ab initio Simulation Package (VASP), which implements the pseudopotential plane-wave band method. The projector augmented wave Perdew–Burke–Ernzerhof (PAW-PBE) functional was utilized for the exchange-correlation energy. A 520-eV plane-wave energy cutoff was implemented for all calculations. The generalized gradient approximation (GGA) scheme of the Perdew–Burke–Ernzerhof (PBE) functional was used, with U = 3.9 and 6.0 eV for Mn and Ni, respectively. All computations were performed in 3 × 4 × 2 sized P2 stacking of supercells, with 12 transition metal ions in each layer and 2 transition metal layers. The energy converges to 10−5 eV for electronic iteration and the residue forces converge to 0.1 eV Å−1 for ionic relaxation. The Monkhorst package for k points separation of fewer than 0.04 Å−1. The energy converges to 10−4 eV for electronic iteration in the density of state calculation.

Electrochemical Measurement—The electrodes were made by mixing the active material, super P carbon and polyvinylidene fluoride (PVDF) with a ratio of 80:10:10 dispersed in N-methyl-2-pyrrolidone (99%, Alfa Aesar) using a Thinky ARE350 mixer. The slurry was pasted onto Al foil and dried under 120°C in a vacuum oven overnight. The active material loading was controlled to be around 5 mg cm−2. The electrodes were thereafter punched and assembled in CR2032 coin cells in a glovebox filled with argon gas. The O2 and H2O levels are below 1 ppm. Na metal (99.5%, Alfa Aesar) was used as the counter electrode. For the cells tested in localized high concentration electrolyte (LHCE), the electrolyte (99.5%, Alfa Aesar) was used as the counter electrode. For the cells tested in carbonate electrolyte, the electrolyte is composed of 5.2 m NaFSI (Oakwood Chemicals) dissolved in dimethoxyethane (Gotion Inc.) diluted by bis(2,2,2-trifluoroethyl) ether (BTFE, Synquest Lab). For the cells tested in carbonate electrolyte, the electrolyte is composed of 1 m NaPF6 dissolved in ethyl carbonate (EC)/dimethoxyethane (Gotion Inc.) diluted by bis(2,2,2-trifluoroethyl) ether (BTFE, Synquest Lab). For the cells tested in carbonate electrolyte, the electrolyte is composed of 1 m NaPF6 dissolved in ethyl carbonate (EC)/propylene carbonate (PC) (1:1 vol%). The coin cells were tested using an Arbin Battery Tester between 1.5 and 4.4 V at desired rates in room temperature.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
B.X. and X.L. contributed equally to this work. Authors would like to thank the support from the U.S. Department of Energy (DOE) Office of Electricity (Contract No. 70247A). Pacific Northwest National Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. Research at the Argonne National Laboratory was funded by the US Department of Energy (DOE), Vehicle Technologies Office. Support from T. Duong of the US DOE’s Office of Vehicle Technologies Program is gratefully acknowledged. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by DOE under contract no. DE-AC02-06CH11357. X.C. and X.L. are supported by Data Science Initiative Competitive Research Fund and Climate Change Solutions Fund at Harvard University. Computations were supported by the Extreme Science and Engineering Discovery Environment (XSEDE) and the Odyssey cluster of the FAS Division of Science Research Computing Group at Harvard University. Soft X-ray experiments were performed at BL8.0.1 of the Advanced Light Source (ALS), a DOE Office of Science User Facility, under contract no. DE-AC02-05CH11231. G.-H.L. acknowledge the financial support of the ALS fellowship program.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
cationic reactivity, layered cathodes, Li doping, oxygen redox reactivity

Received: September 8, 2021
Revised: September 30, 2021
Published online:

