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Fig. S1. Two examples to illustrate the calculation of K*. a, The unstable P2S7/Li interface; b, 
The stable LiCl/Li interface.
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Fig. S2. Optimized composition, decomposition energy Ehull and critical modulus K* at fixed 
dopant requirements for a LPSCl-I, and b LPSCl-F with minimized K* (right panel). The left 
panel is for the values of original LPSCl without doping and minimization of K*. LPSCl-I is 
optimized to be S, P deficient and Cl, Li rich. LPSCl-F is optimized to be S, P deficient and Li 
rich. At F deficient range, Cl can be either rich or deficient. Both K* are low at around 10 GPa 
and decomposition energy can be increased up to a few tens of meV/atom.
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Fig. S3. XPS quantification of a LPSCl-F and b LPSCl-I. 

Fig. S4. XRD and optical photos of LPSCl and LPSCl-X (X = F, Br, I) powder. LPSCl and 
LPSCl-Br sample had a pure phase with F-43m space group, whose XRD reflections are 
marked by dashed line, while LPSCl-F and LPSCl-I have impurities. 
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Fig. S5. SEM of a LPSCl, b LPSCl-F, c LPSCl-Br and d LPSCl-I. The particles have similar 
size of a few to ~30 μm.
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Table S1. XPS of LPSCl and LPSCl-X with vacuum transfer sample holder. X-axis is 
energy (eV) and Y-axis is intensity. 
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Fig. S6. Core shell structure of LPSCl characterized by SEM-FIB-EDS and XPS. a, Intensity 
ratio of Li, P, S and Cl and the inset shows the SEM image of the milled and line scanned 
particle. Index larger than 24 corresponds to points at the edge, where there is S deficiency and 
Cl richness. The same S deficiency and Cl richness observed in the point index range from 16 
to 23 is also located at the edges of the particle cracks. b, XPS quantifications with milling 
show a S-deficient and Cl-rich shell.

Fig. S7. a, XPS quantification at different depth of LGPS particles shows a Li rich, S, Ge, P 
deficient surface; b, machine learning optimized compositions with different allowed 
compositional change percentage for each element itself (composition change constraint), 
aiming for lower K*. The zero point in x axis corresponds to the original LGPS. With larger 
allowed compositional changes, LGPS is optimized to be Li rich, S, Ge, P deficient, which is 
the same trend observed in the XPS quantification. c, Optimized K* and the predicted 
decomposition energy with the same optimized composition. The 0.915 eV is the 
Li0.49Cl0.49P0.01S0.01 reference for zero DFT 0V decomposition energy. A relative small change 
in composition such as 30% can decrease the K* to below 20 GPa along with a relatively large 
decomposition energy of 147 meV/atom.
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Fig. S8. XPS analysis and optical photos of the Li deposited a, LPSCl, b, LPSCl-F, c, LPSCl-
Br, d, LPSCl-I and e, LGPS. XPS analysis shows that the decomposition is the weakest for the 
Li deposited LPSCl with least S reduction and limited P reduction, while the reduction of S 
becomes stronger for LPSCl-X and LGPS, and LPSCl-F and LPSCl-Br have stronger P 
reduction. Therefore, the gray and silver color of a3 Li deposited LPSCl should be largely from 
Li metal, while the larger area of dark gray color of b3 to d3 Li deposited LPSCl-X and the 
black color of e3 Li-deposited LGPS should be from decompositions.
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Charging Li-G|LPSCl|LNO@811

Fig. S9 Two other Li-G|LPSCl|LNO@811 batteries that failed during intial charging with 
sudden voltage drop followed by noisy voltage curve, indicating shorting cuased by Li 
dendrite pennetration.
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Fig. S10. 20 C-rate cycling Coulombic inefficiency of (a and b) Li-G|LPSCl|LPSCl-
F|LPSCl|LNO@811 at large scale (a) and small scale (b), and of (c and d) Li-G|LPSCl|LPSCl-
Br|LPSCl|LNO@811 at large scale (c) and small scale (d).
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Fig. S11. Cycling performance at different low rates of Li-G|LPSCl|LPSCl-I|LGPS|811.
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Fig. S12 Coulombic inefficiency of Li-G|LPSCl|LPSCl-I|LGPS|811 at a, 20 mA/cm2, and b, 
30 mA/cm2.
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Fig. S13 SEM image of cycled battery pellet cross section. The cathodes are on the top and the 
anodes are on the bottom. (a1-a4) The cross sections of 8.6 mA/cm2 cycled Li-
G|LPSCl|LNO@811 battery (green data in Figure 4B and D) and magnified views of LPSCl 
layer showing that there are macro pores and microcracks network in the LPSCl layer after 
cycling; (b1) The cross section of 8.6 mA/cm2 cycled Li-G|LPSCl|LPSCl-Br|LPSCl|LNO@811 
battery (Figure 4C and blue data in 4D), and magnified views of (b2) LPSCl-Br layer and (b3) 
anode side LPSCl layer, showing that LPSCl-Br layer is compact without large pores and cracks, 
while the LPSCl layer morphology is more similar to that in (a); (c1) The cross section of 30 
mA/cm2 cycled Li-G|LPSCl|LPSCl-Br|LPSCl|LNO@811 battery (darker blue in Figure 5D), 
and magnified views of (c2) LPSCl-I layer and (c3) anode side LPSCl layer. Though there are 
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few small isolated microcracks in the LPSCl-I layer, there is no macro pores and microcracks 
network as observed in LPSCl in (a). The anode side LPSCl layer is more similar to that in (a).

Fig. S14 XPS of the cross section of cycled battery pellet with ion-milling. (a-c) Cl 2p, S 2p 
and P 2p XPS evolution during ion-milling for cycled LPSCl; Cl 2p and S 2p peaks barely 
change over the milling duration, which are consistent with the unchanged composition during 
milling in Figure 6, and P 2p has almost no intensity due to low composition. (d-g) I 3d, S 2p, 
P 2p and Cl 2p XPS evolution during ion-milling for cycled LPSCl-I. The intensity increase is 
consistent with the composition change in Figure 6.

Fig. S15 Training and validation error for modelling (a,b) decomposition energy and (c,d) K* . 
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The difference between the training error and validation error describes the error associated 
with generalization to unseen data. 

More Details about Machine Learning
Compositions, energies and volumes of all 124,497 materials are queried from Materials Project 
for high throughput calculations of decomposition energies (Ehull) and critical modulus (K*) 
values for the interfaces between materials and Li metal. Machine learning is applied to model 
the relation between macroscopic properties (composition, energy, volume) and target values 
(Ehull, K*). Machine learning models in this work are based on decision trees. A decision tree 
consists of hierarchical computation (decision) nodes. The input data to the decision trees is in 
the form  where  are the features and  is a target value. The (𝑋,𝑦) = ({𝑥1,𝑥2,…,𝑥𝑛},𝑦) 𝑥𝑖 𝑦
decision tree can perform both the regression and classification tasks, depending on whether 
the nature of target variable  being continuous or a finite number of classes. Starting with the 𝑦
input features, each node of the tree applies a conditional statement on the value of a feature, 
then moves to a subsequent node based on the truth of that statement. The optimization of the 
tree includes choosing both the feature and threshold for the criteria for each node that overall 
best splits the set of items. Instead of measuring the error, better metrics such as the cross 
entropy and the Gini index are generally used to measure the goodness of the choice of criteria 
and data split.1 Our input features  consist of the 103-dimensional composition vectors of the 𝑋
first 103 elements in the Periodic Table up to lawrencium (Lr). The composition vector is 
normalized with the sum equals to one. Specifically, for K* at 0 V, we also include the x from 
0 to 0.9 in our input for a better learning result. The target  are chosen as the K*, and 𝑦
decomposition energy at different situations. For K* at 0 V, the target  is the K* at the 𝑦
corresponding x. We use an ensemble model of individual decision trees, the Extremely 
Randomized Tree model. In such models, a number of  trees are initialized simultaneously 𝑁
(  in our setting). Each tree in the ensemble is fed with training data sampled from the 𝑁 = 30
training set. A random subset of candidate features is used, from which thresholds are drawn at 
random for each candidate feature, and the best of these randomly generated thresholds is 
picked as the splitting rule. 

We split the data into 80:20 training and validation sets. For both K* and Ehull, our models 
achieve low training error and comparable validation error (Figure S15). The composition – 
target quantity relation is fitted well, with little overfitting. Using the trained models with target 
property , we can predict  at unknown compositions. We obtain the composition with 𝑦 𝑦
optimal  using the grid search. Optimization with fixed F/Br/I in Figure 1C and Figure S2 𝑦
are with 50% relative compositional change constraint on each element to avoid extinction of 
certain elements. Since most compounds are unstable with Li metal so that the zero hull energy 
data are insufficient in the training set, the machine learning predicted zero hull energy 
reference has to be calibrated by DFT. LiCl shows a ~ 0 eV decomposition energy with Li metal 
in DFT binary calculations (Figure S1), and the predicted decomposition energy for 
Li0.49Cl0.49S0.01P0.01 is 0.915 eV, so the decomposition energy is shifted down by 0.915 eV in 
Figure 1C, Figure S2 and Figure S7.
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