Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients

Daniel S. Albrecht\textsuperscript{a,b}, Shihab U. Ahmed\textsuperscript{c}, Norman W. Kettner\textsuperscript{d}, Ronald J.H. Borra\textsuperscript{e,f}, Julien Cohen-Adad\textsuperscript{g,h}, Hao Deng\textsuperscript{i}, Timothy T. Houle\textsuperscript{j}, Arissa Opalacz\textsuperscript{k}, Sarah A. Roth\textsuperscript{l}, Marcos F. Vidal Melo\textsuperscript{m}, Lucy Chen\textsuperscript{n}, Jianren Mao\textsuperscript{c}, Jacob M. Hooker\textsuperscript{o}, Marco L. Loggia\textsuperscript{a}, Yi Zhang\textsuperscript{a,*}

Abstract

Numerous preclinical studies support the role of spinal neuroimmune activation in the pathogenesis of chronic pain, and targeting glia (eg, microglia/astrocyte)- or macrophage-mediated neuroinflammatory responses effectively prevents or reverses the establishment of persistent nocifensive behaviors in laboratory animals. However, thus far, the translation of those findings into novel treatments for clinical use has been hindered by the scarcity of data supporting the role of neuroinflammation in human pain. Here, we show that patients suffering from a common chronic pain disorder (lumbar radiculopathy), compared with healthy volunteers, exhibit elevated levels of the neuroinflammation marker 18 kDa translocator protein, in both the neuroforamina (containing dorsal root ganglion and nerve roots) and spinal cord. These elevations demonstrated a pattern of spatial specificity correlating with the patients’ clinical presentation, as they were observed in the neuroforamen ipsilateral to the symptomatic leg (compared with both contralateral neuroforamen in the same patients as well as to healthy controls) and in the most caudal spinal cord segments, which are known to process sensory information from the lumbosacral nerve roots affected in these patients (compared with more superior segments). Furthermore, the neuroforaminal translocator protein signal was associated with responses to fluoroscopy-guided epidural steroid injections, supporting its role as an imaging marker of neuroinflammation, and highlighting the clinical significance of these observations. These results implicate immunoactivation at multiple levels of the nervous system as a potentially important and clinically relevant mechanism in human radicular pain, and suggest that therapies targeting immune cell activation may be beneficial for chronic pain patients.

Keywords: PET imaging, Sciatica, Integrated PET/MR, Immunoactivation

1. Introduction

Chronic pain is a widespread public health issue, and its prevalence is enormous.\textsuperscript{32,41} Unfortunately, despite its great clinical and socioeconomic significance, our understanding of the pathophysiological mechanisms of chronic pain remains incomplete. As a result, currently available treatments (eg, opioids) are unsatisfactory, as they are ineffective in many patients, and are characterized by numerous side effects including abuse/misuse.

Substantial preclinical evidence has increased recognition of neuroimmune responses at multiple levels of the nervous system as an important contributor to the pathogenesis of persistent pain, including macrophage activation in the dorsal root ganglia (DRG\textsuperscript{22,29}), and activation of microglia and/or astrocytes in the spinal cord\textsuperscript{10,15,19,29,37,43,48} and brain.\textsuperscript{24,42} Because activated macrophages and glial cells produce inflammatory mediators that activate or sensitize nociceptive neurons, the pharmacological inhibition of these cells can significantly reduce nocifensive behaviors in animals.\textsuperscript{14,23,30,34,47} As such, the modulation of neuroimmune responses may represent a promising therapeutic strategy for pain disorders.

Among chronic pain disorders, lumbar radiculopathy is one of the most common. It presents clinically as low back pain radiating along the lower extremity (ie, sciatica) along the dermatomes innervated by the affected spinal nerve roots. Lumbar radiculopathy can be caused by multiple etiologies including disk herniation, radiculitis, and lumbar spinal stenosis.\textsuperscript{5} Despite the wealth of preclinical information, and knowledge that inflammation is associated with the initial acute phase of lumbar radicular pain,\textsuperscript{39} the role of neuroinflammation in chronic lumbar radiculopathy remains unknown. Clinically, the presumption of an inflammatory component to the pathophysiology of chronic
sciatrica, and specifically at the level of the nerve roots, provides a rationale for using anti-inflammatory epidural steroid injections (ESIs) as a treatment strategy for this disorder. However, this treatment demonstrates varying success, suggesting the presence of persistent nerve root inflammation in some patients, but not in others. Moreover, a recent study showed that a brief course of treatment with minocycline, which is thought to reduce central neuroinflammation, leads to some reductions in lumbar radicular pain, suggesting that glial modulation might be a viable treatment for at least some patients, as predicted by animal studies. The development of clinical tests capable of detecting spinal nerve root as well as central neuroinflammation would have important clinical implications, including the possibility to guide patient selection for anti-inflammatory therapy targeting the peripheral (eg, ESIs) or the central nervous system (CNS) (eg, glial modulators).

Here, we used simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging and the radioligand $^{11}$C PBR28, which binds to the inflammatory marker 18 kDa translocator protein (TSPO; formerly known as the peripheral benzodiazepine receptor), to test the hypothesis that lumbar radiculopathy is associated with immunoreactivity at the level of both the intervertebral foramina (ie, neuroforamina, which include dorsal root ganglion and nerve roots) and spinal cord. Furthermore, we hypothesized that patients demonstrating neuroforaminal inflammation would benefit most from an anti-inflammatory procedure targeting the neuroforamen, that is, an ESI.

2. Methods

2.1. Study design

This cross-sectional study was conducted at the Athinoula A. Martinos Center for Biomedical Imaging and the Translational Pain Research Center at Massachusetts General Hospital, Boston, MA. The protocol was approved by the Institutional Review Board and the Radioactive Drug Research Committee. The study was registered before subject recruitment at www.clinicaltrials.gov (Clinical Trials ID: NCT02130271). The manuscript is written in accordance with the STROBE checklist for observational studies.

2.2. Subjects

Between April 2014 and May 2016, we contacted 309 subjects. Of those contacted, we conducted phone screens on 110 subjects. Nineteen subjects with chronic lower extremity radicular pain lasting at least 3 months and 10 healthy control subjects underwent study procedures. Control subjects were recruited through advertising using flyers and printed announcements posted both within the Massachusetts General Hospital community and from the community at large, and pain patients were recruited using the abovementioned methods and through pools of pain patients under treatment at the Massachusetts General Hospital Center for Pain Medicine. Inclusion criteria for patients were: age between 18 and 75, diagnosis of lower extremity radicular pain with characteristic radiating pain in dermatomal distribution extending below the knee, and ongoing pain intensity of 4 or greater using the visual analog scale during the week before enrollment. L4 dermatome pain was defined as presenting in the anterior thigh and medial leg. L5 and S1 dermatome pain was defined as presenting in the posterolateral thigh and leg. All subjects were excluded for: recent hospitalization for a major psychiatric disorder, endorsing or testing positive for illicit drug use, chronic corticosteroid therapy, chronic opioid therapy, regular use of nonsteroidal anti-inflammatory drugs, recent lumbar ESIs (within 8 weeks), active cardiopulmonary disease, hepatic or renal insufficiency, any known inflammatory disease (eg, inflammatory bowel disease), or any contraindications for PET or MR scanning (eg, pregnancy, claustrophobia, ferromagnetic implants, etc.). Study procedures were fully explained to all subjects, and all subjects read and signed an informed consent document.

2.3. Screening visit

Each patient underwent a characterization session, which included a brief medical history and clinical examination by a board-certified pain management specialist (Y.Z. or S.A.). The clinical examination determined the laterality of radicular pain (left or right leg), the dermatome affected, duration of pain (years), current subjective pain level (visual analog scale, anchored with 0 = "no pain" and 10 = "the most intense pain imaginable"), and response to previous ESIs (if any). Blood was collected to genotype subjects for the Ala147Thr TSPO polymorphism which is known to affect binding affinity for $^{11}$C PBR28. Low-affinity binders (Thr/Thr: N = 2) were excluded from all analyses, whereas high-affinity (Ala/Ala) or mixed-affinity binders (MABs) (Ala/Thr) were included. Urine was collected to test and exclude for recent illicit drug use.

2.4. Positron emission tomography/magnetic resonance imaging

All simultaneous PET/MR imaging was performed on a 3T Siemens Biograph mMR system (Siemens Medical Solutions USA, Inc, Malvern, PA) with the radioligand $^{11}$C PBR28. PBR28 binds to TSPO, a protein mostly expressed in the outer mitochondrial membrane. Although TSPO is constitutively expressed by various cell types, it is commonly used as a marker of CNS inflammation because it is expressed at low levels in the healthy CNS, and it is dramatically upregulated in activated microglia and/or astrocytes in the context of neuroinflammation, including in response to spinal nerve injury. Additionally, TSPO is upregulated in activated macrophages, and therefore can also be used as a marker of peripheral inflammation. $^{11}$C PBR28 was produced in-house using a procedure modified from the literature.

2.5. Magnetic resonance imaging-related details

Magnetic resonance imaging data acquisition was performed using the body coil for transmit and a combination of the 4-channel body matrix coils and the spine array matrix for receive. Imaging focused on both the lumbar neuroforamina and lower thoracic spinal column. Anatomical images were collected using a combination of T1- and T2-weighted sequences. A T1-weighted (T1W) 2-point Dixon 3D volumetric interlepolated breath-hold examination sequence was acquired with the following parameters: parallel acquisition technique GRAPPA factor 2, repetition time (TR) = 3.60 seconds, echo time 1 (TE1) = 1.23 ms, TE2 = 2.46 ms, flip angle (FA) = 10°, slice thickness = 3.12 mm, and in-plane resolution = 4.1 × 2.6 mm. The resulting images were segmented in-line to create a mu-map for MR-based attenuation correction of the PET data. Magnetic resonance–based attenuation correction scans were acquired immediately before initiation of PET scans. A high-resolution T1W
axial anatomical turbo spin echo sequence was acquired with the following parameters: TR = 2.69 seconds, TE = 12ms, FA = 170°, matrix size = 256 × 179, slice thickness = 2 mm, number of slices = 46, and in-plane resolution = 1.0 × 0.7 mm. This sequence was used for manual tracing of neuroforaminal regions of interest (ROIs).

A T1W axial in-opposed phase gradient echo sequence was acquired with the following parameters: TR = 2.63 seconds, TE = 3.83 ms, FA = 65°, matrix size = 260 × 150, slice thickness = 2 mm, number of slices = 76, and in-plane resolution = 1.48 × 1.48 mm. The field of view (FOV) was centered at the L4-L5 intervertebral disk. This sequence was used for visualization of overlaid PET signal.

A high-resolution T2-weighted sagittal anatomical turbo spin echo sequence was acquired with the following parameters: TR = 3.38 seconds, TE = 109ms, FA = 150°, matrix size = 265 × 384, slice thickness = 2 mm, number of slices = 30, and in-plane resolution = 0.9 × 0.6 mm, with the FOV centered at the L4-L5 intervertebral disk. This was used for registration of PET data and extracting PET signal.

2.6. Positron emission tomography acquisition

All subjects participated in a 90-minute dynamic acquisition, initiated with IV administration of [11C]PBR28. Injected radioactivity (mean ± SD) was 392.6 ± 60 MBq for patients and 393.3 ± 57 MBq for controls (P = 0.97). After the 90-minute lumbar neuroforaminal PET scan, in a subset of willing participants (N = 9 patients and N = 9 controls), the PET FOV was shifted to image the lower thoracic spinal column, and an additional 20 minutes of dynamic PET data were then acquired in 3listmoe format.

2.7. Data processing

For the neuroforaminal scan, a 30-minute static image was reconstructed from the 60 to 90 minutes’ post-injection period. Images were reconstructed using 3D-OSEM and a 4-mm FWHM Gaussian kernel filter. Attenuation correction was performed using the MR-based attenuation correction--based mu-maps expanded using PET emission data and the maximum likelihood reconstruction of attenuation and activity. Positron emission tomography images were converted from Bq/mL to standardized uptake value (SUV) maps by dividing all voxels by injected dose/body weight. Standardized uptake value maps and high-resolution T1W images were imported into Osirix version 3.9.4 (http://www.osirix-viewer.com) for defining ROIs and extracting SUV. Fused PET/MR images were visually inspected to ensure the absence of motion artifacts. Magnetic resonance and PET images were well aligned for most subjects, but several patient and control PET scans required registration to MR data, which was manually performed using Osirix. On the T1W image, ROIs were manually traced on the left and right neuroforamina at the intervertebral level of L3-L4, L4-L5, and L5-S1, the levels affected in the majority of lumbar radiculopathy patients. Neuroforaminal definition was determined by anatomical boundaries: anterior—intervertebral disk/vertebrae; medial—thecal sac; posterior—apophyseal joint; and lateral—psoas muscle. The structures contained in this area included the exiting spinal nerve roots, the corresponding DRG, and a cross section of the nerve root traversing to the lower adjacent level (Fig. 1A). Determination of neuroforaminal ROIs was performed by a trained examiner and confirmed by an expert radiologist. Average neuroforaminal SUV was extracted for each intervertebral level on axial sections, targeting the regions directly adjacent to intervertebral disks to minimize signal bleed from vertebrae. In addition, one subject’s data were unusable due to attenuation artifacts and the inability to anatomically delineate the ROI, caused by a previous spinal fusion. There was no major pathological change impairing visualization of any neuroforaminal or spinal cord region for any other subjects. Standardized uptake value ratio (SUVR) was calculated in patients by taking the ratio of SUV in target ROI (side ipsilateral to pain) to SUV in reference ROI (side contralateral to pain). In controls, SUVR was computed by taking the ratio of left to right SUV.

For the thoracic spinal PET data, a 20-minute static image was reconstructed from 90 to 110 minutes post-injection. Images were reconstructed and converted to SUV maps using the same procedure as for neuroforaminal data. Processing of the spinal cord images was performed with the recently developed Spinal Cord Toolbox (SCT).13 Spinal Cord Toolbox

---

Figure 1. Visualization of spinal root and cord ROI placement. (A) Neuroforaminal ROI labels. Right: Sagittal T2W images are shown to visualize the caudal/rostral level of ROI placement. Left: ROIs were manually drawn on the high-resolution T1W axial TSE sequence at the L3-L4, L4-L5, and L5-S1 levels (the latter 2 are pictured here). (B) Spinal cord ROI labels. Cord segments contained in T7, T8, and T9 served as the reference region. Segments contained in T11 and T12 were target regions because this level of spinal cord receives nociceptive input from L4, L5, and S1 spinal roots. ROI, region of interest; T1W, T1-weighted; T2W, T2-weighted; TSE, turbo spin echo.
enabled automated segmentation of whole spinal cord and labeling of vertebral levels from the high-resolution T2-weighted image. As for the root data, MR and PET images of the spinal cord were well aligned for most subjects, but in a few subjects required coregistration, which was performed using SCT. The spinal cord contained in T11-T12 vertebrae was chosen as a target region (Fig. 1B), as the cord below and including T11 contains the lower lumbar/upper sacral spinal segments that receive nociceptive input from the sciatic nerve, and T11-T12 was present in all scanned participants (some participants had spinal cord termination above L1 due to natural interindividual variability). In 1 patient and 2 controls, the full extent of the cord contained in T12 was not present in the image; for these subjects, the partial cord contained in T12 was included in the target region. Spinal cord contained in T7-T9 vertebrae was selected as a reference region, as these spinal segments are anatomically distant from those processing nociceptive input from the dermatomes affected in lumbar radiculopathy (Fig. 1B). Standardized uptake value was extracted from target and reference cord regions using the SCT. Standardized uptake value ratio was calculated by taking the ratio of target ROI (cord contained in T11-T12) SUV to reference ROI (cord contained in T7-T9) SUV.

2.8. Epidural steroid injections

Lumbar ESIs were provided by patients’ own treating physicians as part of their medical care. All ESIs were performed conforming to current standard of care with a fluoroscopic guided, paramedian interlaminar approach on the side of pain symptoms and at the level of the involved nerve root (L4-L5 level for L4 dermatomal pain and L5-S1 level of L5 or S1 dermatomal pain). A total volume of 4 mL (2 mL of 40 mg/mL triamcinolone and 2 mL of 0.25% bupivacaine) was administered after fluoroscopic confirmation of contrast dye spread in the epidural space. All injections were considered successful by their treating physicians and confirmed by contrast spread under fluoroscopy. Seven patients received ESIs after the PET/MR scan. Six of them received ESI treatments within 2 months after the scan. One subject received ESI treatment 8 months after the scan as the subject had medical insurance coverage in the interim. Two patients received ESIs 3 to 6 months before enrollment in the study but had no further ESIs up to 2 years after the scan. Therefore, we included these 2 patients with retrospective ESI treatment in the ESI response analysis. Subjective perception of percentage pain relief was documented at their follow-up visits 4 weeks after the ESI treatment. For the 2 patients who received ESIs before enrollment, patients reported response to the previous ESI was documented at time of enrollment. Positive ESI response was defined as >30% pain relief and negative response was defined as <30% pain relief. The positive responders (N = 5) reported 90 ± 11% relief from ESI and all negative responders (N = 4) reported 0% relief from ESI.

2.9. Statistical analysis

Descriptive statistics were summarized for both continuous and categorical variables. Continuous variables were compared with t tests. Based on the assumption that there should be no difference in PET signal between target and reference regions within healthy controls, we created an a priori derived grouping factor ("region"); “target” region in patients (neuroforamen analysis—neuroforamen ipsilateral to symptomatic leg in the affected dermatome; spinal cord analysis—cord contained in T11-T12 vertebrae), “reference” region in patients (neuroforamen analysis—neuroforamen contralateral to symptomatic leg in the affected dermatome; spinal cord analysis—cord contained in

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics of pain patients enrolled in the study.</td>
</tr>
<tr>
<td>Root analysis</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age (y)</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>TSP0 genotype</td>
</tr>
<tr>
<td>Injected dose (mCi)</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Location of pain (dermatome)</td>
</tr>
<tr>
<td>Location of pain (Laterality)</td>
</tr>
<tr>
<td>Pain intensity (visual analog score)</td>
</tr>
<tr>
<td>Pain duration (y)</td>
</tr>
<tr>
<td>Spinal cord analysis</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age (y)</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>TSP0 genotype</td>
</tr>
<tr>
<td>Injected dose (mCi)</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Pain intensity (visual analog score)</td>
</tr>
<tr>
<td>Pain duration (y)</td>
</tr>
</tbody>
</table>

Patient demographics and clinical characteristics. All continuous values are shown in mean ± SD. To differentiate subject subgroups from the spinal root and cord analyses, characteristics from each of the patient and control subgroups are displayed separately here. There were no significant group differences in any subject variables displayed here, for either spinal root or spinal cord analyses (P > 0.21). BMI, body mass index; HAB, high-affinity binder; F, female, M, male; MAB, mixed-affinity binder; TSPO, translocator protein.
T7-T9), and healthy control region (neuroforamen analysis—left and right L5-S1 neuroforamen, as this was the affected dermatome in all but one pain patients; spinal cord analysis—cord contained in T7-T9 and T11-T12). To account for repeated measures within an individual, we used a subject-level random intercept in mixed-effects models while assessing the fixed effect regional differences in \([^{11}C\text{PBR28}}\) uptake in neuroforamen and spinal cord, controlling for \(\text{TSPO}\) genotype (high- or mixed-affinity binding status). Reference region in patients and mixed-affinity binding were included as reference terms within the mixed model. We hypothesized that genotype would differentially moderate regional differences in \([^{11}C\text{PBR28}}\) uptake; so, we used analysis of variance F statistics to test whether adding a region \(\times\) genotype interaction term would significantly increase the model fit from a model not including the interaction, as determined by Akaike information criterion.1 If it was determined that addition of a region \(\times\) genotype interaction improved the model fit, it was included in the model. Bonferroni-adjusted pairwise post hoc comparisons were performed across regions (if applicable, at each level of genotype). Two initial post hoc comparisons compared mean outcomes at each level of genotype by region. Planned pairwise comparisons were between patient target and patient reference regions, and between patient target and healthy control regions. Reference side in patients for region and mixed-affinity binding for genotype were used as reference terms within the model. The mixed-model showed significant interactions between \(\text{TSPO}\) genotype and neuroforamen SUV.

**Table 2**

Linear mixed model statistics for spinal root SUV analysis.

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. error</th>
<th>df</th>
<th>t-value</th>
<th>P</th>
<th>2.5% CI</th>
<th>97.5% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.697</td>
<td>0.05</td>
<td>29.1</td>
<td>13.942</td>
<td>0.0001</td>
<td>0.595</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients—reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy controls</td>
<td>0.153</td>
<td>0.085</td>
<td>27.0</td>
<td>1.804</td>
<td>0.082</td>
<td>−0.019</td>
</tr>
<tr>
<td>Patients—target</td>
<td>0.004</td>
<td>0.024</td>
<td>26.0</td>
<td>0.171</td>
<td>0.866</td>
<td>−0.044</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAB</td>
<td>0.157</td>
<td>0.082</td>
<td>29.1</td>
<td>1.926</td>
<td>0.064</td>
<td>−0.008</td>
</tr>
<tr>
<td>Region × genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients—reference × HAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy controls × HAB</td>
<td>−0.319</td>
<td>0.127</td>
<td>27.2</td>
<td>−2.515</td>
<td>0.018</td>
<td>−0.577</td>
</tr>
<tr>
<td>Patients—target × HAB</td>
<td>0.121</td>
<td>0.039</td>
<td>26.0</td>
<td>3.133</td>
<td>0.004</td>
<td>0.043</td>
</tr>
</tbody>
</table>

We included a region \(\times\) genotype interaction term in the primary model that was retained in the final model as the addition of the interaction term was found to significantly improve the model fit. Bonferroni adjusted post hoc comparisons compared mean outcomes at each level of genotype by region. Planned pairwise comparisons were between patient target and patient reference regions, and between patient target and healthy control regions. Reference side in patients for region and mixed-affinity binding for genotype were used as reference terms within the model. The mixed-model showed significant interactions between \(\text{TSPO}\) genotype and neuroforamen SUV. Post hoc testing revealed that this interaction was driven by significant increases in target SUV relative to reference SUV within patients as well as healthy control SUV in high-affinity binding individuals.

CI, confidence interval; HAB, high-affinity binder; MAB, mixed-affinity binder; MR, magnetic resonance; PET, positron emission tomography; SUV, standardized uptake value; SUVR, standardized uptake value ratio; TSPO, translocator protein.

Figure 2. Regional differences in spinal root \([^{11}C\text{PBR28}}\) signal. (A) A linear mixed-effects model showed that high-affinity binding patients had elevated tracer uptake on the side ipsilateral to pain, relative to the side contralateral to pain and to uptake in healthy controls. Boxes represent 25% to 75% interquartile range, and horizontal line represents the median. *(t_{27.4}) = −3.09, P = 0.016; **(t_{26}) = −4.10, P < 0.001, corrected.* (B) Between-group comparison of spinal root SUVR (patients—target divided by reference neuroforaminal SUV and controls—left divided by right neuroforaminal SUV). Statistical results from a linear regression analysis are shown in Table 3. (C) Individual lumbar PET/MR scans from 2 subjects, matched for age (control—49; patient—47), sex (M), and TSPO genotype (HAB). On the right (pain patient), focal elevation of \([^{11}C\text{PBR28}}\) uptake in the L4-L5 neuroforamen ipsilateral to the side of pain is highlighted by green arrowheads, compared with unaffected, contralateral side. This can be compared with the absence of neuroforaminal signal in the control subject’s scan (left). The dashed boxes in the top panels are enlarged in the middle (PET overlaid on MR) and bottom (MR only) panels. Note: the coronal sections are shown only for display purposes; all data were extracted from axial slices. HAB, high-affinity binder; MAB, mixed-affinity binder; MR, magnetic resonance; PET, positron emission tomography; SUV, standardized uptake value; SUVR, standardized uptake value ratio; TSPO, translocator protein.
comparisons were planned, one comparing target region to reference region in patients, and one comparing target region in patients to healthy control regions. Supplementary linear regressions were also conducted to assess the effect of region and genotype on SUVR for both the spinal root and spinal cord analyses. Correlations between 2 continuous variables were estimated using linear regression. All statistical tests were 2-tailed with alpha set to 0.05. All analyses were performed using R statistical computing software (R, version 3.2.2; R Foundation for Statistical Computing, Vienna, Austria; Rstudio Version 1.0, Boston, MA).

3. Results

3.1. Subjects

Twenty-six subjects (patients, n = 16 and controls, n = 10) and 18 subjects (patients, n = 9 and controls, n = 9) were included in the spinal root and spinal cord analyses, respectively. Patient and control characteristics for both analyses are listed separately in Table 1. There were no significant group differences in age, sex, TSPO genotype, injected dose, or BMI for either analysis (P > 0.21).

3.2. Neuroforaminal immune activation in chronic lumbar radiculopathy

Using a mixed-effects model, [11C]PBR28 signal was compared across 3 anatomically-defined regions (grouping factor “region”): neuroforamen corresponding to pain symptoms in 16 patients (ie, “target” region), neuroforamen contralateral to target region in patients (ie, within-subject “reference” region), and corresponding neuroforamina in 10 healthy controls. We found that addition of a region x genotype interaction to the model significantly improved the fit (F(48,46) = 2.52, P = 0.008, R^2 = 0.26; Fig. 2A).

This analysis did not replicate the significant differences in spinal root [11C]PBR28 uptake seen with the regional linear mixed model (F(3,22) = 5.13, P = 0.001, corrected) or in healthy controls (F(3,22) = 0.26, corrected; Fig. 2A).


A subset of patients (N = 7) were treated with fluoroscopy-guided ESIs one week to several months after the imaging session. Two additional patients received ESIs more than 2 months before scanning. Five patients (4 prospective and 1 retrospective ESI) reported 90 ± 11% relief from ESI (positive responders) and 4 patients (3 prospective and 1 retrospective ESI) reported 0% relief from ESI (negative responders). We found that a positive response to ESI was observed only in patients with a ratio of target-to-reference SUV greater than 1 (ie, target SUV > reference SUV; Fig. 3). That is, a higher level of [11C]PBR28 signal in the neuroforamen ipsilateral to pain, compared with the contralateral side, was associated with a positive response to ESI.

3.4. Spinal cord neuroinflammation in chronic lumbar radiculopathy

To determine whether radicular pain was also associated with spinal cord inflammation (ie, glial activation), [11C]PBR28 cord data were acquired in a subset of patients (N = 9) and controls (N = 9). Data were assessed with a mixed-effects model between

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Linear regression results from spinal root standardized uptake value ratio analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.990</td>
</tr>
<tr>
<td>Group</td>
<td>0.025</td>
</tr>
<tr>
<td>Genotype</td>
<td>0.003</td>
</tr>
<tr>
<td>Group × genotype interaction</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Figure 3. Comparison between spinal root laterality (target SUV/reference SUV) in ESI nonresponders (n = 4; mean relief 0 ± 0%) and ESI responders (n = 5; mean relief 90 ± 11%). Epidural steroid injection responders have a ratio of pain SUV to reference SUV greater than 1, indicating that increased lateral uptake in roots ipsilateral to pain is associated with a positive response to ESI.
The boxed text contains a statistical analysis comparing SUV values in spinal cord areas of patients and controls. It highlights differences between regions and the influence of genotype. The text also mentions the use of PET imaging and SUVR (standardized uptake value ratio) to assess spinal cord activity. Table 4 provides a summary of linear mixed model statistics for spinal cord SUV analysis, detailing estimates, standard errors, p-values, and confidence intervals for different regions and genotypes.
Table 5

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. error</th>
<th>t-value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept 1.08</td>
<td>0.110</td>
<td>9.82</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>Group 0.331</td>
<td>0.131</td>
<td>2.52</td>
<td>0.024</td>
</tr>
<tr>
<td>Genotype 0.241</td>
<td>0.139</td>
<td>1.73</td>
<td>0.104</td>
</tr>
</tbody>
</table>

The analysis replicated significant group differences in spinal cord SUVR (T11-T12 cord SUV normalized by T7-T9 cord SUV) between patient and control groups that were seen in SUV regional analysis ($F_{2,15} = 3.85$, $P = 0.04$, $R^2 = 0.34$, Fig. 4A).

SUVR, standardized uptake value ratio.

CNS, including spinal cord$^{10,14,15,34,37,43,48}$ and brain.$^{24,42}$ Previous studies have documented elevations in inflammatory mediators (eg, proinflammation interleukins, prostaglandins, tumor necrosis factor-$\alpha$, etc.) occurring in spinal tissue and CSF in individuals with disk disease, including herniation and degeneration.$^{39,49}$ This evidence indirectly suggests the involvement of neuroimmune modulation in these patients because neuroimmune cells produce many of these molecules when activated during inflammation. More recently, studies using $^{[18F]}$FDG PET to assess metabolic activity showed increased binding in the spinal cord and compressed nerve roots of radicular pain patients,$^{9,50}$ and in healthy aging subjects,$^{4}$ that was suggested to be related to inflammatory activity. Although these studies are informative, the present experiment provides more direct insight into the role of neuroinflammation in lumbar radiculopathy because it presents, for the first time, in vivo evidence supporting elevated levels of a marker of immune activation.

Our findings suggest that immune responses in both central and peripheral nervous system may represent a promising therapeutic target. In the treatment of chronic sciatica pain, besides targeting spinal nerve roots with ESI as in current clinical practice, central immune activation may also need to be targeted for therapeutic intervention, as suggested by numerous preclinical studies.$^{14,19,24,30,34,37,43,48}$ Large-scale studies are warranted to elucidate the relationship between these inflammatory signals and symptoms, as well as their viability as possible therapeutic targets and disease biomarkers. Once a definitive role for neuroinflammation in the pathology of sciatica has been confirmed in large-scale studies, it will be important to investigate surrogate techniques for identifying neuroinflammation that are more economic and do not include ionizing radiation for widespread use in a clinical setting. Integrated PET/MR imaging will likely be instrumental in the development of these surrogate strategies because it allows for a direct evaluation of the association between PET and MRI metrics simultaneously collected.

In our data, the ratio in $^{[11C]}$PBR28 signal between target and reference neuroforamen was associated with the response to ESI. These results suggest that variability in the magnitude of neuroforaminal inflammation may explain the large variability in responses to this treatment.$^{11}$ With validation in larger samples, our data suggest that preselecting patients based on the presence and/or magnitude of neuroforaminal inflammation might improve overall treatment response. It is important to note, however, that all but one of the patients who were positive responders also possessed a high-affinity binding TSPO genotype. Although the effect of the Ala147Thr substitution in the TSPO gene on the binding affinity to second generation TSPO ligands is well known, the functional or clinical significance of this polymorphism is not well understood. One recent study did show that high-affinity binding status was associated with higher pain sensitivity in patients with fibromyalgia,$^{20}$ suggesting that TSPO may play a role in modulating pain sensitivity, perhaps through its effects on neurosteroid production.$^{12}$ However, that association, along with the observations in the current dataset, will need to be validated with larger studies.

4.1. Study limitations

Several additional caveats in this study need to be mentioned. Analysis of PET data with an arterial input function and kinetic modeling is traditionally performed to quantify signal. However, there is a high amount of variability and complications associated with traditional modeling of TSPO PET data.$^{44}$ For this reason, SUV and SUVR metrics are being increasingly used in TSPO PET analyses,$^{3,5,8,16,17,27,28,33,36,51}$ as we report here.

It is also important to acknowledge that the PET signal from both neuroforaminal and cord ROIs is likely to include partial volume contribution from surrounding tissues (eg, vertebrae), due to the coarse resolution of PET imaging (~4 mm at center of field of view). However, the use of within-subject controls (the asymptomatic neuroforamen and the upper thoracic spinal cord segment) limits the impact of this concern because both target and control regions should be similarly affected. In addition, there were no significant differences in the average PET signal in the vertebrae, or in size of target/reference ROIs ($P > 0.10$, data not shown), giving us further confidence that the contamination from vertebral signal should not have significantly biased our results.

Another limitation of our study includes a relatively small sample size, particularly for the spinal cord data and the longitudinal component evaluating the association between neuroforamen TSPO uptake and ESI treatment response. Thus, further studies are needed to validate and expand on these findings. Additionally, part of the treatment outcome data were collected retrospectively and thus is subject to patient recall bias.
The time between the subjects PET/MRI scan and ESI treatment was not uniform, although this is unlikely to have affected the causality between PET findings and ESI response because all patients had chronic lumbar radicular pain with stable pain symptoms.

Although these caveats necessitate the use of caution when interpreting the results from our study, our preliminary observations are in line with previous preclinical literature supporting a role for neuroimmune activation in the establishment and/or maintenance of persistent pain conditions.

Conflict of interest statement

The authors have no conflict of interest to declare.

The study was supported by the following funding sources: 1R01NS059537-01A1 (M. L. Loggia), 1R21NS087472-01A1 (M. L.L.), NS082548-01A1 (Y.Z. and J.H.), and T32EB13180 (T32 supporting D.A.).

Acknowledgments

The authors thank Grae Arabasz, Shirley Hsu, and Regan Butterfield for their help with data acquisition.

Article history:

Received 12 October 2017
Received in revised form 18 January 2018
Accepted 24 January 2018
Available online 5 February 2018

References


