Reference Pricing as a Deterrent to Entry:
Evidence from the European Pharmaceutical Market*

Luca Maini† Fabio Pammolli‡
(Harvard University) (Politecnico di Milano)

October 31, 2017

Click here for most recent version

Abstract

This paper empirically and theoretically analyzes the impact of external reference pricing (ERP) on launch delays in the market for pharmaceutical products. Governments that implement ERP use prices in other countries as negotiation benchmarks in an effort to bring down the cost of prescription drugs. By doing so, they limit the ability of firms to price discriminate across countries, and create an incentive to withhold drugs from countries with lower willingness to pay. Using data on pharmaceutical sales in European countries from 2002 to 2012, we document the presence of widespread launch delays across Europe — up to three years on average in Eastern Europe. To distinguish between strategic delays caused by ERP and delays that arise for other reasons, we develop a dynamic structural model of entry that allows for externalities in price, which we estimate using a novel moment inequality approach. We find that removing ERP would reduce delays in Eastern Europe by up to 14 months per drug. At the same time, ERP has a small impact on firm profits, so it would be theoretically possible to compensate firms for their profit loss in exchange for forgoing strategic delays.

*We are extremely grateful to Ernst Berndt, David Cutler, Robin Lee, and Ariel Pakes. We would also like to thank Vincenzo Atella, Francesco Decarolis, Josh Feng, Joshua Gottlieb, Sonia Jaffe, Casey Mulligan, Myrto Kalouptsidi, Richard Manning, Tomas Philipson, Daniel Pollman, Mark Shepard, Ariel Stern, Elie Tamer, Pietro Tebaldi, Heidi Williams, Annetta Zhou, and participants of the Industrial Organization and Health Care Policy Seminars at Harvard, Applications of Economics Workshop at the University of Chicago, Bates-White Life Sciences Symposium, and EIEF Doctoral Workshop on Applied Microeconomics. Luca Maini thanks the Becker Friedman Institute for their financial support through the Health Economics Fellowship. IMS Health provided access to the data.

†lucamaini@fas.harvard.edu
‡fabio.pammolli@polimi.it
1 INTRODUCTION

The rise in prescription drug spending is a growing concern for many countries around the world. Outside the US, governments try to control spending by directly negotiating prices with manufacturers, and implementing a variety of policy tools to limit markups on patent-protected drugs. A widely adopted practice, usually referred to as External Reference Pricing (ERP), consists of benchmarking drug prices by using prices in other countries. ERP has an obvious appeal for governments because it is simple, it guarantees that prices will be in line with other countries, and it can reduce spending. Firms however, worry about the limitations that ERP imposes on their ability to price discriminate across countries with different willingness to pay.

The debate over the effects of reference pricing has important implications for policy. Using ERP carries virtually no negative repercussions for the home country, but can impose an externality on foreign countries. In particular, firms will have an incentive to delay entry in low-income countries whose prices are referenced by high-income countries whenever the externality imposed through reference pricing outweighs the profits earned by expanding into additional markets. Drugs often enter in many markets several years after receiving marketing approval, so the welfare loss generated by ERP could be very large (Reich, 2000).

In this paper, we develop a structural model of entry that allows for externalities in price across markets, and use it to provide an estimate of the impact of ERP on launch delays. In the model, firms maximize profits by choosing an optimal entry sequence, conditional on demand and price conditions in each country. To isolate the impact of reference pricing we exploit the fact that ERP operates through a very specific channel. On the margin, ERP generates delays when the change in expected profits from launching in an additional country is outweighed by the expected loss from the externality generated by reference pricing.

We estimate the model using data on sales of pharmaceutical products across all Member States of the European Economic Area (EEA). Most European countries adopt ERP among the criteria used to set prices. Moreover, the EEA includes countries with highly heterogeneous income, which creates the potential for strategic delays. Empirically, widespread launch delays occur in almost all European countries, though some of these delays are likely due to factors other than reference pricing. Before launching, governments and drug manufacturers engage in negotiations that can last several months, and countries can also delay the entry of products they consider unsafe. On average, relative to their marketing approval date, products are delayed by about 3 years in Eastern European countries, and 1 year elsewhere.

We begin our exercise by estimating demand and price in each country. We use a random utility nested logit model for demand, and estimate prices using a flexible parametric function that tries to capture the decision process of the government. The function predicts equilibrium prices as a combination of the reference price and an internal government price — which represents the price that would have been granted in the absence of reference pricing. The degree to which the reference price affects the equilibrium is a country-specific parameter in the pricing model. We find that allowing for this additional degree of heterogeneity is important, as many countries do
not follow their stated ERP guidelines perfectly.

Our estimated demand and price primitives suggest that the externality generated by reference pricing is large enough to generate strategic delays. In simulations that compare the expected profits of various entry sequences we find that firms earn higher profits when delaying entry in some countries. In particular, delaying entry in some Eastern European countries yields higher profits for 70% of drugs. In roughly 20% of cases, withholding the product from all Eastern European countries would be preferable to launching everywhere at the same time. We find that virtually no drugs would earn higher profits by delaying entry in countries outside Eastern Europe.

To quantify the impact of ERP on delays we must isolate delays due to reference pricing from idiosyncratic delays generated by sources outside the control of the firm, such as the time needed to negotiate the terms of entry. We model this residual source of delay using binary shocks. In each period, firms that apply for entry in a given country draw a shock. If it comes up negative, entry has to be postponed until the next period, when a new shock is drawn.\(^1\)

We estimate the probability of experiencing an idiosyncratic delay using a newly developed moment inequality estimator.\(^2\) While moment inequalities have been applied to single-agent models of entry with spillover effects or externalities (Holmes, 2011; Morales et al., 2017), what makes our approach novel is that our empirical framework presents an additional complication: firm strategies are partially unobserved. The entry sequence we observe only reveals when firms were able to enter. Situations in which the firm applied and was delayed however, are observationally equivalent to situations in which the firm did not apply.

Our inequalities rely on a revealed preference argument. We assume that firms are maximizing expected profits and compare the expected profits of the observed entry sequence to the counterfactual profits of playing a different strategy. These inequalities will not always hold for individual firms: the realization of the random delay shocks in the data might prevent the firm from achieving the optimal entry sequence. However, we show that these differences disappear if we consider average payoffs across many firms. Our estimator relies on a generalized version of the law of large numbers that applies to non-identical, independently distributed random variables with finite mean and variance. The fact that strategies are unobserved is not costless, as our estimator can only provide a lower bound on the on the parameter of interest. We calculate an upper bound by exploiting the fact that the approval date is the earliest time at which the firm could have sent an entry application.

Our estimates imply that replacing ERP with a pricing policy that does not generate externalities in price across countries would reduce delays in Eastern Europe by up to 63%, or 14 months.

1\(^{1}\)We abstract from fixed entry costs. In a finite-horizon setting with fixed entry costs, delaying is only justified if costs are declining or highly fluctuating. Neither of these seems likely in the context we study. In general, fixed costs of entry should be small for drugs that have already received marketing approval.

2\(^{2}\)Estimation techniques for dynamic entry models that rely on solving the firm’s problem are generally unfeasible in settings similar to ours due to the cardinality of the action space of the firm (for a set of \(N\) countries over a \(T\)-period horizon, the firm can choose between \(T^N\) possible strategies). Instead, our approach does not require us to identify the optimal strategy of the firm or compute the value function, though it can only provide bounds on the parameters of the model.
per drug in each country. Several possible alternatives have been proposed in the policy literature, from a transition to a centralized European cost-effectiveness evaluation system (Drummond, 2003), to two-part pricing systems where products are supplied at cost and governments make transfers to firms in order to reach static and dynamic efficiency, to the creation of barriers preventing reference pricing and import-export of pharmaceutical products across countries with different prices (Towse et al., 2015). The exact policy chosen would affect firm profits, but not the implications for strategic delays, so our counterfactual has broad external validity.

Removing ERP would get rid of strategic delays, but would be hard to implement politically, so we also suggest a way to eliminate strategic delays while leaving ERP in place. Under our proposal, a central European authority would offer each firm a lump-sum subsidy in exchange for sending entry applications to all countries simultaneously. We estimate that the size of the subsidy would be small — around €20 million for the average drug. This is a consequence of the fact that in the current equilibrium ERP does not have a large impact on firm profits (our estimates indicate that Eastern European prices are not much lower than prices in Western European countries that use ERP more aggressively).

Our analysis has some limitations. The complexity of the problem we consider forces us to make several simplifying assumptions, which are necessary to perform the empirical analysis, but not necessarily desirable. First, we assume that firms act as single-agents. Even though the firms we consider are monopolists with regards to the specific molecule they produce, virtually all therapeutic classes we consider contain at least a few different molecules, which are presumably substitutable with one another to some degree. Second, we assume that there is no structural error in either demand or price. This assumption is necessary to build the moment inequalities given that firm strategies are unobserved. Finally, we do not explicitly model the government’s choice of a reference pricing function, opting instead to treat it as an exogenous feature. We discuss these limitations more in depth in the relevant sections of the paper and in the conclusion.

Our paper contributes to four main strands of economic literature. First, it contributes to a growing body of work, both empirical and theoretical, studying the impact of price regulation on the access to pharmaceutical products. The empirical side of this literature usually analyzes the impact of government policy on launches using a reduced-form framework (Danzon et al., 2005; Danzon and Epstein, 2012; Kyle, 2007; Kyle and Qian, 2013; Cockburn et al., 2016). A notable exception is Duso et al. (2014), which examines the welfare impact of parallel trade in Germany. On the theory side, this literature has focused on simulating the impact of reference pricing (e.g. Borja, 2014; Toumi et al., 2013; Stargardt and Schreyögg, 2006), or establishing conditions under which regulation that limits price discrimination is beneficial or harmful to welfare (e.g. Birg, 2016; Brekke et al., 2007, 2015, 2016; Matteucci and Reverberi, 2016). Our contribution is that we explicitly model the impact of reference pricing on firm incentives and develop an estimation strategy to isolate the effect of this policy on launch delays.

Another methodologically related paper is Chaudhuri et al. (2006), which uses structural techniques to estimate the impact of patent policy on patient welfare in the Indian market for quinolones.
Second, our paper is related to a series of studies on the impact of regulation that links prices to endogenous market benchmarks. For example, both Medicare Part B and Medicaid tie drug reimbursements to the average of reported private market prices. Duggan and Scott Morton (2006) show that in the case of Medicaid this regulation creates a distortion that leads to higher prices in the private market. Another set of policies with a similar effect are so-called “price-linked” subsidies, i.e. subsidies that are linked to market prices. Jaffe and Shepard (2017) and Decarolis (2015) show that these types of subsidies can distort premiums in health exchanges and Medicare Part D respectively. More generally, price externalities across firms have been detected in the absence of government intervention. Grennan (2013) and Grennan and Swanson (2016) show that knowing how much rival hospitals paid for medical devices can affect future prices. Our paper shows that if pricing strategies are constrained, firms can also respond along different margins (i.e. by manipulating their entry strategy).

Third, we contribute to the vast empirical Industrial Organization literature on entry models, which originated with Bresnahan and Reiss (1991) (for an overview of this literature see Berry and Reiss, 2007). Most of the papers on entry model use stochastic fixed costs of entry (e.g. Seim, 2006). Since fixed costs of entry are less relevant in our setting, we take a different approach and replace them with stochastic delay shocks. These shocks have different implications for estimation: they do not directly affect the profit of the firm, but rather impose stochastic limits on the action space. Moreover, when the realization of delay shocks is unobserved, the firm’s strategy is also unobserved, which creates additional challenges in estimation. This brings us to our last contribution, which is methodological in nature.

Our final contribution is to the literature on partial identification started by Manski (2003). We develop a partial identification approach to deal with the novel challenges introduced by delay shocks. The empirical literature on partial identification is growing and includes several papers (Dickstein and Morales, 2016; Eizenberg, 2014; Holmes, 2011; Illanes, 2016; Katz, 2007; Morales et al., 2017; Pakes et al., 2015). Our approach is closest to that of Holmes (2011) and Morales et al. (2017), but differs in the way that identification is obtained. While their approach identifies the set of parameter values for which the firm’s observed strategy is optimal, our approach identifies the set of parameters for which the firm is unable to earn higher profits than what is observed in the data.

The rest of the paper proceeds as follows. Section 2 introduces the institutional environment of the European pharmaceutical market. Section 3 describes the data and discusses preliminary evidence that supports the hypothesis that firms are delaying launches in countries with low prices in order to avoid the impact of external reference pricing. We present our theoretical model of entry in Section 4. The estimation is divided in two parts. We present our empirical model and estimation results for demand and price in Section 5, while Section 6 contains the dynamic analysis. We discuss the implications of our results for counterfactuals and policy analysis in Section 7. Finally, in Section 8 we provide some concluding remarks, a discussion of the paper’s limitations, and a roadmap for future research.
Europe represents roughly 22% of the world’s pharmaceutical market in terms of ex-factory sales; half of the US and Canada combined (EFPIA, 2016). Much like in the United States, the debate over pharmaceutical spending and how to best control it is a topical issue in many European countries. Even though prices tend to be lower than US prices (Danzon and Furukawa, 2003, 2006), governments are concerned about rising healthcare expenditure, and increasingly look to pharmaceuticals as a potential area for savings (Deloitte, 2013).

In this section I outline the main characteristics of the European pharmaceutical market, focusing on the aspects of regulation that are often associated with launch delays.

2.1 Marketing Approval of Pharmaceutical Products in Europe

In all countries around the world new drugs can only be sold after being reviewed for efficacy and safety. The European Medicines Agency (EMA) oversees this process in the European Economic Area. While in other parts of the world marketing approval for new drugs is generally granted by a regulatory authority whose jurisdiction is limited to one country (i.e. the FDA in the United States, or the PMDA in Japan), member states of the European Economic Area have been relying on a shared approval process since 1995 – the year the EMA was founded.⁴ Though national drug agencies still exist, their effort is now organized and regulated by the EMA.

Pharmaceutical companies seeking approval for their products can choose between three possible procedures. The **centralized procedure** is administered by the EMA itself, and grants automatic approval in all EEA Member States. It is available to all drugs, and compulsory for certain classes of drugs, including biologics.⁵ Drugs for which the centralized procedure is not mandatory can also go through two additional channels. If the drug already has a marketing authorization from any EEA member state, the firm can use the **mutual recognition procedure** to extend it to any other member state using a fast-track procedure taking no longer than 90 days (European Parliament, 2001).⁶ The other alternative is the **decentralized procedure**. In this case, the firm submits an application to multiple countries at the same time and designs one as the Reference Member State in charge of reviewing it (European Parliament, 2004).

The centralized marketing approval process ensures that the cost of seeking additional marketing approvals all but disappears as soon as firms receive marketing approval from any country in Europe (or from the EMA). This eliminates one of the most common explanations for launch delays. However, firms may still incur into delays because individual countries retain the ability...

⁴The European Economic Area consists of all Member States of the European Union, plus Norway, Iceland, and Liechtenstein.

⁵The full list of drugs that must receive approval by the EMA includes: human medicines containing a new active substance to treat HIV or AIDS, cancer, diabetes, neurodegenerative diseases, auto-immune and other immune dysfunctions, and viral diseases; medicines derived from biotechnology processes; advanced-therapy medicines, such as gene-therapy, somatic cell-therapy or tissue-engineered medicines; and medicines seeking orphan designation.

⁶Other countries can to refuse the extension by claiming that doing so would create significant risks for public health, although this does not happen very frequently.
to regulate prices independently from one another.

2.2 Price Regulation of Pharmaceutical Products in Europe

All European countries provide some form of single-payer coverage, meaning the government bears the vast majority of prescription drug costs. Therefore, virtually all governments impose strict restrictions on drug prices, with the primary goal of controlling spending.

Pricing restrictions typically only apply to drugs that are paid for by the government through the public health insurance system. However, since European citizens overwhelmingly access health care through government-funded programs, the exclusion of a product from public formularies results in its de-facto exclusion from the national market (European Commission, 2012). The ability to effectively deny entry provides governments with the necessary leverage to demand lower prices.

Firms petition for reimbursement status by submitting pricing and reimbursement applications to each government. The time required to review an application and negotiate a price can vary significantly across countries. In theory, Directive 89/105/EEC (informally known as the Transparency Directive) states that governments can take no longer than 180 days to review a pricing and reimbursement application (Council of European Communities, 1988). In practice however, this limit is often surpassed, both because of enforceability issues, and because governments can stop the clock by asking for additional information. Data on turnaround times for applications is scarce, but survey evidence from the late 1990s indicates that the average varied substantially, from 0 days in UK and Germany, to over two years in Belgium (OECD Health Policy Studies, 2008; PICTF, 2006).

The requirements of pricing and reimbursement applications vary across countries, though firms must generally include both a clinical dossier detailing the medical benefits of the drug, as well as an economic report with projected sales and a proposed price. The government then uses this information as inputs into the pricing decision. In theory, the government strives to set prices that reflect the value of each drug and reward the firm’s innovative efforts, while at the same time keeping spending under control. In practice, estimating the value of a drug is a complicated and costly exercise. Most countries require firms to disclose the price charged for the drug in other countries, and then try to set prices that are approximately consistent with what other governments are paying.

It is important to stress that ERP is not the only (or even the main) policy instrument used by countries in setting prices. Countries often rely on a variety of other methods, including, but not limited to Health Technology Assessments, internal reference pricing (which links prices of molecules within a pre-specified equivalence class), and price freezes/cuts. These policies will be especially important in situations when a reference price cannot be observed, or when the reference price is higher than what the government is able to pay.

7The only exceptions to this rule tend to be generic drugs, whose low price tag makes them a cost-effective option even in the absence of government coverage.
Finally, governments ultimately care about overall pharmaceutical spending rather than prices. Price-volume agreements that protect spending such as clawback policies are common, meaning that the outcome of the negotiation between the government and the firm might not be a single list price, but rather a price schedule. Another possible channel that could create a correlation between price and volumes is if the government is willing to provide more favorable coverage to firms that give better pricing conditions.

2.3 Overview of External Reference Pricing

In 2012 all European countries indicated ERP as one of the criteria used in setting prices except Denmark, Germany, Sweden, and the UK.\(^8\) Both the pharmaceutical industry and policymakers have acknowledged the externality generated by ERP and its role in producing launch delays for new pharmaceutical products (EFPIA, 2014; Carone et al., 2012). However, governments remain reluctant to abandon the policy, because of the savings they claim it generates.

The two most important aspects of ERP policies are the reference basket (i.e. the basket of countries whose prices are sampled), and the formula used to compute the reference price. For both, there is significant variation across countries.\(^9\) Some governments (e.g. Austria, Belgium, Finland, Hungary, and Poland) require firms to submit prices from all other countries in the European Union. Others only reference similar countries, both in terms of geographical proximity, size, and income level — for example, Estonia references Hungary, Latvia, and Lithuania, while France references Germany, Italy, Spain, and the UK. In terms of the reference formula, most countries use the average across the reference basket, but a few (e.g. Latvia, Poland, and Romania) use the lowest price, while others still use slight variations: Bulgaria, Greece, and Norway use the average of the three lowest prices in the basket. Figure 1 offers an overview of cross-country variation in reference baskets and formulas.\(^10\)

The stringency with which each country adheres to their stated ERP guidelines may vary across countries. Some governments state that ERP is only used to “inform” the pricing decision, meaning that we might expect prices to fall only part of the way to the reference pricing benchmark. In other instances, governments may push for prices that are below the reference price benchmark if they expect higher volumes sold than in referenced countries.\(^11\)

\(^8\)Since then, Denmark and Germany have adopted ERP as well.

\(^9\)Contrary to cross-country variation, over time variation in ERP policies is much more scarce. The biggest policy change happened in 2010 when Greece switched its reference function in an effort to lower prices. Other changes are tied to the entry of new Member States in the European Union or in the Eurozone. These occurred in Austria, Belgium, Finland, and Italy (all of whom reference EU member states); and Spain (which references countries in the Eurozone). Finally, Portugal, Hungary, and Poland made small adjustments to their reference baskets at various points. Please refer to the Online Appendix for more details.

\(^10\)The table shown in the paper represents a snapshot of reference baskets and formulas in 2012. It was built by combining several published sources (Carone et al., 2012; European Federation of Pharmaceutical Industries and Associations, 2014; Kanavos et al., 2011; Leopold et al., 2012; Wilsdon et al., 2013) with unpublished IMS reports. For the analysis used in the paper we generated yearly tables to capture some small changes that happened in a few countries with regard to their reference basket and the formula used.

\(^11\)According to several informal conversations of the authors with industry insiders, these sort of arguments appear to be popular in countries such as Italy, where the prices of smaller markets are included in the reference function.
We use the reference basket and formulas to estimate reference prices in our model, but we exclude a few additional characteristics of ERP policies that can also vary across countries. We briefly list them here for completeness. First, countries update the reference prices with varying frequency, from as little as every 6 months (e.g. Greece, and Slovenia), to as many as 60 (Finland). Second, countries can use raw ex-factory prices, or apply a PPP adjustment (all Scandinavian countries do so). Third, not all countries apply ERP to the same set of drugs. Most countries apply ERP only to drugs that are reimbursed through the national health insurance system, but some apply it to all new innovative drugs (e.g. France), and others to all drugs, regardless of reimbursement status (e.g. Greece). Finally, some countries apply ERP informally, meaning that they might not have an exact reference formula, or that they are not required to follow the cap set by ERP strictly. Countries that only use ERP informally include Belgium, Finland, France, Italy, Poland, and Spain.12

A Note on Parallel Trade ERP affects firm’s incentives by limiting their ability to price discriminate across countries. Another force that operates through the same channel is parallel trade. The European Economic Area is a free trade area, with no limits over the flow of goods across borders. This includes patent-protected products, such as brand prescription drugs. Parallel importers purchase drugs in countries with low prices and sell them abroad where prices are higher.

In a world without frictions, parallel trade would drive the price of all drugs to the minimum available, and act as an extreme version of reference pricing. In practice, this does not happen, because firms have a variety of tools that they employ to fight the impact of parallel trade. For example, Kyle (2011) shows that firms differentiate the products they sell across countries by changing strength, dosage, or packaging. Another important tool is the ability to manage supply quotas, which was affirmed in a European Court decision in 2008.13 Moreover, Costa-font and Gollier (2005) suggest that the difference in prices between the parallel traded product and the original is negligible, with gains from trade accruing mostly to intermediaries in the distribution chain, perhaps as a result of weak substitution incentives for pharmacies and physicians.

Even if it does not affect prices, however, parallel trade can still undermine firm profits. Using our data we are unable to separate the effect of reference pricing from that of parallel trade. That being said, our model will generally apply to any policy that limits price discrimination. In counterfactual exercises where we lift pricing restrictions we likewise assume that both reference pricing and parallel trade are unavailable (together with any other policy that could potentially

12Sources are in disagreement as to whether France and Italy use ERP formally or informally. EFPIA (2014) classifies both as Informal/Formal.

13The case pitted GlaxoSmithKline against a group of Greek wholesalers and parallel importers (Joined Cases C-468/06 to C-478/06, court opinion and proceedings available at http://curia.europa.eu/juris/liste.jsf?language=en&num=C-474/06). In November 2000 GlaxoSmithKline stopped supplying certain drugs to Greek wholesalers, opting instead for direct delivery to pharmacies and hospitals. Their goal was to prevent the sale of medicines destined to the Greek market to parallel importers. The resulting lawsuit ended with a decision on September 18th, 2008, which prohibited the direct restriction of parallel trade by altering the traditional distribution channels. However, the decision also carved out the possibility for the firm, to take reasonable measures to protect itself, such as establishing supply quotas to wholesalers based on current market demand.
affect price discrimination).

3 Preliminary Evidence of the Impact of ERP

We present some preliminary evidence of the presence of strategic delays. Our results confirm empirical patterns that several researchers have documented using similar data (Cockburn et al., 2016; Danzon et al., 2005; Danzon and Epstein, 2012; Kyle, 2007), but we also present novel evidence on the effect of reference pricing. We show that delay patterns are consistent with a strategic response to reference pricing rules, but that some delays are more likely to be generated by idiosyncratic mechanisms, such as the turnaround time of pricing and reimbursement applications. We also find that over time prices fall in countries who apply ERP, relative to countries who do not.

The section is divided in three parts. We start by describing our data in 3.1. Next, in 3.2, we characterize the extent of launch delays in Europe, and the differences we observe across countries. Finally, we look at price trends and their correlation with delays in 3.3.

3.1 Data

The main source of data for the empirical analysis is the MIDAS database maintained by Quintiles-IMS, a global information company specializing in the health care sector. The data covers sales of all pharmaceutical products for European countries from 2002 to 2012. It consists of a quarterly panel of volume and revenue sales divided by country. Products are defined by a combination of molecule, firm, product name, form, strength, and package. Quintiles-IMS collects this information by surveying pharmacies and hospitals.

To the best of our knowledge, this database represents the most comprehensive source of data on sales in the European pharmaceutical market. Nonetheless, it has a few important limitations, which we discuss below.

First, the data does not provide any information on the the approval dates of drugs. We collect approval dates for all EMA-approved medications from the EMA’s website, and the approval date of all mutual recognition applications from an internet database maintained by the Heads of Medicines Agencies (HMA).

Second, IMS reports ex-factory revenue sales, which do not usually incorporate rebates and discounts that are sometimes granted by individual payers. While in the US estimates of discounts for brand drugs oscillate between 20-40% during the period we consider (see Congressional Budget Office, 2005; Aitken et al., 2016), discounts tend to be much lower in Europe (Danzon and Furukawa, 2003, 2006). According to industry insiders, average rebates for patent-protected brand

14 We are missing data entirely for Cyprus, Iceland, Lichtenstein, and Malta. A few other countries have partially missing data. See the Online Appendix for more details.
15 Both datasets are publicly available. The HMA is a network of the heads of the European national authorities in charge of the regulation of medicinal products for human and veterinary use in the European Economic Area. The data can be found at http://mri.cts-mrp.eu/Human

10
drugs are rarely above 10%. Unfortunately, there is currently no available data on pharmaceutical rebates in Europe, so in our paper we simply use the prices implied by the IMS data.

Third, the data contains some missing information for certain countries and years. Because of the externalities generated by reference pricing, missing data points can have an impact on non-missing observations as well. To minimize the impact of missing data we resort to imputation using a variety of techniques.

We integrate the IMS data with a few additional sources. On top of the aforementioned EMA and HMA data on approval dates, we collect GDP and population data from Eurostat, as well as data on the incidence of diseases in each European country from the Global Burden of Disease Study. We use that information to build the market size variable for the demand estimation. We also use quarterly exchange rates from the European Central Bank to convert sales data from countries that use currencies other than the Euro.

Sample Selection We observe around 6,000 molecules and 3,000 firms in our data. Most of these molecules and firms are old off-patent and generic products with negligible yearly sales, and many are only available in one or two countries. We are interested in new, on-patent products whose potential market spans multiple European countries. Hence, we select a subsample of drugs that satisfy the following three criteria:

1. The drug was first launched on or after January 1st, 1995.
2. The drug had at least one new launch in a European country on or after January 1st, 2002
3. One of the three following conditions is satisfied:

 (a) The drug was approved by the EMA using the centralized procedure between 1995 and 2012,

 (b) The drug successfully completed at least one Mutual Recognition Application between 1995 and 2012,

 (c) The drug is sold in at least 10 countries by 2012, and is classified as a patent-protected brand drug for at least some part of our sample period.

We end up selecting 481 drugs (we define a drug as the combination of a molecule, a firm, and a therapeutic class). Most of the products we select received approval from the EMA through

16 Author’s own estimation based on several personal conversations.
17 As an aside, contracts that combine list prices with hidden discounts could circumvent ERP and restore the ability to use price discrimination. However, this does not seem to be the case even though these contracts are theoretically available. One possible reason why rebates are underutilized in Europe is that governments have higher transparency requirements than private firms, due to the necessity to account for their spending. Hence hiding discounts might be more difficult. Another possibility is that firms know that if they were to avoid ERP by using large discounts, government might find ways to force them to reveal those discounts.
18 See the Online Appendix for more details.
19 All molecules in our main sample are sold by a single firm, but can sometimes be available in different therapeutic classes. In these cases, IMS reports separate observations for each therapeutic class. We keep this distinction since our demand estimation relies on therapeutic classes to define markets.
the centralized procedure or applied for mutual recognition. We also include a few drugs that we were not able to match with the EMA and HMA data on approval dates, but that we observe being sold in many European countries. Unsurprisingly, drugs in our main sample experience much greater sales and diffusion relative to the average drug in the data (see Table 1). The median drug in our main sample is available in 22 countries (by the end of 2012), and collects yearly sales of €38.6 million across all European markets. For comparison, the median product in the full sample is sold in only 1 country, and earns less than €100,000 every year.

We also select a subsample of drugs within our main sample whose patent expired prior to December 31st, 2012. This smaller group is used in dynamic analysis, when our methodology requires that we are able to compute the overall expected payoff of a drug until the time its patent expires. This smaller sample consists of 87 drugs and has similar characteristics relative to the main sample of drugs in terms of sales and diffusion across European countries. The only main difference is in how these drugs were approved. Most of the drugs in our main sample were approved by the EMA using the centralized procedure. However, a majority of the drugs in the dynamic sample chose the Mutual Recognition Procedure.

3.2 Launch Delays in the EEA

This section documents the extent and variation of launch delays across European countries. We uncover two main patterns. First, virtually all countries experience meaningful launch delays on average. Second, there is substantial heterogeneity in average delays across countries. Some of this heterogeneity is explained by income: low-income Eastern European countries experience on average 2 additional years of delay relative to the rest of Europe. However, we also find significant variation in average delays within high- and middle-income countries.

Figure 4 contains a series of maps that display the fraction of drugs launched in each country within the first 6 years of the marketing approval date. We select a balanced subsample of 142 drugs that received approval through the centralized procedure on or before December 31st, 2006 (out of the 481 in our main sample) to ensure that we can observe the first 6 years of their life-cycle in our data.

Several interesting patterns emerge. First, Eastern Europe is lagging behind the rest of the continent. 6 years after the original approval of a product, Bulgaria, Estonia, Latvia, and Lithuania

20 For these products we impute the European approval date as the date of the fifth launch. We do not use the first launch because in many instances products that apply through the mutual recognition procedure start selling in the reference member state a year or two in advance relative to the rest of Europe.

21 Since patent expiration dates can vary slightly across countries, we set period T as the latest expiration date among those of France, Italy, and Spain. Patents generally expire roughly at the same time in most countries, since they are administered by the European Patent Office. However, some countries can choose to grant extensions to individual patents. In our data we also occasionally observe earlier than expected patent expiration dates for some Eastern European countries. We choose these three countries because they are the three largest markets that use ERP. Therefore, when their patent protection expires, the strategic incentives to delay launches should become close to zero. Empirically, we observe only a total of 11 country launches occurring after period T, which suggests that our approximation is accurate.
are the nations with the lowest diffusion rates, followed by Romania and Hungary. Second, even though the remaining European countries achieve similar diffusion rates by year 4, entry patterns differ considerably even between countries with similar market size and income level. For example, the UK has market size and prices similar to France and Italy, but almost all drugs are available in the UK within 12 months, whereas France and Italy only achieve a comparable diffusion rate after 3 years. The same comparison can be made between Austria and Belgium, or Sweden and Switzerland.

We present a slightly different look of the same phenomenon in Figure 5, this time using the full unbalanced main sample of 481 products. The graph plots average launch delay in months (conditional on entry). The average delay ranges from as little as 3 months in the Netherlands, to as much as 3 and a half years in Romania. We distinguish between short- and long-term delays to highlight the different nature of delays in low-income countries (we consider delays of less than 4 years as “short-term”). Delays in high- and middle-income countries are almost exclusively short-term in nature, and potentially explained by slowdowns in the bureaucratic process, or other idiosyncratic factors outside the control of the firm. Delays in low-income countries however, are very likely to be long-term in nature, which is more consistent with an explanation based on strategic delays: Eastern European countries cannot afford to pay high-enough prices, so firms deliberately withhold their products until later.

3.3 Price Trends Over Time and Across Countries

This section examines the relationship between prices and delays, and describes price variation across countries and over time. We find a strong inverse relationship between price level and delays, and show that prices in countries that use ERP fall over time relative to prices in countries that do not use ERP.

We calculate the price level in each country using a fixed effect regression, and plot the coefficients against average delays (Figure 6). There are three main takeaways from this figure. First, price levels and delays are negatively correlated, as we would expect if firms delayed entry in countries that cannot afford to pay high prices. Second, countries with a large population tend to experience shorter delays relative to the benchmark set by the best-fit line, while countries with low population tend to experience longer delays. This is also consistent with an explanation for

22The Netherlands also appear to have very low diffusion rates. Rather than reflecting a real empirical phenomenon, this result is caused by missing data. Our coverage for the Netherlands starts in 2007 and includes only retail sales (and not sales through the hospital channel), which means that many products never appear in the data because they are only available in hospitals or they had already exited the market in 2007. Unfortunately, the sample selected to draw this figure draw heavily on this earlier cohort of drugs, exacerbating the problem. In reality, the Netherlands have one of the highest (and fastest) diffusion rates, comparable to those of Germany or Sweden.

23Note that this means that the sample is truncated.

24Average delay comes from Figure 5. Price level variable is calculated as a country-specific fixed effect γ_j in a regression of log price on various fixed effects:

$$\ln(p_{ijt}) = \theta_i + \gamma_j + \delta_t + \epsilon_{ijt}$$

In the regression, i indexes drugs, j indexes countries, and t indexes years.
delays that is based on reference pricing: firms will be more willing to surrender a low price in large countries since the larger market size will make up for the potential loss from the externality on price. Third, the effect of market size is asymmetric: low-income countries are consistently penalized for market size, but small high-income countries are equally likely to fall above or below the best-fit line. This is once again consistent with a strategic reaction to ERP: small market countries where prices are high do not generate a negative effect on prices, and therefore should not be penalized.

In Figure 7 we look at price trends of drugs over time. To do so, we run the following regression:

$$\ln(p_{ijt}) = \theta_i + \gamma_{ja} + \delta_t + \varepsilon_{ijt}$$

where \(\gamma_{ja}\) is a fixed effect for country and drug age, measured in years starting from the approval year. We also include drug fixed effects \(\theta_i\) and year fixed effects \(\delta_t\).

We compare the evolution of drug prices across two groups of similar countries, some of which do not use ERP. The first is the group of the four largest countries in the Eurozone: France, Germany, Italy, and Spain. The second is the block of Scandinavian countries: Denmark, Finland, Norway, and Sweden. Both groups contain countries that do not use ERP (Germany in the first group; Denmark and Sweden in the second). We are not interested in the price level differences among these countries, but rather in whether price trends are divergent. To check whether that is the case we plot the difference between the \(\gamma_{ja}\) coefficients for Germany and Denmark and those of the other countries in the respective groups. In both cases we see that relative prices fall over time in countries that use ERP relative to the benchmark provided by countries that do not use ERP. This is consistent with the additional downward pressure that we would expect to see through the external reference pricing channel: as the product is launched in more countries, prices fall wherever ERP is used relative to countries where ERP is not used.

4 A Dynamic Model of Entry with Externalities in Price

A pharmaceutical firm \(l\) owns a set \(\mathcal{I}_i\) of patent-protected molecules (indexed by \(i\)) with a marketing authorization for sale in a finite set \(\mathcal{N}_i \subseteq \mathcal{N} = \{1, \ldots, N\}\) of markets (European countries), indexed using the subscript \(j\). The patent on each molecule has an expiration date, \(T_i\) periods into the future, at which point generic alternatives are allowed to enter and profits are driven to

25 Once again, Netherlands is an outlier on this graph. The price level in the Netherlands is probably underestimated for three reasons. First, the data is missing hospital drugs, which tend to be more expensive. Second, oftentimes in our data the same product is more expensive when sold through the hospital channel, which means that if we only observe retail sales we will underestimate the price of a product that is also sold in hospitals. Third, the fact that the sample starts in 2007 means that most of the years occur during the Great Recession, when many countries cut prices.

26 The only potentially unexpected pattern is that prices fall in Sweden after about 5 years, almost to the level of Finland, even though Sweden does not use External Reference Pricing. However, prices can fall over time for many reason, and countries can use many other tools outside of Reference Pricing to reduce spending.

27 Even though in theory all drugs can easily be approved for all countries in the EEA, we allow for the possibility that the drug might not be able to enter in all countries. In some occasions, governments can ban drugs if they are concerned about side effects. Hence, we only assume that a drug can enter in a country if we observe sales in the data.
zero. The firm’s objective is to maximize profits over the life-cycle of their products. We denote the last period of the firm as \(T_l = \max_{i \in I_l} T_i \).

In each period, the firm is solving a two-part problem:

1. In what countries should the products be launched?
2. What prices should be set in each country?

We are interested in understanding strategic launch delays, which are the outcome of the first part of the problem. Of course, the optimal launch strategy will depend on the equilibrium prices that are set in each country. Firms, however, have limited agency in determining these prices, because in Europe drug spending is subject to strict government regulation. Therefore, we do not explicitly model the price-setting stage, but instead use a flexible parametric function to predict equilibrium prices.

Start by introducing some notation. Denote the launch sequence of firm \(l \) as \(S_l = \{s_{ij}\}_{j \in N, i \in I_l} \), where \(s_{ij} \) denotes the period of entry of product \(i \) in country \(j \). If the product never enters then \(s_{ij} = 0 \). Furthermore, we denote the launch sequence at the end of a given period \(t \) as \(S_{lt} = \{s_{ijt}\}_{j \in N, i \in I_l} \) where

\[
s_{ijt} = \begin{cases} s_{ijt} & \text{if } s_{ij} \leq t \\ 0 & \text{otherwise} \end{cases}
\]

Once a product has entered, we assume that it cannot be voluntarily withdrawn by the firm. Notice that under these assumptions, for each value of \(S_{lt} \) there is exactly one possible path of previous realizations of the state variable that leads to \(S_{lt} \). This implies that knowing \(S_{lt} \) is enough to know \(S_{l\tau} \) for all \(\tau < t \). This is important because it implies that knowing the launch sequence at time \(t \) is enough information to simulate the full evolution of prices up to time \(t \). We similarly denote the launch sequence of other firms as \(S_{-l} \). Occasionally, we will also use the shorthand \(S \) or \(S_t \) to indicate the launch sequences of all firms.

The model considers the possibility that the price of a product in a given market may affect the price of that same product in other markets through the reference pricing channel. When the firm launches a product in multiple countries, governments can observe prices abroad and calculate a reference pricing benchmark that affects their own price. The extent to which this happens is captured by a country-specific parameter in the price control function.

28. This assumption can be relaxed in many ways without significantly altering the model. The key result that has to hold is that there are no more strategic incentives to delay once the product has lost patent protection. This is almost certainly the case because once a product loses patent protection, governments can rely on much more effective price-cutting measures, and no longer need to resort to external reference pricing.

29. We remain agnostic with respect to possible micro-foundations of this function, which do not matter for the results of this paper. We show in Appendix A.3 that the equation can be derived from a static Nash Bargaining model under some assumptions.

30. Empirically, we only observe products being withdrawn because the EMA has decided to revoke the marketing authorization upon reviewing post-clinical evidence, or after demand falls for several periods, suggesting that the product is no longer economically or therapeutically viable. In both cases we assume that the choice is not taken by the firm.
The optimal launch strategy will also depend on demand. The demand system and the price-setting equation are primitives that the firm takes as given when making entry decisions. We describe each in turn before specifying the dynamic entry model.

4.1 Demand System

We base demand on the logit random utility model. Markets are defined by a country, year, and therapeutic class. We aggregate products within a therapeutic class at the molecule-brand status level. We define three possible brand statuses: originator product (i.e. the brand sold by the patent-holder or main manufacturer), non-originator brand (usually a parallel traded product), and generic. All the products in the main sample of analysis are originator brands. The utility of consumer ℓ, in country j, from consuming drug i (molecule m), belonging to therapeutic class κ, in year t is given by

$$ u_{i(m,\kappa)\ell(j)t} = \delta_{ijt} + v_{i\ell t} $$

(1)

To obtain more realistic substitution patterns we also add a nesting structure at the molecule level. The error term $v_{i\ell t}$ is parametrized as

$$ v_{i\ell t} = (\zeta_{m,\kappa} + (1 - \sigma_{\kappa}) \varepsilon_{i\ell t}) $$

where m indicates the molecule of drug i, σ_{κ} lies on the unit interval, $\varepsilon_{i\ell t}$ is distributed according to a standard Extreme Value Type 1 distribution and $\zeta_{m,\kappa}$ is an error term whose distribution satisfies the property that $v_{i\ell t}$ is distributed according to an Extreme Value Type 1 distribution as long as $\varepsilon_{i\ell t}$ is also EV1 (Cardell, 1997).

We parametrize δ_{ijt} to incorporate two important empirical features of drug demand in our data: heterogeneity in preferences across countries, and growing demand over time. Demand for drugs can differ substantially across countries because of heterogeneity in prescribing guidelines, incidence of disease, and patient preferences. Moreover, possibly because drugs are generally considered experience goods (Crawford and Shum, 2005), most products experience increasing demand over their life-cycle as both patients and providers learn about new therapies.

We do not include a coefficient for price, since we do not observe the price that patients pay. Instead, we include realized demand as a control in the price function, implicitly assuming that any relationship between price and volume sold is mediated by the government. In general, pa-

31Variations on the logit model are commonly used to describe the pharmaceutical market. Duso et al. (2014) and Stern (1996) use a two-level nested logit model to model demand for oral anti-diabetics and a set of four therapeutic classes (gout, sedatives, minor tranquilizers, and oral anti-diabetics) respectively. Dunn (2012) uses a random-effect logit model (micro-BLP) to describe the market for anti-cholesterol drugs using individual data. In our case, we found that adding a more sophisticated nesting structure did not substantially improve model fit (we experimented with adding an upper level at the ATC4 level or at the market level, separating the outside option from all other products). We did not have enough data to implement a random-effect logit model.

32For details on the definition and construction of therapeutic classes, see the Online Appendix.

33For the nested logit model to make sense, σ_{κ} must lie on the unit interval. We do not implement this restriction in the estimation, but instead opt to abandon the nesting structure in favor of a simple logit whenever the parameter falls outside the limits set by the theory.
tients in European countries only pay a fraction of the cost of prescription drugs, so any degree of price elasticity that is picked up in the data is likely to be driven by the actions of governments.\footnote{All European governments provide universal health insurance coverage. Cost-sharing for drugs tends to be very low. Drugs administered in an inpatient setting are usually completely free. Cost-sharing of outpatient prescription drugs is disciplined by a variety of regulations that weaken the relationship between the price paid by the government and that paid by the patient. In a few countries outpatient drugs are also completely free (Netherlands, Scotland). Some countries use copays that are common to all drugs, regardless of price (Austria, Germany, Ireland, Italy, UK). Others have coinsurances but relatively low caps on the amount that each patient can spend each year/month (Belgium, Finland, Spain, Sweden). Finally, countries that have co-insurances without caps either have low co-insurances for the most valuable products (France, Greece, Poland), or allow for a variety of exemptions to protect sick and low-income individuals (Denmark, Portugal) (Barnieh et al., 2014; Panteli et al., 2016; Thomson and Mossialos, 2010).}

Our specification is

\[\delta_{ijt} = \alpha_{ij} + \beta_{i} \text{age}_{it} + \eta_{i} NF_{ijt} + \xi_{ijt} \]

(2)

\(\alpha_{ij} \) captures a country-specific preference for each drug, which could reflect differences in prescribing guidelines or disease burden.\footnote{Even though the impact of disease burden is mostly reflected through market size, therapeutic classes can sometimes encompass large clusters of disease. For example, oncologics are divided in three large therapeutic classes (targeted therapies, cytotoxics, and hormonal therapies).} The \(\beta_{i} \) coefficient allows for the possibility that patients and physicians might learn about new drugs over time. We measure age starting with the approval date of the drug.\footnote{An alternative definition of age could start counting from the year in which a product was launched in a specific country. Our prior is that information about a drug can spread to countries even if that product is not yet available. As a robustness check, we estimated the model using country-specific age, obtaining very similar results.} For non-originator products we also keep track of the number of selling firms as a separate control variable \(NF_{ijt} \).\footnote{Virtually all originator products are sold by a single firm in each country, though the firm is not necessarily the same across countries. However, most molecules face multiple brand and generic competitors, which we aggregate in order to avoid excessive entry and exit.} Finally, we add a drug-country-year random shock, \(\xi_{ijt} \), so that the model can fit the data.

Inverting market shares (and normalizing the utility of the outside option to 0) yields the standard estimating equation for nested logit models:

\[\ln \left(\frac{s_{ijt}}{s_{0jt}} \right) = \alpha_{ij} + \beta_{i} \text{age}_{it} + \eta_{i} NF_{ijt} + \sigma_{m} \ln \left(\frac{s_{ijt}}{s_{mjt}} \right) + \xi_{ijt} \]

(3)

where \(s_{0jt} \) is the share of the outside good, and \(s_{ijt} \) and \(s_{mjt} \) are the market share of the product, and the overall market share of the molecule nest respectively.\footnote{See Appendix A.1 for the derivation. We think of the outside good as an aggregate of non-drug therapies (doctor visits, surgery, etc.) or drugs in other classes.}

We denote the demand function generated by this model as \(D_{ijt} \left(S_{t}, \xi_{ijt}^{\kappa} \right) \), where \(\xi_{ijt}^{\kappa} = \{ \xi_{ijt} \}_{i \in \kappa} \) is the vector of shocks for all products in therapeutic class \(\kappa \).

4.2 Price-Setting Equation

Drug prices are set in negotiations between firms and governments. The exact form of the these negotiations is hard to capture in an explicit model. Presumably, the government is trying to reconcile several goals, such as providing access to valuable medications and rewarding costly
innovation, while at the same time facing spending constraints. Since we do not have any information on the government’s objective function we opt for a more agnostic approach, and model prices using a flexible control function.

Our price-setting equation includes two components. The first component is what we call government price, \(p_{ijt}^{\text{gov}} \). This is the price that is agreed upon between the firm and the government in the absence of reference pricing. We write the government price as a function of product and country fixed effects, as well as three additional control variables that are meant to capture the potential effect of some of the other price-control policies implemented by the government. As a first control we include an indicator for whether the firm has headquarters in country \(j \). Kyle (2006) shows that this variable is important to determine probability of launch; we include it to check whether we can detect a significant effect on price. As a second control we include a flexible function of the number of other molecules available in the same market. There are several reasons why this variable should matter, all of which suggest it should have negative sign: the availability of alternatives should decrease the additional welfare generated by a drug, competitive pressure could bring prices down, and finally, governments sometimes benchmark prices to the lowest price available within a group of substitutable drugs. As a third control we include total realized demand for the drug. Intuitively, the government might react to high prices by steering patients towards cheaper options. Governments also make widespread use of payback policies aimed at preventing budget overshooting (Carone et al., 2012). Demand for drugs has an idiosyncratic component (in the real world as in the model), but prices have to be agreed upon in advance, which can lead to costly unexpected spending. Hence, we conjecture that realized demand might be inversely related to prices.

The specification of the government price is

\[
p_{ijt}^{\text{gov}} \left(D_{ijt} \left(S_t, \xi_{jt}^\kappa \right) \right) = \theta_i \cdot \gamma_j \cdot \exp \left(\beta Z_{ijt} + \beta_D \ln \left(D_{ijt} \left(S_t, \xi_{jt}^\kappa \right) \right) \right)
\]

where \(\theta_i \) and \(\gamma_j \) are the product and country fixed effects, \(Z_{ijt} \) is the matrix of controls, and \(D_{ijt} \left(S_t, \xi_{jt}^\kappa \right) \) the realized demand, which depends on the random shocks of the products in class \(\kappa \): \(\xi_{jt}^\kappa = \{ \xi_{ijt}^\kappa \}_{i \in \kappa} \). We interpret this equation as a price-schedule, rather than a set list price.

The second component of the price-setting equation is the reference price. The reference price is not directly observed, but reference price functions \(F_{jt}^{\text{ref}} \) and baskets \(R_{jt} \) are reported by various sources. Nonetheless, some details of the application of these functions require additional assumptions. In particular, we need to establish how soon governments can see the price schedules that have been set in other countries, and what is the right volume at which to evaluate the price schedules when calculating the reference. We assume that governments see prices with a 1-period lag, and apply the volume from the home country in the current period to the price schedules used in the reference formula. Therefore, the reference pricing function that we implement em-

39 See the Online Appendix for more details on the construction and sources of reference price functions and baskets.
40 For the volume adjustment, there are two natural options: the price schedules could be evaluated at the volume sold in the referenced country, or in the home country in the current period. The first option implies that each country
pirically is given by

\[p_{ijt}^{\text{ref}} (S_{t}, D_{ijt} (\cdot)) = F_{jt}^{\text{ref}} \left(\left\{ p_{ikt-1}^{\text{ref}} (S_{t}, D_{ijt} (\cdot)) \right\}_{k \in \left(R_{jt} \cap E_{it-1} \right)} \right) \] (5)

where \(E_{it-1} \) is the set of countries where product \(i \) is sold as of time \(t - 1 \) (notice that this set can be obtained from information in \(S_{t} \)).

To combine these two components we assume that whenever the governments observes a reference price that is inferior to the government price, the equilibrium price is set as a weighted average of the government price and the reference price. We let the weight be country-specific in order to capture eventual heterogeneity in the application of reference pricing guidelines. The overall price-setting equation is

\[p_{ijt} (S_{t}, D_{ijt} (\cdot)) = \begin{cases} p_{ijt}^{\text{gov}} (S_{t}, D_{ijt} (\cdot)) & \text{if } p_{ijt}^{\text{ref}} (\cdot) \geq p_{ijt}^{\text{gov}} (\cdot) \\ (1 - \mu_{j}) p_{ijt}^{\text{gov}} (S_{t}, D_{ijt} (\cdot)) + \mu_{j} p_{ijt}^{\text{ref}} (S_{t}, D_{ijt} (\cdot)) & \text{if } p_{ijt}^{\text{ref}} (\cdot) < p_{ijt}^{\text{gov}} (\cdot) \end{cases} \] (6)

Identifying the Impact of Reference Pricing Before moving on to the dynamic model, we briefly discuss the variation in price that allows us to identify the impact of reference pricing. Our identification strategy is based on two key elements: the functions that each country uses to calculate the reference pricing benchmark, and the asymmetry in the application of reference pricing that comes from the assumption that reference price only matters if it is below the government price.

We illustrate how these assumptions are reflected in the data by looking at a specific example: the drug Abacavir (brand name Ziagen, marketed by ViiV Healthcare, a UK-based company). Abacavir is an important antiretroviral therapy used to treat HIV-positive patients. It was approved in July 1999, and lost patent protection in 2014. It is currently included in the WHO List of Essential Medications.

Figure 2 displays the order of entry observed in the data. The launch sequence is fairly typical: within a short time of the approval date the product is launched in a large set of high- and middle-income countries. Poland, a low-income country that also has a large population, is part of this initial group as well.\(^{41}\) Subsequent launches are scattered, but occasionally grouped together. Bulgaria and Czech Republic receive the product in 2003, about four years after the initial approval, followed by Lithuania and Romania in 2005, Hungary in 2006, and Slovakia in 2008. As of December 2012, the product was still not available in Latvia and Estonia.\(^{42}\)

We look at price trends for Abacavir in various countries in Figure 3. We compare prices as of time \(t - 1 \). The second option is to evaluate the price schedules at the volume sold in the home country in the current period. This option implies that each country references the price schedule. We experiment with both options and find the second one to be more accurate. It provides a better fit with the data, and is more aligned with the way reference pricing is applied in practice according to informal conversations with industry insiders.

\(^{41}\)This is also not uncommon. Very often the product will be launched in a couple of low-income countries during the first wave of launches. Those countries tend to be the ones with the largest demand for the product.

\(^{42}\)Two drugs that use Abacavir in combination with other molecules were launched in Latvia in 2004 and 2006. Estonia does not have any recorded sales of Abacavir or associated combination therapies in our data.
in France and Germany first (3a). French ERP rules state that reference pricing should be applied at launch, and then updated on a yearly basis, but only starting five years after the original launch. This discontinuity allows us to observe price differences in a quasi-event study setting. The price in Germany is fairly constant over time. The price in France is also constant for a couple of years, but quickly falls to the level of the reference price between 2005 and 2007 (the product was launched in the first months of 2001, which means that the price was probably set in late 2000, and the reference price would first be updated at some point in 2005).

To compare two countries that use ERP policies, but appear to put different emphasis on them, we look at Greece and Switzerland (3b). The graph shows that the Swiss price is above the reference price benchmark, so our model will predict that reference price should have an effect on the price. However, there is no apparent correlation between the two lines. The Swiss price even seems to diverge from the reference price after 2007. In contrast, Greece comes in below the reference price until 2009. Hence, the model would interpret prices between 2002 and 2009 as measures of the government price. Those prices are constant, with the exception of the first observed price in 2002, and a brief interlude of approximately 6 quarters between 2007 and 2008 in which the price was momentarily cut. However, in 2010, when the reference price falls, so does the Greek price, suggesting that reference pricing guidelines are followed closely, at least in this case.

These example illustrates how the model determines the impact of reference pricing. The model will predict a government price for Abacavir for each country to match instances when the reference price does not bind. When the reference binds, the degree to which prices move in the same direction as the reference price will determine whether \(\mu_j \) is close to 1 (as in the case of Greece), close to 0 (as in the case of Switzerland), or somewhere in between (as in the case of France).

4.3 Dynamics

We now turn to the dynamic aspect of the model. The firm operates in a discrete-time, finite-horizon environment. It has perfect information over demand characteristics and price-setting equation in each country. Its goal is to maximize profits by choosing the order and timing of entry in each country, conditional on demand and price. We assume that the firm solves a single-agent problem.

The launch sequence of the firm as of period \(t \) represents the state variable of the problem. While the launch sequence of other firms has the potential to affect expected profits (by stealing market share and potentially affecting prices), we assume that strategies are not conditional on the actions of other firms.\(^{43}\)

Each period, the firm picks the countries where to launch from those where the product is not yet available. We represent this action as a binary vector \(A_{lt} = \{ a_{ijl} \} \) where \(a_{ijl} = 1 \)

\(^{43}\)This assumption is necessary to obtain identification from the model. Allowing firms to react to each other is desirable, but makes counterfactual scenarios hard to compute, since our data does not allow us to make inferences about reactions off the equilibrium paths.
whenever the firm chooses to launch product i in country j. More generally, we denote a strategy for firm l in the extended-form game as a map

$$A_{lt} : S \rightarrow \{0, 1\}^{T_l-t+1}$$

where S is the set of all possible values of the launch sequence S_l, and A_{lt} generates a set of binary vectors A_{lt} with an action profile for each period until T_l.

We introduce a source of stochastic variation in the model by assuming that drugs can incur random entry delays. Formally, a delay shock is a binary random variable ρ_{ijt}, independently distributed across countries, years, and drugs. If $\rho_{ijt} = 1$, then drug i cannot enter in country j until period $t+1$ (when a new shock is drawn). These shocks help capture variation in delays that cannot be explained through the reference pricing channel. Delays caused by ERP will arise when the firm voluntarily decides to withhold one of their products because they expect that doing so will result in higher overall revenues. Launch delays that occur for any other reason will be soaked up by delay shocks.

We model the delay shocks as simple Bernoulli random variables with country-specific parameters ψ_j. Each period unfolds as follows. At the beginning, firms choose where to send entry applications. Afterward, the vector of binary shocks for the current period $\{\rho_{ijt}\}$ is realized, determining the new value of the state variable. After observing the shocks, governments set price schedules, and finally, products are sold and profits are realized.

The firm’s problem at time t is to pick a strategy to maximize

$$V_t(S_{l-1}, S_{-l-1}) = \max_{A_{lt}} \sum_{S_{l-1}} \left(\sum_{t} \beta^{T_l-t} \Pi_{T} (S_l, S_{-l}) \cdot P (S_{-l-1}, S_{-l-1}) \cdot P (S_{l-1}, S_{-l-1}) \right) \cdot P (S_l|S_{l-1}, A_{lt}) (7)$$

where β is the discount factor (which we set equal to 0.98), $\Pi_{T} (S_l, S_{-l})$ is the expected period profit of the firm, for a given realization of the launch sequence (both the own sequence and the sequence of competitors), and $P (S_l|S_{l-1}, A_{lt})$ and $P (S_{-l-1}, S_{-l-1}, A_{l-1})$ are the probability of S_l and S_{-l} conditional on S_l and S_{l-1}, for given strategies A_{lt} and A_{l-1} of the firm and its competitors.

The expected period payoff is defined as

$$\Pi_{T} (S_l, S_{-l}) = \sum_{i \in I_l} \sum_{j \in S_{lj}} p_{ij} \cdot D_{ij} (\cdot) \cdot D_{ij} (\cdot) (8)$$

44 We call this a game because we treat Nature as a player whose actions (i.e. the delay shocks) are stochastic.

45 The main source of delays other than ERP is probably the time required to review price and reimbursement applications and to complete price negotiations. However, other sources may exist as well: firms may need to wait for certain negotiations to be resolved before engaging in additional launching because of capacity constraints to their negotiating workforce; or countries may block the entry of products they consider potentially dangerous for a number of years.
The firm’s expectations are taken over the possible realizations of the stochastic error in the demand system.

5 Estimates of Demand and Price Primitives

In this section we describe how we carry out the estimation of demand and price primitives, and briefly discuss results and model fit. Demand estimates are in 5.1, while price estimates are in 5.2. Finally, in 5.3 we use these estimates to simulate and compare the expected profits of entry sequences where products are launched everywhere right away to sequences that delay launches in certain countries. We find that firms earn higher profits when their products are delayed in Eastern European countries, but find no evidence that delays in Western Europe lead to higher profits.

5.1 Demand Estimation

Equation 3 provides the basis for estimation. The independent variables can be easily constructed from the IMS data, with the exception of age, for which we use approval date from the EMA or the Heads of Medicines Agencies.\(^{46}\) To measure market size we use data from the Global Burden of Disease Study. We use a map from ATC4 to GBD indication constructed by Costinot et al. (2016) to calculate the number of patients that might potentially use drugs in a certain therapeutic class.\(^{47}\) We then scale up the number of patients to obtain a number of standard units and construct market shares from data on sales volumes.\(^{48}\)

Two potential issues arise. First, \(\ln \left(\frac{s_{ijt}}{\bar{s}_{mjt}} \right)\) (i.e. the within-molecule market share of product \(i\)) is correlated with the error term \(\xi_{ijt}\), so instruments are needed in order to recover a consistent value of the coefficients associated with them. We use the number of years since the patent on molecule \(m\) expired, the average market share of parallel traded products for other molecules within the same country, and the number of other firms selling the same molecule.\(^{49}\) These variables are meant to capture the impact of the two potential channels of within-molecule competition: generic products (for off-patent molecules), and parallel traders (for on-patent products).

The second issue is that firms might be able to observe \(\xi_{ijt}\) prior to entry, and take it into account when making entry decisions. This leads to the classic selection problem that is common to many IO settings: countries where entry is recorded would have unobservably high values of \(\xi_{ijt}\), leading to a biased estimator. In practice however, there are several attenuating circumstances that suggest selection is a second-order concern in this case. First, firms never exit voluntarily,\(^{46}\) We manage to match over 90% of molecules in our main sample to an approval date. In the handful of cases for which we do not have a match, we use the fifth-earliest launch date from the IMS MIDAS database as a proxy for the approval date.\(^{47}\) We thank the authors of the paper for sharing the map with us ahead of publication.\(^{48}\) The scaling number is chosen to be the smallest number such that the outside option has at least 1% market share in all countries and years. In that sense, our estimate can be thought of as a lower bound on the actual market size. We pick a different scaling number for each therapeutic class.\(^{49}\) We identify as parallel traders all non-originator firms who sell a product sharing the same molecule and product name as the original product.
so we do not need to worry about exit selection. Second, we control for drug-country-specific preferences in our specification, so our model will pick up the average preference of each country. The only remaining possibility is that demand prior to entry could be lower than our model prediction, because firms wait until demand reaches a certain threshold before entering. In this case, we would expect our a_{ij} coefficient to be biased upwards. In the dynamic estimation, a higher a_{ij} coefficient makes firm i more likely to enter in country j. Therefore, this type of selection would lead us to underestimate the amount of strategic delays.50 We conclude that if unobserved selection does exist, it should act in the direction of preventing us from finding a result.

Results We estimate a separate equation for each of the 109 therapeutic classes that contain at least one of the products in our main sample using linear regressions with instruments.

The coefficients of the model itself are not very informative, so we discuss how the model fits the data. Figure 8 plots the distribution of R^2 coefficients from each regression. Virtually all regressions achieve a coefficient of determination of at least 0.8. This is because demand for all drugs tends to be fairly well-behaved, without many fluctuations. The main exception is flu medications ($R^2 = 0.6$). Since the flu is a highly seasonal illness, with stronger strains in specific years, demand for these products tends to vary a lot year-to-year in a way that is hard for our model to capture.51

Figure 9 plots predicted shares against actual shares for products in the main sample. The predicted shares of dominant products (i.e. products whose market share is greater than 0.6) tend to be underestimated by the model. However, the overall average market share ends up being quite close to the overall average (it is in fact slightly overestimated, by 0.02%).

5.2 Price and ERP parameters

Equation 6 provides the basis for price estimation. To fit the model we assume that prices are subject to measurement error. There almost certainly is some amount of measurement error in our data: IMS collects their data from surveys of pharmacies and hospitals, and the prices we match are yearly averages. For simplicity, we do not include any additional sources of error.52

Since our price model has a multiplicative function, we also assume that the measurement error is multiplicative (i.e. additive in logs). Let p_{ijt} be the model-predicted price, and p_{ijt}^o the observed price. Then

$$
\ln(p_{ijt}^o) = \begin{cases}
\ln(p_{ijt}^{gov} (\cdot) + \eta_{ijt}) & \text{if } p_{ijt}^{ref} (\cdot) \geq p_{ijt}^{gov} (\cdot) \\
\ln((1 - \mu_j) p_{ijt}^{gov} (\cdot) + \mu_j p_{ijt}^{ref} (\cdot)) + \eta_{ijt} & \text{if } p_{ijt}^{ref} (\cdot) < p_{ijt}^{gov} (\cdot)
\end{cases}
$$

50If potential demand were higher before entry, that might lead us to overestimate delays due to strategic behavior. However, this type of selection runs counter to the main intuition for the selection mechanism in this case.

51The other outlier in the graph is a class called “N7D9|OTHER ANTI-ALZHEIMERS” which contains a single molecule, Memantine (brand name Namenda), which is used to treat Alzheimer’s disease in people who are intolerant to cholinesterase inhibitors.

52Introducing any other source of error in the price would potentially lead to insurmountable estimation issues due to the propagation of this error through the reference pricing channel.
We assume that η_{ijt} is i.i.d. across countries, drugs, and years.

Our estimation routine searches the vector of parameters that minimizes the difference between the model prediction and the data. Since the price function includes a fixed effect for each product and country (there are 481 distinct products in our main sample), the total number of parameters is quite large, and estimation matching log price levels would be quite slow. To improve the speed and efficiency of the procedure we match log differences in price. The key property of this ratio is that it does not depend on the product fixed effect θ_i. We state the result here as a Theorem, and provide a formal proof in Appendix A.2.

Theorem 1. Let $p_{ijt}(\cdot)$ be defined as in equation 6. Then, for any $j, k \in \mathcal{N}_i$

\[
\ln \left(\frac{p_{ijt}(\cdot)}{p_{ikt+1}(\cdot)} \right) = \begin{cases}
\ln \left(\frac{\gamma_j \exp(\beta_j Z_{ijt} + \nu_j \ln(D_{ijt})))}{\gamma_k \exp(\beta_k Z_{ikt+1} + \nu_k \ln(D_{ikt+1}))} \right)
& \text{if } p_{ijt}(\cdot) \geq p_{ijt}^\text{gov}(\cdot) \land \notag \\
\ln \left(\frac{\gamma_j \exp(\beta_j Z_{ijt} + \nu_j \ln(D_{ijt})))}{(1-\mu_j) \gamma_j \exp(\beta_j Z_{ikt+1} + \nu_j \ln(D_{ikt+1})) + \mu_j p_{ikt+1}(\cdot)} \right)
& \text{if } p_{ijt}(\cdot) \geq p_{ijt}^\text{gov}(\cdot) \land \notag \\
\ln \left(\frac{(1-\mu_j) \gamma_j \exp(\beta_j Z_{ijt} + \nu_j \ln(D_{ijt}))) + \mu_j p_{ikt+1}(\cdot)}{(1-\mu_k) \gamma_k \exp(\beta_k Z_{ikt+1} + \nu_k \ln(D_{ikt+1})) + \mu_k p_{ikt+1}(\cdot)} \right)
& \text{if } p_{ijt}(\cdot) < p_{ijt}^\text{gov}(\cdot) \land \notag \\
\ln \left(\frac{(1-\mu_k) \gamma_k \exp(\beta_k Z_{ikt+1} + \nu_k \ln(D_{ikt+1})) + \mu_k p_{ikt+1}(\cdot)}{(1-\mu_j) \gamma_j \exp(\beta_j Z_{ijt} + \nu_j \ln(D_{ijt}))) + \mu_j p_{ikt+1}(\cdot)} \right)
& \text{if } p_{ijt}(\cdot) < p_{ijt}^\text{gov}(\cdot) \land \notag \\
\ln \left(\frac{p_{ijt}^\text{gov}(\cdot)}{p_{ikt+1}(\cdot)} \right)
& \text{if } p_{ijt}(\cdot) < p_{ijt}^\text{gov}(\cdot) \land \notag \\
\end{cases}
\]

where $p_{ijt}^\text{ref}(\cdot)$ is such that $p_{ijt}(\cdot) = p_{ijt}^\text{ref}(\cdot) \cdot \theta_i$, and $p_{ijt}^\text{ref}(\cdot)$ is not a function of θ_i.

The proof of this Theorem hinges on showing that the reference price can be written as a linear function of the drug fixed effect. Intuitively, this result follows from the fact that the reference price can be written as a weighted average of government prices, which are all linear functions of the drug fixed effect.

Since log differences do not depend on the product fixed effect θ_i, this strategy drastically cuts down on computation time. We match $\ln \left(\frac{p_{ijt}(\cdot)}{p_{ikt+1}(\cdot)} \right)$, where j and k are two (randomly selected) countries, and we look at the difference in the price of product i in these two countries over consecutive periods.\footnote{We compare prices of different countries to avoid differencing out the country fixed effect. In order to minimize the number of observations lost through the differencing process, we occasionally consider $\frac{p_{2012}}{p_{2013}}$ as a moment. By doing so we only lose one observation per drug, instead of one observation per drug-country.} We compute the model predictions using equation 9. The estimating equation in differences is

\[
\ln \left(\frac{p_{ijt}^p}{p_{ikt+1}^p} \right) = \ln \left(\frac{p_{ijt}(\cdot)}{p_{ikt+1}(\cdot)} \right) + \eta_{ijt} - \eta_{ikt+1}
\]
Our routine minimizes the sum of the two error terms:

\[
O (\gamma_j, \mu_j, \beta_Z, \beta_D) = \sum_{i,j,k,t} \left[\ln \left(\frac{p_{ijt} \left(\cdot \right)}{p_{ikt+1} \left(\cdot \right)} \right) - \ln \left(\frac{p_{ijt}^0 \left(\cdot \right)}{p_{ikt+1}^0 \left(\cdot \right)} \right) \right]^2
\]

(10)

We restrict \(\mu_j\) to the unit interval. A negative value of \(\mu_j\) does not make sense; a value of \(\mu_j\) greater than 1 is theoretically possible, but raises the possibility of negative prices in counterfactual predictions. Once we have obtained estimates for \((\hat{\gamma}_j, \hat{\mu}_j, \hat{\beta}_Z, \hat{\beta}_D)\), we plug them into the price equation to calculate \(\hat{\theta}_i\).

Results We report price estimation results for the vector of parameters \((\hat{\gamma}_j, \hat{\mu}_j, \hat{\beta}_Z, \hat{\beta}_D)\). Since our estimation is in logs, we report coefficients for \(\ln(\gamma_j)\), which are more easily interpretable as proportional changes in relative terms with respect to a benchmark (in this case, the omitted coefficient used as a benchmark is \(\ln(\gamma_{\text{GERMANY}})\)).

The first column of Table 2 shows the coefficients for \(\ln(\gamma_j)\). The point estimates roughly match our intuition: countries with lower income tend to pay lower prices, with a couple of exceptions. Poland and Hungary have higher coefficients than many other countries with higher income. However, both countries use the minimum price in Europe as their reference, and the coefficients on \(\mu_j\) for both are very close to 1. This suggests that the government is occasionally willing to grant higher prices, knowing that reference rules will bring them down very quickly.

The second columns shows estimates for \(\mu_j\), which is the coefficient measuring how strictly each country adheres to its own ERP guidelines. We observe significant heterogeneity across countries in this respect. Seven countries have coefficients above 0.9, suggesting that reference pricing guidelines are followed closely. Four other countries (including Italy and Spain) have coefficients above 0.8. The remaining 8 countries who use ERP all have coefficients below one-third, which suggests that they either do not follow their guidelines all that closely, or that they apply them only to selected drugs. In particular Switzerland does not appear to use reference pricing at all, with a coefficient that is almost exactly zero. We are not able to identify a coefficient for Slovenia because the model estimates that its government price is always below the reference price (Slovenia references Austria, France, and Germany, which are all countries with much higher price levels).

Almost all the coefficients on the control variables in the welfare function behave as expected. Higher quantity sold is associated with lower prices. Prices tend to be approximately 4% higher in countries where the firm has headquarters. Finally, having a higher number of competitors in the same class is correlated with lower prices, though the relationship appears to be nonlinear and noisy.

54Luxembourg and Norway (the two richest countries in Europe) are also outliers. Norway is relatively isolated in the reference pricing matrix, because it is only referenced by Finland. Hence granting a lower price to Norway might carry relatively little consequences for firms. This effect is not captured explicitly by our model, but is incorporated in the country fixed effect. Luxembourg is harder to explain, though its status as a relatively small countries might give rise to all sort of irregularities and exceptions. Many drugs do not even record sales in Luxembourg, so it is possible that selection might play a role here.
One key result that emerges from the analysis is that the price level (as indicated by $\ln(\gamma_j)$) in Western European countries that follow reference pricing closely is only marginally higher than the price level of Eastern European countries. This suggests that in the current equilibrium firms may be keeping prices artificially higher in Eastern European countries to reduce the size of the externality generated by ERP.

5.3 Simulation-Based Evidence of Optimal Delays

Our price estimation results suggest that ERP does indeed affect equilibrium prices, but are the externalities strong enough to generate delays? We test whether this is the case by simulating firm profits from a variety of strategies. We do not include delay shocks in this simulation, since all we are interested in is establishing whether or not the incentive for strategic delays exists.

We simulate the expected payoff of two sets of strategies, and compare it to the payoff obtained when launching everywhere right away. The first set of strategies, denoted as $A_{k\tau}^r$, consists of withholding a single product from country k for r periods. Formally, $A_{k\tau}^r = \{A_{i\tau}^{kr} (S_{i\tau-1})\}_{i \in I_k}$, and

$$a_{ijr}^{kr} = \begin{cases} 1 & \text{if } j \neq k \lor (j = k \land \tau < t + r) \\ 0 & \text{if } j = k \land \tau \geq t + r \end{cases}$$

We simulate the expected profits of these strategies for all the 87 drugs in our dynamic estimation sample, and calculate the fraction of drugs for which delaying in country j is optimal for at least one value of r. Figure 10 plots the results. We find that these types of delaying strategies are optimal for all Eastern European countries in at least some cases. Only three countries outside of Eastern Europe would experience delays according to this simulation: Austria, Belgium, and Luxembourg. Luxembourg does not have particularly low prices, but it’s a very small market, so it’s not surprising that for some drugs it would be optimal to exclude it. The model also predicts a delay for one drug in Austria, and one in Belgium. In both cases, the drug in question was indeed launched with a long delay in both countries, and earned a very small amount in sales. Even though both Belgium and Austria tend to have high price levels relative to most other countries, they can affect the prices of countries with higher price levels (for example Ireland).

Figure 10 is remarkably consistent with the reduced-form patterns described in Section 3.2.

55 When a firm owns multiple products in the same therapeutic class, we test strategies where only one product is withheld and other products are launched immediately.

56 In some cases, drug i is already in country j in 2002, which makes it impossible to simulate profits under a counterfactual delay. We exclude those drugs from our calculations.

57 Delaying entry in Romania and Bulgaria is optimal for a surprisingly low number of drugs, given our price and demand estimates. This is because prior to acquiring EU membership in 2007, Bulgaria and Romania where only referenced by a few other Eastern European countries. Thus, our model predicts that entering in Romania and Bulgaria only has a small effect on prices prior to 2007. In the data, we do not find a significant difference in the average delays before and after EU entry in these two countries. This is not too surprising however, as entry in the EU also removes several bureaucratic obstacles that might have generated idiosyncratic delays. Hence, the net effect of EU membership on launch delays could be close to 0.
(Figure 5). No information about delays or launch sequences was used in generating the figure, which is purely based on price and demand estimates. This confirms the intuition that firm behavior adheres to the incentives laid out by the regulatory environment, and supports the idea that our model can capture the relevant features of this market.

In the next set of strategies, we focus on Eastern Europe as a block, and simulate profits from strategies that delay entry in all Eastern European countries. Formally, let \(N_E \) denote the set of Eastern European countries. Then \(A_{ji}^{Er} = \{ A_{ir}^{Er} (S_{l-1}) \} \), with \(A_{ir}^{Er} (S_{l-1}) = \{ a_{ijr}^{Er} \} \), and

\[
d_{ijr}^{kr} = \begin{cases}
1 & \text{if } j \notin N_E \lor (j \in N_E \land \tau < t + r) \\
0 & \text{if } j \in N_E \land \tau \geq t + r
\end{cases}
\]

We plot the distribution of optimal delays for our 87 drugs in Figure 11. We find that for around 20% of drugs, delaying in all Eastern European countries as a block is preferable.

These simulations suggest that firms are better off when their products are not available in Eastern European countries right away. At the same time, we find almost no evidence that firms have any strategic incentive to delay entry in countries in Western Europe (this includes even countries with relatively lower income levels like Greece and Portugal).

6 Dynamic Analysis

With estimates for demand and price primitives in hand, we now turn our attention to the the parameters governing idiosyncratic delays. These parameters, which may differ across countries, capture the probability that an application may be delayed. Traditional estimation methods for dynamic entry models are unfeasible in our case: the complicated net of price externalities prevents us from deriving an analytic solution, and the total number of countries and periods we consider makes the state space is too large to solve the problem numerically. Finally, the structure of delay shocks generates an additional identification challenge on the curse of dimensionality: firm strategies are unobserved. In the data, we see firms entering, but not when applications are sent. In other words, in the observed launch sequences, an application that was not sent is observationally equivalent to an application that was rejected.

To overcome these obstacles we approach the problem using a partial identification approach. We develop a novel moment inequality estimator that exploits information contained in the average observed expected profits to estimate a lower bound for the probability of an idiosyncratic delay. Using this estimator we reject parameter values for which we can find strategies that yield higher expected profits than what firms obtained in the data. We build an upper bound using entry data, by exploiting the fact that firms can only start applying after their product has been approved.

58 As with the previous simulation exercise, sometimes drug are already available in some Eastern European countries. We delay entry only in countries where the product has not already entered.
The section is divided in three parts. First, in 6.1 we lay out the theoretical framework for
the moment inequalities that use expected profits to derive a lower bound on the parameter. We
discuss the empirical implementation of this methodology and our results in 6.2. Finally, in 6.3,
we derive the upper bound.

6.1 Theoretical Derivation

Identification in moment inequality is generally based on the idea that the firm’s strategy con-
tains some information about the true value of the unknown parameter of a model. In particular,
the strategy of the firm will only be optimal for certain values of the parameter. If we can find
strategies that would earn higher profits for certain values of the parameter, those values are in-
consistent with the strategy played by the firm and can be ruled out.

In our setting firm strategies are unobserved (e.g. if we observe entry in France with a 2-year
delay, we don’t know whether the firm applied starting in year 0, year 1, or year 2). As a result,
we are unable to compute the expected profits of the firm’s observed strategy for arbitrary values
of the unknown parameter. Instead, our assumptions allow us to compute the expected profits for
the true value of the parameter, and we use this information to obtain identification. Our strategy
rejects values of the unknown parameter for which the firm would have been able to earn higher
profits than observed in the data. We use this intuition to build inequalities in a way that is similar
to the rest of the literature: we compare the profits earned by the firm in the observed data, and
calculate counterfactual profits under alternative strategies for arbitrary values of the parameter.

The loss of information that comes from not observing the optimal strategy carries two main
consequences. First, we need to aggregate across drugs in order to remove the additional uncer-
tainty generated by the realization of the delay shocks. Second, our strategy will generally only
provide a one-directional bound on the parameter value — in our case, we find a lower bound on
the probability of an idiosyncratic delay. This is a consequence of the fact that the expected prof-
its of the firm conditional on playing the optimal strategy will usually be a monotonic function of
the unknown parameter ψ. In our notation, we write expected profits conditional on the optimal
strategy as $\tilde{V}_t (A^*_lt (\psi), \psi; S_{lt-1}, S_{-lt-1})$. Intuitively, $\frac{\partial V(A)}{\partial \psi} < 0$: a higher probability of idiosyncratic delay will result in lower expected profits. In this case, it is impossible to find an alternative strategy A' such that

$$\tilde{V}_t (A', \psi'; S_{lt-1}, S_{-lt-1}) > \tilde{V}_t (A^*_lt (\psi^0), \psi^0; S_{lt-1}, S_{-lt-1})$$

for $\psi' > \psi^0$.\(^{59}\) It will still be possible to find A' such that $V (A', \psi') > V (A^* (\psi^0), \psi^0)$ for $\psi' < \psi^0$.

Based on our simulation results, we assume that firms never optimally delay entry in Western
Europe (i.e. $\psi_j = \psi_j$ for all countries outside Eastern Europe). Since moment inequalities work
best with a small number of parameters we assume that the probability of delay is the same in

\(^{59}\)To see why, notice that by assumption $V (A^* (\psi^0), \psi^0) > V (A^* (\psi'), \psi')$ for all $\psi' > \psi^0$. Moreover, by definition
of $A^* \cdot$, $V (A^* (\psi'), \psi') > V (A', \psi')$ for all ψ'.
all Eastern European countries. We denote this probability as \(\psi_{EU10} \) (EU10 is the shorthand for Eastern European countries that are part of the European Union).

Let \(A^*_l \) denote the optimal strategy of firm \(l \) starting in period \(t \). By definition, \(A^*_l \) is the solution to the dynamic programming problem of the agent as expressed in equation 7. In other words, for all possible strategies \(A'_{lt} \), \(A^*_l \) satisfies

\[
\tilde{V}_t (A^*_l; S_{lt-1}, S_{-lt-1}) \geq \tilde{V}_t (A'_{lt}; S_{lt-1}, S_{-lt-1})
\]

(11)

where

\[
\tilde{V}_t (A_{lt}; S_{lt-1}, S_{-lt-1}) = \mathbb{E} \left[\sum_{\tau=t}^{T} \beta^{\tau-t} \Pi_\tau (S_l, S_{-l}) \bigg| A_{lt}, S_{lt-1}, S_{-lt-1} \right]
\]

(12)

is the expected payoff of the agent conditional on playing strategy profile \(A_{lt} \) (the expectation is taken over the possible realizations of the launch sequences of all products, as in equation 7).

Under the assumption that firms maximize expected returns we can use equation 11 to build “revealed preference” inequalities as in Pakes et al. (2015). In the data we observe a certain number of firms with molecules in specific therapeutic classes (each firm-class combination constitutes one observation for us, since molecules in different therapeutic classes do not affect each other). The expected payoff of the observed launch sequence \(S^*_l \) of firm \(l \) starting at period \(t \) is

\[
V_t (S^*_l, S^*_{-l}) = \sum_{\tau=t}^{T} \beta^{\tau-t} \Pi_\tau (S^*_l, S^*_{-l})
\]

Notice that \(\Pi_\tau (S^*_l, S^*_{-l}) \) is an object that we can recover using simulation, since it only depends on the shock \(\xi^*_l = \{ \xi^*_j \} \). This error is unobserved by both the firm and the econometrician by assumption.\(^{60}\) We recover the distribution of \(\xi^*_l \) from demand estimation, and use it to simulate \(\xi^*_l \).

We claim that the average of \(V_t (S^*_l, S^*_{-l}) \) converges to the average of the expected payoff of each firm when playing the optimal strategy.

Theorem 2. For any \(\epsilon > 0 \), we can find \(M' \) such that

\[
\frac{1}{M} \sum_{i=1}^{M} (V_t (S^*_l, S^*_{-l}) - \tilde{V}_t (A^*_l; S_{lt-1}, S_{-lt-1})) < \epsilon
\]

for all \(M > M' \).

We provide a rigorous proof of this Theorem in Appendix A.4 and only discuss the intuition behind the result here. Notice that if firms are playing the optimal strategy, then the observed launch sequences are draws from the probability distributions \(\mathcal{P} (S_l | S_{lt-1}, A^*_l) \) and \(\mathcal{P} (S_{-l} | S_{-lt-1}, A^*_{-lt}) \). This distribution need not be the same for all firms: each may face a different initial state \(S_{lt-1} \), and different demand or price primitives. However, since the random shocks used in the model

\(^{60}\)There is no additional error from price since the residual is assumed to be measurement error.
are independently distributed across drugs, we can apply a generalized version of the law of large number for non-identical independent random variables to argue that the sample average across firms converges to the average expected payoff.

Theorem 2 suggests that we can write moment inequalities based on the average payoff obtained by the firms in our sample:

$$\frac{1}{M} \sum_{l=1}^{M} \tilde{V}_t (A'_{lt}; S_{lt-1}, S_{-lt-1}) \geq \frac{1}{M} \sum_{l=1}^{M} \tilde{V}_t (A'_{lt}; S_{lt-1}, S_{-lt-1})$$ \hspace{1cm} (13)

The left-hand side of this inequality is approximated by \(\frac{1}{M} \sum_{l=1}^{M} V_t (S^o, S^o_{-l}) \). To compute the right-hand side we use simulation. The expected payoff of any deviation \(A'_{lt} \) can be written as an integral over the possible realization of the launch sequence \(S_l \), holding \(S_{-l} \) fixed.\(^{61}\)

$$V_t (A'_{lt}; S_{lt-1}, S_{-lt-1}) = \sum_{S_{-l}} \sum_{S_l} \sum_{t'=1}^{T} \beta^{t'-1} \Pi (S_l, S_{-l}) \mathcal{P} (S_l | S_{lt-1}, A'_{lt}) \mathcal{P} (S_{-l} | S_{lt-1}, A^*_{lt})$$

We approximate \(V_t (A'_{lt}; S_{lt-1}, S_{-lt-1}) \) by simulating the distribution of \(\mathcal{P} (S_l | S_{lt-1}, A'_{lt}) \). For a given guess of the parameter vector \(\psi_{EU10} \), and for each drug \(i \in I_l \) draw \(\{ v_{ijt}^{\text{nsim}} \}_{r=1}^{nsim} \) and use them to calculate simulated entry paths \(\{ S_l^r \} \). The average simulated payoff is

$$V_t^{\text{sim}} (A'_{lt}; S_{lt-1}, S_{-lt-1}, \psi_{EU10}) = \frac{1}{nsim} \sum_{r=1}^{nsim} \left[\sum_{t'=1}^{T} \beta^{t'-1} \Pi (S_l^r, S_{-l}) \right]$$

The difference between \(\tilde{V}_t (A'_{lt}; S_{lt-1}, S_{-lt-1}) \) and \(V_t^{\text{sim}} (A'_{lt}; S_{lt-1}, S_{-lt-1}, \psi_{EU10}^0) \) — for the true parameter vector \(\psi_{EU10}^0 \) — is simulation error, which can be eliminated by choosing \(nsim \) large enough, and the error in the realization of \(S_{-lt-1} \) (which is only one of many possible draws). When we aggregate across firms, the error in \(S_{-lt-1} \) will disappear for a large enough sample of drugs.

We define empirical moment moment conditions as

$$\mu (A'_{lt}, \psi_{EU10}) = \min \left\{ 0, \frac{1}{M} \left(\sum_{l=1}^{M} V_t (S^o, S^o_{-l}) - V_t^{\text{sim}} (A'_{lt}; S_{lt-1}, S_{-lt-1}, \psi_{EU10}) \right) \right\}$$

The estimation identifies a set \(\Psi^I \) of parameters that satisfy

$$\Psi^I = \left\{ \psi_{EU10} : \sum_{A'_{lt}} \mu (A'_{lt}, \psi_{EU10}) = 0 \right\}$$

\(^{61}\)We cannot simulate \(S_{-l} \) because we do not observe strategies. However, each observation of \(S_{-l} \) is drawn from the probability distribution of \(\mathcal{P} (S_{-l} | S_{lt-1}, A^*_{lt}) \), so when we average across firms, we will approximate the right distribution. See the proof of Theorem 2 in Appendix A.4.
6.2 Empirical Implementation of the Moment Inequalities Estimator

The parameter of interest is \(\psi_{EU10} \), which captures the probability of incurring a delay in Eastern European countries due to forces outside of the firm’s control. We pin down this parameter by building moment conditions based on equation 13, and checking what range of parameters satisfies it for a series of possible strategies \(A'_{lt} \).

Calculating \(V_t(S^o_l, S^o_{-l}) \) and \(V^{sim}_t(A'_{lt}; S_{lt-1}, S_{-lt-1}, \psi_{EU10}) \) does not require observing drugs from their original launch, but it does require observing them until period \(T_l \). Hence we perform this analysis on the dynamic sample (see Table 1 for details).

We let our simulation analysis guide our choice of counterfactual strategies. For each drug \(i \), our counterfactual strategy delays entry in all countries where simulations suggest that doing so would result in higher profits. For firms that have more than one drug we simulate multiple strategies where the entry sequences of all but one drugs are held fixed (as if they were owned by another firm).\(^{62}\)

Using these strategies we are able to generate an identified set \(\Psi^I \) that rejects values of \(\psi_{EU10} \) lower than 0.416.

6.3 Upper Bound for the Probability of Idiosyncratic Delays

The intuition for how to recover an upper bound for the probability of an idiosyncratic delay is that this probability cannot be any higher than the overall probability of a delay in the data. Our distributional assumption on the random delay shocks is that in each period the probability of an application being accepted by country \(j \) is \(\psi_j \). Let \(\bar{\psi}_j \) be the probability that product \(j \) will enter in country \(j \) in a given year. This is the combination of the probability that the firm will apply, times the probability of the application being accepted. Hence, for all \(j \), \(\bar{\psi}_j > \psi_j \).

To estimate \(\bar{\psi}_j \) we can simply calculate the probability of a delay by simply using data on approval dates and launch dates: suppose that a product approved in year 0 enters France in year 2. Then we are going to assign an expected probability of entry of \(1/3 \): the product had three opportunities to enter — in years 0, 1, and 2 — and registered one success, in year 2.

Figure 12 plots the coefficients \(\bar{\psi}_j \) for all European countries. We estimate a single coefficient for Eastern Europe for consistency with the moment inequality estimation (see the next section). The range of these parameters varies between 0.2 and 0.6 for Western European countries, while the coefficient for Eastern Europe is around 0.67.

Combined with the our previous upper bound estimate, we can restrict \(\psi_{EU10} \) to the interval \([0.416, 0.669]\).

\(^{62}\)We also tested a variety of simpler strategies, such as applying right away in all countries, or applying a set number of period before observed entry. These strategies yielded looser bounds.
In many cases, estimation using moment inequality precludes the ability to run counterfactuals. In our case however, we are able to simulate an equilibrium strategy under an important alternative reference pricing scenario: the elimination of ERP. In this scenario, regardless of the pricing policy that is implemented as a replacement, the optimal solution is easy to derive: firms no longer have any incentive to delay entry in any country, so they will apply for entry everywhere right away. This scenario gives an idea of the welfare loss from reference pricing in terms of forgone drug-years. We examine this scenario in 7.1 and find that removing ERP could accelerate entry in Eastern European countries by up to 14 months.

The removal of ERP could be hard to implement in practice, as it would require all countries to surrender part of their sovereign power to the European Union. Historically, governments have been reluctant to do so. However we estimate that leaving ERP in place and paying firms to avoid delays would require a relatively small amount of money (around €20 million for the average drug). This solution, which we discuss in 7.2, could be easier to implement than a complete overhaul of the pricing system in each country.

7.1 Delays in the absence of ERP

In the absence of ERP (and assuming that no other policy that limits price discrimination across countries exists), the optimal strategy is for the firm to launch as soon as possible in all countries. Hence, the firm will send entry applications to all countries as soon as the product is approved, and the only delays in the model will arise through the bureaucratic delay channel.

This counterfactual is consistent not only with a situation in which ERP is ruled out by the European Union, but also with any policy that places the responsibility to set prices with a European authority, and out of the hands of individual countries. Many such policies have been indeed suggested as a way to circumvent the effect of reference pricing. For example Towse et al. (2015) suggest that various forms of tiered pricing could be implemented centrally by the European Union to avoid delays in low-income countries. They propose Ramsey pricing and Value-Based Pricing as possible candidates. The implication of our model is that the specific pricing rule does not matter, as long as cross-market externalities are eliminated (this would also involve imposing limits on parallel trade, for example by carving out an exclusion for patent-protected pharmaceuticals). Importantly this also implies that we do not need to rely on our pricing model to work out the implications of this counterfactual. This is crucial as it is quite likely that such a large change in the regulatory environment would also bring about changes in the level and variation of prices across countries that our model might be unable to predict accurately.

Figure 13 shows the range of possible delays in Eastern Europe implied by our identified set $[0.416, 0.669]$ for ψ_{EU10}. The parameter at the upper bound of the interval implies that idiosyncratic delays match observed delays. Under this scenario, the average drug should expect around 2 years of delay in each Eastern European country. At the lower bound of the interval, firms would
instead expect an average delay of around 8-9 months in these countries, a reduction of approxi-
mately 63% in delays. A potentially useful comparison is what would happen if we assigned to
Eastern European countries the same delay parameter as the slowest Western European country,
which is Italy. Italy has a delay probability of 0.590. If $\psi_{EU\text{10}}$ took on this value, delays in the
absence of ERP would fall by 27%, or around 6 months in each country.

7.2 Policy Proposal: Pay for (not) Delay

One of the main obstacles that prevents the implementation of a pricing mechanism without refer-
ence pricing is the political will of EEA Member States. The prerogative of governments to manage
drug pricing independently stems directly from the Treaty of Lisbon, meaning that any action to
remove it would require a complicated bureaucratic process. Moreover, governments tend to be
quite protective of their independence from the central EU government, so efforts to move away
from reference pricing are likely to be met with resistance.

To avoid this problem, we propose an alternative policy that would leave the current pricing
system in place, but provide subsidies for firms that make their products available in peripheral
European countries upon receiving marketing approval. These subsidies could be handed out
by a centralized European agency upon confirmation that an entry application has been sent and
approved for entry in all Eastern European countries (even though we do not observe this infor-
mation in the data, we assume that this agency would have a way to verify the firm’s action).

Our estimates suggest that the overall budget impact of this policy would be small. The av-
erage drug would receive an offer around €20 million in order to induce immediate entry. On
average, during the period between 1995 and 2017, around 27 new drugs received approval in
the EEA. Hence, the overall impact of this subsidy would be around €550 million per year. This
is not a negligible sum, but still represents a very small fraction of the overall budget of the EU,
which in 2016 was around €150 billion. It is also worth noting that from the point of view of a
social planner, the lump sum constitutes a transfer, so any gains from early access, however small,
would improve the overall welfare in the system.

Figure 14 plots a distribution of the cost of reducing delays by 1 country-year for all countries
in Eastern Europe over the range of the identified set of $\psi_{EU\text{110}}$. The purpose of this figure is not to
argue whether paying the subsidy is worth it, but rather to exemplify the kind of tradeoff involved.
A larger probability of idiosyncratic delays implies that subsidies have a smaller impact on overall
delays, hence the cost increases. At the upper bound, all delays are idiosyncratic, and therefore

63 Article 168 of the Treaty on the Functioning of the European Union (i.e. the Treaty of Lisbon) explicitly states that “Union action in the field of public health shall fully respect the responsibilities of the Member States for the definition of their health policy and for the organization and delivery of health services and medical care and the allocation of the resources assigned to them.”

64 This number is the expected profits of the average drug. It is obtained by aggregating across drugs similarly to the way that the expected profit for the moment inequality was built. The only difference is that we used the full sample of 481 drugs to build this estimate.

65 This conclusion might not hold in a model where additional frictions or dynamic considerations exist (e.g a shadow cost of raising governments funds, or dynamic implications on the incentives to invest in R&D). However, the size of the subsidy is small enough that these additional considerations will likely be second-order.
subsidies cannot affect the entry sequence of any drug. However, for more reasonable values of the parameter, the cost to increase access is not prohibitive. If we again assumed that ψ_{EU} is equal to ψ_{ITALY}, then it would cost approximately €43 million to reduce delays by one drug-year in all Eastern European countries. Given that Eastern Europe contains roughly 80 million individuals, this comes at the cost of 50 cents per person.

8 Conclusion and Next Steps

This paper examines the impact of ERP on the strategic delay incentives of pharmaceutical companies. ERP generates complex incentives for firms who might benefit from strategically delaying entry in countries with low willingness to pay for drugs. Using a novel moment inequality approach, we characterize the impact of these policies on launch delays and on firm profits. Our methodology allows us to obtain identification even though the firm’s actions are unobserved, thus contributing to a growing body of literature showing how moment inequalities can make even the most complicated models tractable.

While generally speaking estimation using moment inequalities precludes the ability to run counterfactuals, we are able to to simulate one important scenario: the removal of reference pricing. In this particular case, the solution to the problem is easy to derive: firms no longer have any reason to delay entry in any country, so the optimal strategy is simply to send applications everywhere right away. We find that if ERP were eliminated delays in Eastern Europe would fall by up to 14 months per drug in each Eastern European country.

Policymakers and industry insiders are both aware of the externality generated by ERP, and several proposals to replace reference pricing with alternative systems have been suggested (Kanavos et al., 2011; OECD Health Policy Studies, 2008; Towse et al., 2015; Vogler et al., 2015). Our hope is that the analysis in this paper will contribute to the policy discussion on this important topic. One of our key results is that while the impact on delays is potentially large, profits implications in the current equilibrium are relatively small. We exploit this insight to propose a centralized system of lump-sum subsidies that compensate firms for the profit loss of ERP in exchange for forgoing strategic delays. We believe that this approach is particularly promising, as it would not require any political transfer of power from individual countries to a central authority, and its budget impact would be minimal.

Our analysis also has some limitations. One of these limitations is that our model does not include a source of structural error, such as drug-country-year specific shocks in demand or price that are observed by the firm, but not by the econometrician. As we discuss in Section 5.1, unobservable demand shocks would likely lead us to underestimate the impact of strategic delays. Hence, this omission may lead us to underestimate the impact of reference pricing.

We also assume that our price model predicts prices exactly. Introducing a structural error in the price estimation would create an insurmountable econometric challenge, since this error would propagate through reference pricing channel in ways that would be difficult to account for. One possible avenue to relax this assumption might be to assume that the structural error
on price is known to the firm, but not to foreign governments. This would prevent the error from propagating across countries. However, the intuition behind the model would not change much. This type of error could help justify earlier-than-predicted entry, but the opposite (later-than-predicted entry) is usually much more common in the data.

We assume that firms act as single agents even though our demand and price models imply that the actions of other firms can have an impact on profits. Our demand model implies that entry of a competitor will negatively affect the market shares of all other products within the therapeutic class, and our price function suggests that entry of a competitor may have a negative impact on price. This introduces a certain degree of internal inconsistency in the model, though empirically, these effects may not be large enough to elicit a strategic reaction — in particular, the effect of competitors on price is very noisy according to our estimation results. Allowing for multiple agents is unfortunately not feasible in the current environment, as the expected profits of alternative strategies in the moment inequality can only be computed holding the strategy of other firms fixed. This is a more general problem in the moment inequality literature, which has usually been more successfully applied to single-agent problems, rather than games involving multiple agents.

Finally, there are also elements that we do not model explicitly. We take the regulatory environment as exogenous. Presumably, the government could choose the reference pricing function according to some optimal decision-making criterion. We ignore this possibility here. The question of why reference pricing is effective in lowering prices is also interesting. Experience suggests that governments do not need to resort to ERP if they want to implement price cuts (we observe several instances of temporary price cuts in the data that do not seem to be related to reference pricing). Indeed, there is some evidence that reference pricing is sometimes used only as a pretense for cuts that would have occurred anyway. For example, Greece changed its reference pricing function in 2010 to a formula that resulted in roughly 10-20% lower prices across the board. It is likely that these cuts would have been mandated regardless due to the financial situation of the country at the time. These considerations go beyond the scope of the paper (we believe it is reasonable to assume that these changes are exogenous from the point of view of the firm), but might provide fertile ground for future research.

Another area for future work is the translation of the delay loss generated by ERP into a welfare measure. Throughout the paper, we have focused on launch delays as our main outcome measure, because a reliable measure of welfare is hard to infer from the information available in our data. Translating delays into welfare might require a more sophisticated demand or price model. Alternatively, one could try to obtain data on health outcomes and examine whether the introduction of specific drugs affected mortality rates (see for example Dubois and Kyle, 2016).
REFERENCES

Carone, Giuseppe, Christoph Schwierz, and Ana Xavier, *Cost-containment policies in public pharmaceutical spending in the EU* number September 2012.

Kanavos, Panos, Sotiris Vardoros, Rachel Irwin, Elena Nicod, and Margaret Casson, “Differences in costs of and access to pharmaceutical products in the EU,” Policy Department A - Economic and Scientific Policy, 2011.

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>Main Sample</th>
<th>Dynamic Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td># therapeutic classes</td>
<td>241</td>
<td>109</td>
<td>44</td>
</tr>
<tr>
<td># firms</td>
<td>2,944</td>
<td>168</td>
<td>47</td>
</tr>
<tr>
<td># molecules</td>
<td>6,354</td>
<td>475</td>
<td>86</td>
</tr>
<tr>
<td>Class-firm-mol combinations</td>
<td>55,134</td>
<td>481</td>
<td>87</td>
</tr>
<tr>
<td>Class-firm combinations</td>
<td>375</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Diffusion mean</td>
<td>2.1</td>
<td>20.1</td>
<td>21.3</td>
</tr>
<tr>
<td>Diffusion median</td>
<td>1</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Yearly sales mean</td>
<td>€3,547,665</td>
<td>€115,427,475</td>
<td>€121,977,298</td>
</tr>
<tr>
<td>Yearly sales median</td>
<td>€92,489</td>
<td>€39,214,276</td>
<td>€46,340,438</td>
</tr>
<tr>
<td>Approval Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMA</td>
<td></td>
<td>312</td>
<td>24</td>
</tr>
<tr>
<td>MRP</td>
<td></td>
<td>127</td>
<td>46</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>42</td>
<td>17</td>
</tr>
</tbody>
</table>

This table reports summary statistics for the IMS MIDAS database. The full sample includes all prescription drugs in the data. The main sample includes prescription drugs that satisfy the criteria laid out in section 3.1 on page 11. The dynamic sample includes a subset of main sample drugs whose patent expired by December 31st, 2012. See Section 2.1 for an overview of the marketing approval methods. Yearly sales refers to the entire EEA territory.
Table 2: Price Estimation Results

<table>
<thead>
<tr>
<th>Country</th>
<th>(\ln (\gamma_j))</th>
<th>(\mu_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>-0.099 [-0.134,-0.071]</td>
<td>0.199 [0.022,0.444]</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.123 [-0.156,-0.093]</td>
<td>0.119 [0.010,0.446]</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>-0.230 [-0.317,-0.145]</td>
<td>0.987 [0.432,0.998]</td>
</tr>
<tr>
<td>Denmark(^b)</td>
<td>-0.068 [-0.102,-0.046]</td>
<td>0</td>
</tr>
<tr>
<td>Estonia</td>
<td>-0.170 [-0.380,-0.128]</td>
<td>0.994 [0.249,0.998]</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.126 [-0.165,-0.098]</td>
<td>0.332 [0.018,0.735]</td>
</tr>
<tr>
<td>France</td>
<td>-0.098 [-0.130,-0.061]</td>
<td>0.098 [0.008,0.841]</td>
</tr>
<tr>
<td>Germany(^a,b)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greece</td>
<td>-0.186 [-0.216,-0.035]</td>
<td>0.987 [0.841,0.999]</td>
</tr>
<tr>
<td>Hungary</td>
<td>-0.145 [-0.240,-0.082]</td>
<td>0.991 [0.326,0.998]</td>
</tr>
<tr>
<td>Ireland</td>
<td>-0.089 [-0.127,-0.062]</td>
<td>0.229 [0.018,0.840]</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.191 [-0.221,-0.110]</td>
<td>0.854 [0.219,0.994]</td>
</tr>
<tr>
<td>Latvia</td>
<td>-0.201 [-0.317,-0.151]</td>
<td>0.805 [0.013,0.941]</td>
</tr>
<tr>
<td>Lithuania</td>
<td>-0.204 [-0.359,-0.151]</td>
<td>0.996 [0.014,0.999]</td>
</tr>
<tr>
<td>Luxembourg(^c)</td>
<td>-0.200 [-0.247,-0.176]</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.183 [-0.220,-0.151]</td>
<td>0.293 [0.073,0.826]</td>
</tr>
<tr>
<td>Norway</td>
<td>-0.143 [-0.186,-0.111]</td>
<td>0.846 [0.107,0.981]</td>
</tr>
<tr>
<td>Poland</td>
<td>-0.119 [-0.238,0.025]</td>
<td>0.904 [0.239,0.989]</td>
</tr>
<tr>
<td>Portugal</td>
<td>-0.176 [-0.220,-0.138]</td>
<td>0.093 [0.012,0.842]</td>
</tr>
<tr>
<td>Romania</td>
<td>-0.253 [-0.351,-0.105]</td>
<td>0.994 [0.204,0.999]</td>
</tr>
<tr>
<td>Slovenia(^d)</td>
<td>-0.232 [-0.272,0.204]</td>
<td>/</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.159 [-0.186,-0.131]</td>
<td>0.874 [0.151,0.975]</td>
</tr>
<tr>
<td>Sweden(^b)</td>
<td>-0.102 [-0.131,-0.080]</td>
<td>0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.007 [-0.024,0.032]</td>
<td>0.020 [0.003,0.080]</td>
</tr>
<tr>
<td>UK(^b)</td>
<td>-0.201 [-0.233,-0.179]</td>
<td>0</td>
</tr>
</tbody>
</table>

Controls

<table>
<thead>
<tr>
<th></th>
<th>(\ln (\gamma_j))</th>
<th>(\mu_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log quantity sold</td>
<td>-0.019</td>
<td>[-0.024,-0.017]</td>
</tr>
<tr>
<td>Home-Firm Indicator</td>
<td>0.041</td>
<td>[0.011,0.079]</td>
</tr>
<tr>
<td>At least 1 other molecule in class</td>
<td>-0.043</td>
<td>[-0.079,0.028]</td>
</tr>
<tr>
<td>At least 2 other molecules in class</td>
<td>0.013</td>
<td>[-0.024,0.045]</td>
</tr>
<tr>
<td>At least 5 other molecules in class</td>
<td>-0.029</td>
<td>[-0.063,0.007]</td>
</tr>
<tr>
<td>At least 10 other molecules in class</td>
<td>-0.003</td>
<td>[-0.031,0.016]</td>
</tr>
</tbody>
</table>

\(^a\) The price level is normalized to Germany’s.

\(^b\) Denmark, Germany, Sweden, and the UK do not use reference pricing during the period 2002-2012, so we set \(\mu_j \) to zero.

\(^c\) Luxembourg references the price of the country of origin of the drug. We don’t know country of origin, so we simply assume that \(\mu_j \) is equal to 0.

\(^d\) On occasion, a country’s price level is such that its reference price never binds. In these cases the coefficient is undetermined.

This table reports coefficients from the price estimating equation (equation 10). \(\ln (\gamma_j) \) is the country fixed effect, in log terms, normalized with respect to the coefficient of Germany. \(\mu_j \) represents the weight assigned to the reference price. Values close to 1 mean that reference price is followed closely, while values close to 0 mean that reference price does not matter (\(\mu_j \) is restricted to the unit interval by design). See Section 4.2 for a detailed description of the price function and control variables. Standard errors are calculated using nonparametric bootstrap with sampling at the drug level.
This figure shows the reference baskets and formulas for all European countries. Each row shows the basket of the country in the first column. Grayed-out squares indicate which countries belong to the basket. The sources used to compile the Figure are described in footnote 10 on page 8.
Figure 2: ABACAVIR ENTRY SEQUENCE

Note: This figure plots the entry sequence of the drug for Abacavir (brand name Ziagen, developed and sold by ViiV Healthcare), an antiretroviral therapy used to treat HIV-positive patients. The drug was originally approved in July 1999, using the centralized procedure administered by the EMA. The drug was not available in Latvia and Estonia as of the fourth quarter of 2012, which is the last quarter of available data.
This figure plots the yearly prices and reference prices for Abacavir in France and Germany (Germany does not use reference pricing). France applies ERP only starting 5 years after the product is launched, which in this case happened in early 2001, meaning that ERP would start first in 2005. While price in Germany is relatively constant, the price in France falls after ERP is applied.

This figure plots the yearly prices and reference prices for Abacavir in Switzerland and Greece. Even though both countries use ERP according to our sources, we see that the price in Switzerland seems unaffected by the reference price. The two even appear to diverge after 2007. Price in Greece behaves very differently. The price remains below the reference price until 2010, when Greece implemented a reform of their reference pricing policy that resulted in a lower benchmark. As the reference price falls, so does the price charged for Abacavir. There is some noise in the series because Greece implemented price cuts at various points after the financial crisis of 2007-2008. The price charged in 2002 is also presumably an introductory price, potentially generated by noise or measurement error in the data.
This figure shows the diffusion rate of prescription drugs across European countries at 1 year intervals, for 6 years. We use a balanced sample of 142 drugs that were approved by the EMA on or before December 31st, 2006.
Figure 5: AVERAGE DELAY FROM MARKETING APPROVAL BY COUNTRY

This graph shows the average launch delay in months, from the approval date, conditional on entry, for all European countries. Dark bands represent the overall impact of long-term delays (defined as delays of 4 years or longer). We calculate average delays using all 481 drugs in our main sample. See Table 1 on page 41 for summary statistics of this group of drugs, and section 3.1 on page 11 for a description of how this sample was created.
Figure 6: CORRELATION BETWEEN PRICE LEVEL AND AVERAGE DELAYS BY COUNTRY

This figure plots the relationship between price level average delay in months. Price level is calculated as the country fixed effect from a regression of log price on drug, year, and country fixed effects. The coefficient for Germany was normalized to 0 in this regression. Average delays are the same as in Figure 5. The plot is weighted by population (we use data from 2012).
Figure 7: Change in Prices over Time and Across Countries

(a) Prices in France, Germany, Italy, and Spain

This figure plots average price trends over the life-cycle of a drug in France, Italy, and Spain, relative to Germany. We use a specification that controls for drug fixed effects. For details, please consult section 3.3.

(b) Prices in Denmark, Finland, Norway, and Sweden

This figure plots average price trends over the life-cycle of a drug in Finland, Norway, and Sweden, relative to Denmark. We use a specification that controls for drug fixed effects. For details, please consult section 3.3.
This figure plots the R^2 coefficients from the demand regressions. We estimate 109 regressions, one for each therapeutic class that contains at least one of the products in our main sample.
This figure plots the observed market share of main sample products, against the market share we predict using our demand model.
This figure plots the fraction of drugs for which delaying in each country is optimal. We use a sample of 87 drugs whose patent expires on or before December 31st, 2012. By the time our sample started, in 2002, launches in many countries had already occurred for some of these drugs. Hence, for each country \(j \) we estimated the y-axis variable using the subsample of drugs that had not already entered in country \(j \) before 2002. This implies that the sample used is slightly different for each country.
In this figure we consider a set of strategies where entry in Eastern European countries is delayed for t periods, where t is between 0 and 10. We count the number of drugs for which each strategy is optimal, and plot it in a histogram (the y-axis displays the fraction of drug, rather than the level). The figures shows that for 80% of drugs no delay is preferable, but for 20% of drugs some delay is optimal.
Figure 12: Probability of Overall Delays by Country

In this figure we plot the overall probability of a delay in each country in Europe. We aggregate Eastern European countries as a whole for consistency with the moment inequality estimation (details in Section 6.2). The plot includes 95% confidence interval bands for each parameter.
In this figure we plot the range of possible delays in Eastern European countries for the identified set of possible delay parameters. The y-axis reports the total delay of the average drug among all Eastern European countries. The upper bound of the interval returns the same average delay that is observed in the data (approximately 16 years, or 2 years per country), because it is calculated to match the overall probability of a delay.
Figure 14: Cost of Reducing Delays by 1 Drug-Year in Eastern European Countries

In this figure we plot the range estimate of the cost of reducing delays by 1 drug-year in all 8 Eastern European countries in our sample. The y-axis is truncated above because the curve tends to infinity as ψ_{EU10} approaches 0.669, which is the value for which all delays are idiosyncratic, and therefore subsidies cannot change the delay profile.
Appendices

A Theoretical Derivations

In this Appendix we derive some results from the main body of the paper, and present a few complementary results that are not crucial to the results of the paper, but add robustness to the framework we use.

A.1 Logit Model

The utility of consumer ℓ, in country j, from consuming drug i (molecule m), belonging to therapeutic class κ, in year t is given by

$$u_{i(m,\kappa)(\ell)(j)t} = \delta_{ijt} + (\zeta_{m,\kappa} + (1 - \sigma_{\kappa}) \varepsilon_{i\ell t})$$

where $\zeta_{m,\kappa}$ is common for all $i \in m$, and distributed according to the unique distribution such that if $\varepsilon_{i\ell t}$ is an extreme value random variable, then so is $\zeta_{g} + (1 - \sigma) \varepsilon_{i\ell t}$ (Cardell, 1997). δ_{ijt} is parametrized as in Equation 2.

With this setup, one can show that the country j market share of i within subset set m is given by

$$s_{ijt}^m = \frac{\exp \left(\frac{\delta_{ijt}}{1 - \sigma_{\kappa}} \right)}{D_m(X_{mt})}$$

(A.1)

where

$$D_m(X_{mt}) = \sum_{k \in m} \exp \left(\frac{\delta_{kj}}{1 - \sigma_{\kappa}} \right)$$

and the market share of set m within the overall market is given by

$$s_{m/jt} = \frac{D_m(X_{mt})^{1 - \sigma_{\kappa}}}{1 + \sum_{h \in G_{\kappa}} D_h(X_{ht})^{1 - \sigma_{\kappa}}}$$

(A.2)

where G_{κ} is the set of all molecules in class κ. Hence, the overall market share of drug i is

$$s_{ijt} = \frac{\exp \left(\frac{\delta_{ij}}{1 - \sigma_{\kappa}} \right) D_m(X_{mt})^{-\sigma_{\kappa}}}{1 + \sum_{h \in G_{\kappa}} D_h(X_{ht})^{1 - \sigma_{\kappa}}}$$

(A.3)

Derivation of the estimating equation Notice that the share of the outside option can be expressed as

$$s_{0jt} = \frac{1}{1 + \sum_{h \in G_{\kappa}} D_h(X_{ht})^{1 - \sigma_{\kappa}}}$$

(A.4)
Consider the log ratio of the market share of item i in group m to the outside good. According to the model, this can be expressed as

$$\ln (s_{ijt}) - \ln (s_{0jt}) = \left(\frac{\delta_{ijt}}{1 - \sigma_{\kappa}} \right) - \sigma_{\kappa} \sigma \ln \left(D_m (X_{mt}) \right)$$

Combining equations A.2 and A.4 we also obtain

$$\ln \left(D_m (X_{mt}) \right) = \ln \left(\frac{s_m}{s_{0jt}} \right) - \ln (s_{0jt})$$

Hence we can write

$$\ln (s_{ijt}) - \ln (s_{0jt}) = \frac{\delta_{ijt}}{1 - \sigma_{\kappa}} - \frac{\sigma_{\kappa}}{1 - \sigma_{\kappa} \sigma} \left(\ln \left(\frac{s_m}{s_{0jt}} \right) - \ln (s_{0jt}) \right)$$

which implies

$$(1 - \sigma_{\kappa}) \left(\ln (s_{ijt}) - \ln (s_{0jt}) \right) = \delta_{ijt} - \sigma_{\kappa} \left(\ln \left(\frac{s_m}{s_{0jt}} \right) - \ln (s_{0jt}) \right)$$

$$\implies (1 - \sigma_{\kappa}) \ln (s_{ijt}) - \ln (s_{0jt}) = \delta_{ijt} - \sigma_{\kappa} \ln (s_{m/ij})$$

$$\implies \ln (s_{ijt}) - \ln (s_{0jt}) = \delta_{ijt} + \sigma_{\kappa} \ln \left(\frac{s_{ijt}}{s_{m/ij}} \right)$$

(A.5)

A.2 Proof of Theorem 1

To prove the result of the theorem, we first prove the following Lemma:

Lemma 3. Denote

$$\lambda_{ijt} = \gamma_j \exp \left(\beta Z_{ijt-1} \right)$$

and let $\lambda_{it} = \{ \lambda_{ijt} \}_{j \in \bar{N}_i}$. Then, there exists a set of weights $\omega_{ijk} \left(S_{t-1}, \{ \lambda_{it} \}_{t=1}^t \right)$ such that for any drug i, country j, and year t

$$p_{ijt}^{\text{ref}} = \sum_{\tau=1}^t \sum_{k \in \bar{R}_{jt}} \omega_{i,jk} \left(S_{t-1}, \{ \lambda_{it} \}_{t=1}^t \right) p_{k,t-1}^{\text{gov}} \left(D_{ij} \left(\bar{s}_{jt} \right) \right)$$

(A.6)

Proof. This Lemma states that we can write p_{ijt}^{ref} as a linear function of government prices in all previous periods, using weights that depend only on the current entry sequences of all firms and structural parameters of the model other than the drug fixed effect. We use induction over t, where t indexes time starting with the year after the product was first approved (in the year of approval there cannot be any reference prices).

Consider $t = 1$. We want to show that for all j,

$$p_{ijt}^{\text{ref}} = \sum_{k \in \bar{R}_{jt}} \omega_{ij1} \left(S_0, \lambda_{i0} \right) p_{k,0}^{\text{gov}} \left(D_{ij1} \left(\bar{s}_{j1} \right) \right)$$

(A.6)
The definition of the reference price is

\[p_{ij1}^{\text{ref}} (E_{i0}, D_{ij1} (\bar{x}_{j1})) = F_{ij1}^{\text{ref}} \left(\left\{ p_{ik0} (D_{ij1} (\bar{x}_{j1})) \right\}_{k \in (R_{j1} \cap E_{i0})} \right) \]

Since reference pricing cannot be applied at time \(t = 0 \), the prices that can be referenced must be government prices:

\[p_{ik0} (D_{ij1} (\bar{x}_{j1})) = p_{ik0}^{\text{gov}} (D_{ij1} (\bar{x}_{j1})) \]

Then, if \(F_{ij1}^{\text{ref}} \) is a linear function, like an average, equation A.6 is satisfied for constant weights. \(F_{ij1}^{\text{ref}} \) can also be the minimum function, or the average of the three lowest prices, which are not linear.\(^{66}\) These functions however, can be expressed as weighted averages, where the weights will depend on the relative ranking of the volume adjusted country government prices, which in turn will depend on \(\lambda_{ij0} \).

In these cases weights can be constructed as follows. Recall that \(E_{i0} = \{ j : s_{j0} \neq 0 \} \) is the set of countries where the product is available in period 0. This set can be obtained from information contained in \(S_0 \). We assume WLOG that \(E_{i0} \) is not empty (if it is, then there can be no possible reference and the case of \(t = 1 \) is identical to \(t = 0 \)). Let \(n_k \) denote the rank of \(k \in E_0 \) in increasing order of \(\lambda_{ij1} \). In other words, if \(n_k = 1 \), then

\[\lambda_{ik1} = \min \{ \lambda_{i\ell 1} : \ell \in (R_{j1} \cap E_0) \} \]

and, more generally,

\[\lambda_{ik1} = \min \{ \lambda_{i\ell 1} : \ell \in (R_{j1} \cap E_0) \wedge n_\ell \geq n_k \} \]

Hence, the country that ranks first is the one with the lowest government price, the one that ranks second has the second-lowest price, etc. Finally, let \(m_{ij1} = \min \{|E_0|, 3\} \), where the operator \(|\cdot|\) indicates the cardinality of a set.

If \(F_{ij1}^{\text{ref}} \) is the average of the three lowest prices, the weights can be written as

\[\omega_{ijk1} (S_0, \lambda_{i0}) = \begin{cases} 1 & \text{if } n_k = 1 \\ 0 & \text{otherwise} \end{cases} \]

If \(F_{ij1}^{\text{ref}} \) is the average of the three lowest prices instead, construct the weights as

\[\omega_{ijk1} (S_0, \lambda_{i0}) = \begin{cases} \frac{1}{m_{ij0}} & \text{if } n_k \leq m_{ij0} \\ 0 & \text{otherwise} \end{cases} \]

These weights are written as a function of \(S_0 \) and \(\lambda_{i0} \) only, hence they satisfy the premise of the proposition.

\(^{66}\)See Figure 1.
To conclude the proof, suppose that the assertion of the proposition is true for \(\tau \in \{1, \ldots, t - 1\} \), and show that it must hold for \(t \) as well. This is easy to prove. We can walk through the same exact steps as we did for \(t = 1 \), but substituting \(p_{ikt-1} \left(E_{it-1}, D_{ijt} (\xi_{jt}) \right) \) for \(\lambda_{ij} \). This will give us weights for \(p_{ijt}^{\text{ref}} \) as a linear function of the prices in the previous period. By construction, prices in the previous period are a weighted average of government prices and reference prices. The reference prices are themselves linear functions of adjusted government prices by the inductive assumption. Since the sum of linear functions is also linear, the proposition must hold for period \(t \) as well.

The Lemma gives us a way to write the reference price as a weighted average of government prices. Since government prices are a multiplicative function of \(\theta_i \), so are reference prices. Hence we can write

\[
p_{ijt}^{\text{ref}}(\cdot) = \tilde{p}_{ijt}^{\text{ref}}(\cdot) \cdot \theta_i
\]

where \(\tilde{p}_{ijt}^{\text{ref}} \) is not a function of \(\theta_i \). Then, we can write

\[
p_{ijt}(\cdot) = \begin{cases}
\theta_i \gamma_j \cdot \exp \left(\beta Z_{ijt} + \beta_D \ln \left(D_{ijt} \right) \right) & \text{if } p_{ijt}^{\text{ref}}(\cdot) \geq p_{ijt}^{\text{gov}}(\cdot) \\
\theta_i \gamma_j \cdot \exp \left(\beta Z_{ijt} + \beta_D \ln \left(D_{ijt} \right) \right) + \mu_j \tilde{p}_{ijt}^{\text{ref}}(\cdot) \theta_i & \text{if } p_{ijt}^{\text{ref}}(\cdot) < p_{ijt}^{\text{gov}}(\cdot)
\end{cases}
\]

which shows that \(p_{ijt}(\cdot) \) is a multiplicative function of \(\theta_i \). Hence, when we consider \(\frac{p_{ijt}}{\tilde{p}_{ijt+1}} \), \(\theta_i \) will appear in both the denominator and the numerator and we can eliminate it, giving us the result in equation 9.

A.3 Foundations for the Price-Setting Equation

In the main body of the paper we do not provide a micro foundation of the price setting equation from a utility- or revenue-based optimization model. The characteristics of such a model are less relevant for our paper. However, in this section we provide two possible sets of assumptions that could justify an estimation equation identical to the one we use.

Foundations as a static Nash Bargaining Model

We assume that the firm and the government play a Nash Bargaining game. The game is repeated every period, but for simplicity the two parties only split the static welfare gains from the current period. In reality, prices impose dynamic constraints through reference pricing that both agents should take into account. To eliminate these dynamic considerations one could assume that the government is a myopic agent and that the firm’s bargaining unit is only tasked with carrying out the negotiation, without concerns for the future ramifications of the agreed-upon price.\(^{67}\)

\(^{67}\)There are several reasons why short-term considerations could in fact play a major role for most government agencies. First, the main goal of pharmaceutical agencies is to keep spending within the limits of their budget, which is
The equilibrium price in a standard Nash Bargaining model is given by

\[p^* = \arg \max_p [\Delta W_{ijt}]^{b_j} \times [\Delta \Pi_{ijt}]^{1-b_j} \]

where \(\Delta W_{ijt} \) represents the change in the welfare of the government from having drug \(i \) available, \(\Delta \Pi_{ijt} \) represents the incremental change in profits, and \(b_j \) is the bargaining power of country \(j \). Notice that the interpretation of \(\Delta W_{ijt} \) is not necessarily welfare, but could more generally be described as the objective function of the government agent tasked with completing the negotiation.

Under our assumptions of static bargaining, \(\Delta \Pi_{ijt} \) is simply the potential profits in country \(j \), and since demand is price inelastic, we can divide through by demand to recast the problem as a negotiation over the unit price of the product (instead of total profits). We abstract away from marginal costs of production since for brand drugs they are a negligible fraction of prices. The simplified problem can be written as

\[p^* = \arg \max_p [\Delta w_{ijt} - p]^{b_j} \times [p]^{1-b_j} \]

where the interpretation of \(\Delta w_{ijt} \) is the average change in the welfare function from obtaining an additional unit of drug \(i \). The standard Nash bargaining solution, can then be written as

\[p^* = \Delta w_{ijt} (1 - b_j) \]

This price denotes the equilibrium in the absence of reference pricing, and represents the government price \(p^\text{gov}_{ijt} \).

To account for the impact of reference pricing we propose that the government can negotiate more effectively by eliciting a signal about what prices are charged abroad. We incorporate this possibility in the model by assuming that the signal (i.e. the reference price) affects the bargaining weight assigned to the government. The reference price \(p^\text{ref}_{ijt} \) is calculated as described in the main body of the paper.\(^{68} \) Given \(p^\text{ref}_{ijt} \), we write the bargaining weight of the government as

\[B_{ij} \left(p^\text{ref}_{ijt} \right) = b_j + (1 - b_j) \mu_j \left(1 - \frac{p^\text{ref}_{ijt}}{p^\text{gov}_{ijt}} \right) \cdot I \left\{ p^\text{ref}_{ijt} < p^\text{gov}_{ijt} \right\} \]

where \(p^\text{gov}_{ijt} = \Delta w_{ijt} (1 - b_j) \) is a function of model parameters that reflects the price that the government would have obtained without using reference pricing. We define the bargaining weight of the firm as \(1 - B_{ij} \left(p^\text{ref}_{ijt} \right) \).

\(^{68}\)As a side note, the reference price does not necessarily need to be linked to other prices, but can be anything else that might affect negotiations.

\(^{68}\)As a side note, the reference price does not necessarily need to be linked to other prices, but can be anything else that might affect negotiations.
The function $B_{ij}(\cdot)$ has several attractive properties. First, it reduces to the base case whenever $p_{ij}^\text{ref} < p_{ij}^{\text{gov}}$. This has the intuitive implication that observing a reference price that is higher than the country’s own internal benchmark does not affect negotiations. Second, the bargaining weight is inversely proportional to the reference price, meaning that a lower reference price lets the government extract a greater discount. Third, as long as $\mu_j \in (0, 1)$ the bargaining weight is also lies on the unit interval, which insures an interior solution for the first-order condition.

The first-order condition of the Nash Bargaining problem with the specified bargaining weights is

$$[p] : \quad (\Delta w_{ijt} - p)^{-1+b+\mu_j-b\mu_j - \frac{\mu_j p_{ij}^\text{ref}}{\Delta w_{ijt}}} \cdot \left((1-b_j)(1-\mu_j) \Delta w_{ijt} + \mu_j p_{ij}^\text{ref} - \Delta w_{ijt} \right) p^{-b_j(1-\mu_j) + \mu_j \left(1 - \frac{p_{ij}^\text{ref}}{\Delta w_{ijt}} \right)} = 0$$

and has three roots:

$$p_1^* = 0$$
$$p_2^* = \Delta w_{ijt}$$
$$p_3^* = (1-\mu_j)(1-b_j) \Delta w_{ijt} + \mu_j p_{ij}^\text{ref}$$

Notice that $p_{ij}^\text{ref} \leq (1-b_j) \Delta w_{ijt}$ whenever the reference price binds. Hence, $p_1^* < p_3^* < p_2^*$. The second-order condition is given by

$$\text{SOC} : \quad p \left(\Delta w_{ijt} (1-b_j)(1-\mu_j) + \mu_j p_{ij}^\text{ref} \right) \left((1-b_j)(1-\mu_j) + \mu_j \left(p_{ij}^\text{ref} - \Delta w_{ijt} \right) \right) \quad \text{and, for} \quad p \in (0, \Delta w_{ijt})$$

and is proportional to

$$\text{SOC} \propto \left(\Delta w_{ijt} (1-b_j)(1-\mu_j) + \mu_j p_{ij}^\text{ref} \right) \left(-b_j \Delta w_{ijt} (1-\mu_j) + \mu_j \left(\Delta w_{ijt} \right) \right) < 0$$

Hence the objective function is maximized for $p = p_3^*$. The two other roots of the first-order condition are also roots for the second-order condition, therefore they represent points of inflection.

The final solution to this bargaining problem is therefore made up of two equations:

$$p_{ijt} = \begin{cases}
(1-b_j) \Delta w_{ijt} & \text{if } p_{ij}^\text{ref} \geq (1-b_j) \Delta w_{ijt} \\
(1-\mu_j)(1-b_j) \Delta w_{ijt} + \mu_j p_{ij}^\text{ref} & \text{if } p_{ij}^\text{ref} < (1-b_j) \Delta w_{ijt}
\end{cases}$$
This solution will have the same form of our estimating equation as long as \((1 - b_j) \Delta w_{ijt} \) can be written as a function of the observables we have included in our parametric function for the government price.

A.4 Proof of Theorem 2

To prove the theorem we will rely on the strong law of large numbers applied to non-identical, independent random variables. For this reason it will be useful to define the payoff of firm \(l\) as a random variable. We will then show that the set of these random variables (one for each firm \(l\)) satisfies the Kolmogorov criterion, which in turn implies the strong law of large numbers.

Let \(\tilde{V}_{lt}(A_{lt}; S_{lt-1}, S_{l-1})\) denote the payoff of the firm starting in period \(t\), conditional on the value of state variable in period \(t - 1\) and on firm \(l\) following strategy \(A_{lt}\). Note that by definition, \(\mathbb{E}[\tilde{V}_{lt}(A_{lt}; S_{lt-1}, S_{l-1})] = \tilde{V}_t(A_{lt}; S_{lt-1}, S_{l-1})\).

For the proof of the Theorem we need the following Lemma and Corollary.

Lemma 4. Let \(\Pi(S_t, S_{-t})\) be defined as in equation 8. Then \(\Pi(S_t, S_{-t})\) is finite.

Proof. We prove that \(\Pi_t(S_t, S_{-t})\) is finite by showing that period profits are bounded. The realization of period profits depends on \(\xi_{jt}\). Define

\[
\Pi_t(S_t, S_{-t}, \xi_{jt}) = \sum_{i \in I} \sum_{j \in S_{ij}} p_{ijt}(S_{lt-1}, S_{-lt}, D_{ijt}(\xi_{jt})) \cdot D_{ijt}(S_{-lt}, \xi_{jt})
\]

For any given product \(i\) and country \(j\), we can write demand as

\[
D_{ijt}(S_{-lt}, \xi_{jt}) = MS_{jt} \cdot \frac{\exp(\alpha_{ij} + \beta_j age_{jt} + \eta_{ij} NF_{ijt} + \xi_{jt})}{1 + \sum_{\ell \in E_{-jt}} \exp(\alpha_{ij} + \beta_j age_{jt} + \eta_{ij} NF_{ijt} + \xi_{jt})}
\]

where \(MS_{jt}\) is the market size in country \(j\) in period \(t\). Hence, \(D_{ijt}(S_{-lt}, \xi_{jt}) \in (0, MS_{jt})\).

Price is bounded above by the government price:

\[
p_{ijt}(S_{lt-1}, S_{-lt}, D_{ijt}(\xi_{jt})) \leq p_{ijt}^{gov}(S_{lt-1}, S_{-lt}, D_{ijt}(\xi_{jt}))
\]

Moreover, using the definition of government price in equation 4 we can rewrite

\[
p_{ijt}^{gov}(S_{lt-1}, S_{-lt}, D_{ijt}(\xi_{jt})) \cdot D_{ijt}(\xi_{jt}) = p_{ijt}^{gov}(S_{lt-1}, S_{-lt}, 1) \cdot (D_{ijt}(\xi_{jt}))^{1 + \beta_D}
\]

Hence, the period payoff of a single drug in any given country is bounded above by

\[
p_{ijt}^{gov}(S_{lt-1}, S_{-lt}, 1) \cdot (MS_{jt})^{1 + \beta_D}
\]

and bounded below by 0. This implies that the period payoff in any given country and period is finite, and therefore \(\Pi_t(S_t, S_{-t})\) is also finite. □
Corollary 5. \(\tilde{V}_{lt} (A_{lt}; S_{lt-1}, S_{-lt-1}) \) has finite variance.

Proof. This lemma follows directly from Lemma 4. \(\tilde{V}_{lt} (A_{lt}; S_{lt-1}, S_{-lt-1}) \) is defined as the discounted sum of the expected period payoffs. By Lemma 4 the expected period payoffs are finite. Let

\[
\Pi_{UB} = \max_{(S_l, S_{-l})} \Pi_{t} (S_l, S_{-l})
\]

Then, the support of \(\tilde{V}_{lt} (A_{lt}; S_{lt-1}, S_{-lt-1}) \) is bounded above by \((T - t) \cdot \Pi_{UB} < \infty\).

Since \(\tilde{V}_{lt} (A_{lt}; S_{lt-1}, S_{-lt-1}) \) is also bounded below by 0, it must have finite variance.

At this point we are ready to prove Theorem 2.

Proof of Theorem 2. For any given drug \(i \), \(V_t (S^o_i, S^o_{-i}) \) represents a draw from the distribution of \(\tilde{V}_{lt} (A^*_{lt}; S_{lt-1}, S_{-lt-1}) \). By Corollary 5, \(\text{Var} (\tilde{V}_{lt} (A^*_{lt}; S_{lt-1}, S_{-lt-1})) < \infty \). Moreover, the random variables \(\tilde{V}_{lt} (A^*_{lt}; S_{lt-1}, S_{-lt-1}) \) are independently distributed. Thus, our premise satisfies the Kolmogorov criterion, which implies that the strong law of large numbers applies to the sequence of random variables \(\tilde{V}_{lt} (A^*_{lt}; S_{lt-1}, S_{-lt-1}) \), and the sample average of the realized payoffs will converge to the average of their expected values. Formally, for any \(\epsilon > 0 \), we can find \(M' \) such that

\[
\frac{1}{M} \sum_{i=1}^{M} (V_t (S^o_i, S^o_{-i}) - \tilde{V}_t (A^*_{lt}; S_{lt-1}, S_{-lt-1})) < \epsilon
\]

for all \(M > M' \). This concludes the proof.