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This document is a supplemental appendix to Campbell, Pflueger, and Viceira
(2019). The contents of this appendix are as follows:

1. Section A provides additional empirical results in support of the assumed link
between consumption and the output gap.

2. Section B derives the log-linear expansion for habit around the steady-state.

3. Section C derives the solution for the macroeconomic dynamics in a simplified
special case and the full model.

4. Section D describes the model solution for both macroeconomic dynamics and
asset pricing moments.

5. Section E describes in detail the implementation of the numerical model solu-
tion.

6. Section F provides details for the econometric methodology. Among other de-
tails, it describes how we estimate orthogonalized macroeconomic impulse re-
sponses.

7. Section G provides additional model results, in particular impulse responses
when setting the new parameters θ1 and θ2 to zero.

A Additional empirical results

Figure A.1 shows that equation (2) in the main paper is a close description of con-
sumption and output gap data. We regress stochastically detrended consumption
onto the output gap:

ĉt = b0 + bxxt + εt. (A.1)

We set the smoothing parameter to φ = 0.93 (half-life 2.4 years) to maximize the
correlation between ĉt and the output gap. Figure A.1 shows that ĉt and its fitted
value from (A.1) track each other through different macroeconomic regimes, with a
correlation of 77%. The estimated slope coefficient bx is statistically indistinguishable
from one.

To test whether the functional form of equation (2) in the main paper is actually
a good description of the data, we add inflation and the nominal Federal Funds rate
as additional controls to (A.1). We find that neither of these variables enter in a
statistically or economically significant manner.

Specifically, our regression results are as follows. “Fitted (Output)” is the fitted
value from the quarterly regression ĉt = 11.73

(0.27)
+ 0.88

(0.17)
xt + εt; “Fitted (Output, Infla-

tion)” is the fitted value from the quarterly regression ĉt = 11.72
(0.45)

+0.88
(0.17)

xt+0.00
(0.12)

πt+εt;
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Figure A.1: Stochastically Detrended Consumption vs. Output Gap
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This figure plots the time series of stochastically exponentially detrended consumption ĉt = ct−(1−
φ)[ct−1 + φct−2 + ...]. The smoothing parameter φ = 0.93, corresponding to a half-life of 2.4 years,
is chosen to maximize the univariate correlation between the log real output gap and exponentially
detrended consumption. “Fitted(Output)” is the fitted value from the quarterly regression ĉt =
11.73
(0.27)

+ 0.88
(0.17)

xt + εt; “Fitted(Output, Inflation)” is the fitted value from the quarterly regression

ĉt = 11.72
(0.45)

+ 0.88
(0.17)

xt+ 0.00
(0.12)

πt+εt; “Fitted(Output, Fed Funds)” is the fitted value from the quarterly

regression ĉt = 11.16
(0.54

+ 0.86
(0.14)

xt + 0.09
(0.08)

it + εt. All regressions use the full sample 1979Q3-2011Q4 and

show Newey-West standard errors with four lags in parentheses. Data for consumption, the output
gap, inflation, and the Federal Funds rate are as described in section 4.1 in the main paper.

“Fitted (Output, Fed Funds)” is the fitted value from the quarterly regression ĉt =
11.16
(0.54

+ 0.86
(0.14)

xt + 0.09
(0.08)

it + εt. Newey-West standard errors with four lags are shown in

parentheses and all regressions are for the full sample 1979Q3-2011Q4.

B Loglinear habit dynamics around steady state

This section derives the loglinear dynamics of the habit stock. We use a first order
approximation around the steady state St = S̄ to write log habit ht as a linear
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function in ct, ct−1, ... and Et∆ct+1, Et−1∆ct, .... Equation (8) in the paper models
how habit adjusts to consumption implicitly by modeling the evolution of the log
surplus consumption ratio. In order to solve for log habit we need an approximate
relation between log habit, log consumption, and the log surplus consumption ratio.

Defining ŝt = st − s̄, we develop a first-order Taylor expansion of ŝt in terms of
ct − ht. We take the first derivative of ŝt with respect to ct − ht:

dŝt
d(ct − ht)

=
d

d(ct − ht)

(
log

(
1− exp(−(ct − ht))

S̄

))
, (B.1)

=
S̄

1− exp(−(ct − ht))
exp(−(ct − ht))

S̄
, (B.2)

= −
(

1− 1

St

)
, (B.3)

so at the steady state this first derivative equals:

dŝt
d(ct − ht)

∣∣∣∣
St=S̄

= −
(

1− 1

S̄

)
. (B.4)

The first order Taylor expansion for ŝt in terms of ct − ht around the steady-state
therefore equals (up to constant):

ŝt ≈
(

1− 1

S̄

)
(ht − ct) , (B.5)

or

ht ≈ ct +
ŝt

1− 1
S̄

. (B.6)

6

The relation (B.6) is approximate rather than exact because we ignore second-
and higher-order terms in (ct − ht).

Because λ(s̄) = 1
S̄
− 1 and the dynamics for log surplus consumption are given

by equation (8) in the main paper, the approximate dynamics for ŝt near the steady
state are given by:

ŝt+1 ≈ θ0ŝt + θ1xt + θ2xt−1 +

(
1

S̄
− 1

)
εc,t+1. (B.7)

Equation (B.7) is approximate rather than exact because we have replaced the exact
sensitivity function λ(st) by its steady state value λ(s̄) = 1

S̄
− 1.
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Combining (B.6) with (B.7) gives the approximate dynamics for log habit:

ht+1 ≈ ct+1 +
1

1− 1
S̄

ŝt+1, (B.8)

≈ ct+1 +
1

1− 1
S̄

(
θ0ŝt + θ1xt + θ2xt−1 +

(
1

S̄
− 1

)
εc,t+1

)
, (B.9)

≈ ct+1 − εc,t+1 + θ0 (ht − ct) +
θ1

1− 1
S̄

xt +
θ2

1− 1
S̄

xt−1, (B.10)

≈ θ0ht + (1− θ0)ct + Et∆ct+1 −
θ1xt + θ2xt−1

1
S̄
− 1

, (B.11)

where we use ∆ct+1 = ct+1 − ct to denote the change in log consumption from time t
to time t+ 1. We now iterate (B.11) to obtain:

ht+1 ≈
∞∑
j=0

θj0

(
(1− θ0)ct−j + Et−j∆ct−j+1 −

θ1xt−j + θ2xt−j−1

1
S̄
− 1

)
, (B.12)

≈ (1− θ0)
∞∑
j=0

θj0ct−j +
∞∑
j=0

θj0Et−j∆ct−j+1 −
θ1

1
S̄
− 1

xt (B.13)

−θ0θ1 + θ2

1
S̄
− 1

∞∑
j=0

θj0xt−j−1. (B.14)

Substituting in for xt from equation (2) in the main paper expresses habit in terms
of lags of consumption and lags of expected consumption growth:

ht+1 ≈ (1− θ0)
∞∑
j=0

θj0ct−j +
∞∑
j=0

θj0Et−j∆ct−j+1 (B.15)

− θ1

1
S̄
− 1

(
ct − (1− φ)

∞∑
i=0

φict−1−i

)
(B.16)

−θ0θ1 + θ2

1
S̄
− 1

∞∑
j=0

θj0

(
ct−j−1 − (1− φ)

∞∑
i=0

φict−j−2−i

)
. (B.17)

When θ1 = θ2 = 0 (the Campbell-Cochrane case), expression (B.17) shows that
log habit is approximately an exponentially-weighted moving average of lagged log
consumption and lagged consumption growth expectations. If expected consumption
growth is constant, as is the case in Campbell and Cochrane (1999), the expected
consumption growth terms drop out and the approximate habit dynamics are simply
an exponentially-weighted moving average of lagged consumption.

Because 1
1
S̄
−1

> 0 and 1 − φ is close to zero, a negative value for θ1 increases the

dependence of habit on the first and second lags of consumption, while a positive value
for θ2 decreases the dependence on the second lag of consumption. Our calibration
has −θ1 > 0, and θ1(1−φ)− (θ0θ1 +θ2) > 0. Equation (B.17) then implies that habit
loads more on the first and second lags of consumption compared to the Campbell-
Cochrane case.
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C Derivation of the macroeconomic solution

This appendix describes how we solve for the equilibrium dynamics of the output
gap. Our goal is not to present the most general solution method or to provide
an innovative solution. To make this clear, we have switched to solving the model
via the standard Blanchard and Kahn (1980) methodology for rational expectations
models. We previously used the generalized eigenvector method of Uhlig (1999) to
solve for macroeconomic dynamics. Switching to the Blanchard and Kahn (1980)
method leaves all our numerical model moments unchanged.

We are clear about the fact that we encounter the issue of multiple equilibria
and we do not resolve this issue. Instead, we pick one equilibrium from those with
the minimum number of lagged state variables and without sunspots. Our goal is
to understand the asset pricing implications of consumption-based habit formation
preferences with different macroeconomic dynamics and we think that this central
point is not specific to a selected equilibrium.

To clarify our solution methodology we look at a particularly simple special case,
where the simple analytic expressions can be found via the method of undetermined
coefficients. The main difference in the solution technique for the full model is that
a simple analytic expression for the lead-lag coefficients is no longer available. We
therefore use the standard Blanchard and Kahn (1980) method to solve for the lead-
lag coefficients. Both the special case and the full model have analytic expressions
for the output gap innovation.

One important question is whether VAR(1) equilibrium dynamics for the output
gap can be consistent with the loglinear macroeconomic Euler equation, which con-
tains two lags of the output gap. Both in the special case and in the full model,
we demonstrate that our solution for the lag coefficients and the output gap innova-
tion takes exactly the form required to be consistent with the loglinear macro Euler
equation (equation (17) in the main paper).

C.1 Simplified special case

We consider a special case, that has a particularly simple solution. We make the
following two simplifying assumptions:

πt = 0, (C.1)

it = vt, (C.2)

where vt is an iid shock. To simplify the algebra, inflation is assumed to equal zero
and the nominal interest rate follows an iid process. This is a special case of the
VAR(1) dynamics for inflation and the nominal short rate assumed in the paper.
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Substituting the Fisher equation rt = it − Etπt+1 into equation (17) in the main
paper shows that the output gap satisfies the forward- and backward-looking Euler
equation:

xt =
1

φ− θ1

Etxt+1 +
θ2

φ− θ1

xt−1 −
1

γ(φ− θ1)
(it − Etπt+1). (C.3)

Plugging in the simplifying assumptions (C.1) and (C.2) turns the Euler equation
into:

xt =
1

φ− θ1

Etxt+1 +
θ2

φ− θ1

xt−1 −
1

γ(φ− θ1)
vt. (C.4)

C.1.1 Method of undetermined coefficients

For the special case, we can solve the model via the method of undetermined coeffi-
cients. We start by guessing that the output gap follows the AR(1) dynamics:

xt = bxxxt−1 + ux,t, (C.5)

where bxx is an unknown constant and ux,t is an iid shock. Equation (C.5) is the
natural analogue to equation (25) in the main paper for the special case (C.1) and
(C.2).

Substituting the guess (C.5) into the Euler equation (C.4) gives:

xt =
1

φ− θ1

bxxxt +
θ2

φ− θ1

xt−1 −
1

γ(φ− θ1)
vt. (C.6)

Re-arranging (C.6) gives:

xt =
θ2

φ− θ1 − bxx
xt−1 −

1

γ(φ− θ1 − bxx)
vt. (C.7)

Comparing (C.7) and (C.5) shows that there is a solution of the form (C.5) provided
that we can find a coefficient bxx such that:

bxx =
θ2

φ− θ1 − bxx
. (C.8)

Equivalently, bxx must satisfy the quadratic equation:

b2
xx + bxx (θ1 − φ) + θ2 = 0. (C.9)

Because the quadratic equation (C.9) may have zero, one, or two real-valued solutions,
there may or may not exist a real-valued solution of the form (C.5). If a real solution
for bxx exists, it is given by:

bxx = −θ1 − φ
2
±

√(
θ1 − φ

2

)2

− θ2. (C.10)
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From now on we assume that
(
θ1−φ

2

)2−θ2 ≥ 0, so there exists a real-valued solution of
the form (C.5). This is consistent with our treatment in the paper, where we exclude
regions of the parameter space, where there is no real-valued VAR(1) solution. When
there exists a real-valued solution for bxx, there may exist more than one. For the
current argument, it does not matter which one we pick. So, let’s say that we have a
procedure in place that picks one solution for bxx.

We next obtain an analytic expression for the output gap innovation ux,t ≡ xt −
Et−1xt in terms of the shock vt. Comparing (C.7) and (C.5) shows that for a given
coefficient bxx the output gap innovation equals:

ux,t = − 1

γ(φ− θ1 − bxx)
vt. (C.11)

C.1.2 Consistency with macroeconomic Euler Equation

The analytic solution in the special case clarifies why there may exist an AR(1)
solution for the output gap, even though the Euler equation contains two lags. To
understand the apparent inconsistency, write the Euler equation (C.3) in the form:

xt = (φ− θ1)xt−1 − θ2xt−2 +
1

γ
(it−1 − Et−1πt) + ux,t, (C.12)

where ux,t is defined as ux,t ≡ xt − Et−1xt. With the simplifying assumptions (C.1)
and (C.2) this becomes:

xt = (φ− θ1)xt−1 − θ2xt−2 +
1

γ
vt−1 + ux,t. (C.13)

The apparent inconsistency arises because equation (C.13) has two lags of the output
gap whereas (C.5) has only one.

In the special case, it straightforward to see that (C.13) is satisfied. With the
output gap shock given by (C.11), the linear combination of xt−2 and vt−1 that appears
on the right-hand-side of (C.13) is a multiple of xt−1:

−θ2xt−2 +
1

γ
vt−1, (C.14)

= −θ2xt−2 − (φ− θ1 − bxx)ux,t−1, (C.15)

= −(φ− θ1 − bxx) (bxxxt−2 + ux,t−1) , (C.16)

= −(φ− θ1 − bxx)xt−1. (C.17)

Substituting (C.17) into (C.13), the right-hand-side of (C.13) has only one lag and
equals bxxxt−1 + ux,t−1.
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C.2 Full model

We now solve the full model. Subsection C.2.1 recaps the macroeconomic side of
the full model. Subsection C.2.2 shows that there exists a VAR(1) solution for the
output gap if we can solve a set of three coupled quadratic equations. It also derives an
analytic expression for the output gap shock, ux,t. Subsection C.2.3 uses the analytic
expressions derived in the previous section to show consistency with the loglinear
macroeconomic Euler equation. Subsection C.2.4 states and applies Blanchard-Kahn
to find the coefficients in the VAR(1) output gap dynamics. Finally, subsection C.2.4
replicates the proof of Blanchard-Kahn and extends it to show that the same algebra
continues to give a (non-unique) solution when the system has fewer eigenvalues
outside the unit circle than non-predetermined variables.

C.2.1 Model summary

We recap the macroeconomic side of the full model. Define the inflation and interest
rate gaps relative to the random walk component in inflation:

π̂t = πt − π∗t , (C.18)

ît = it − π∗t . (C.19)

The exogenously given dynamics for inflation and the short-term nominal interest
rate are:

π̂t = bπxxt−1 + bπππ̂t−1 + bπiît−1 + vπ,t, (C.20)

ît = bixxt−1 + biππ̂t−1 + bixît−1 + vi,t, (C.21)

π∗t = π∗t−1 + v∗t . (C.22)

The output gap satisfies the Euler equation (C.3), which can be re-written in terms
of π̂ and î as

xt =
1

φ− θ1

Etxt+1 +
θ2

φ− θ1

xt−1 −
1

γ(φ− θ1)

(
ît − Etπ̂t+1

)
. (C.23)

Recall that we want to find a solution of the form

Ŷt = BŶt−1 + Σvt, (C.24)

where

Ŷt =
[
xt, π̂t, ît

]′
. (C.25)

We do not claim that these are the only possible solution dynamics, and other solu-
tions may exist.
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C.2.2 Method of undetermined coefficients

We now show that a solution of the form (C.24) exists if we can solve a set of three
coupled quadratic equations, and derive an analytic expression for the output gap
shock ux,t. Equations (C.20) and (C.21) are already in the desired form, so we only
need to solve for bxx, bxπ, and bxi (the first row of the matrix B). We guess a solution
of the form:

xt = bxxxt−1 + bxππ̂t−1 + bxiît−1 + ux,t. (C.26)

We then substitute the guess (C.26) into the Euler equation (C.23) to find that:

xt =
1

φ− θ1

[
bxxxt + bxππ̂t + bxiît

]
+

θ2

φ− θ1

xt−1

− 1

γ(φ− θ1)

(
ît −

[
bπxxt + bπππ̂t + bπiît

])
. (C.27)

Re-arranging to isolate xt:(
1− bxx

φ− θ1

− bπx
γ(φ− θ1)

)
xt =

(
bxπ

φ− θ1

+
bππ

γ(φ− θ1)

)
π̂t

+

(
bxi

φ− θ1

+
bπi − 1

γ(φ− θ1)

)
ît

+
θ2

φ− θ1

xt−1. (C.28)

We next substitute in (C.20) and (C.21) and divide by 1− bxx
φ−θ1 −

bπx
γ(φ−θ1)

to re-write

condition (C.28) as:

xt =
bxπ + bππ

γ

φ− θ1 − bxx − bπx
γ

[
bπxxt−1 + bπππ̂t−1 + bπiît−1 + vπ,t

]
+

bxi + bπi−1
γ

φ− θ1 − bxx − bπx
γ

[
bixxt−1 + biππ̂t−1 + biiît−1 + vi,t

]
+

θ2

φ− θ1 − bxx − bπx
γ

xt−1. (C.29)
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We re-arrange the right-hand side of (C.29) in the form of a VAR(1) equation:

xt =

(
bxπ + bππ

γ

)
bπx +

(
bxi + bπi−1

γ

)
bix + θ2

φ− θ1 − bxx − bπx
γ

xt−1

+

(
bxπ + bππ

γ

)
bππ +

(
bxi + bπi−1

γ

)
biπ

φ− θ1 − bxx − bπx
γ

π̂t−1

+

(
bxπ + bππ

γ

)
bπi +

(
bxi + bπi−1

γ

)
bii

φ− θ1 − bxx − bπx
γ

ît−1

+
bxπ + bππ

γ

φ− θ1 − bxx − bπx
γ

vπ,t +
bxi + bπi−1

γ

φ− θ1 − bxx − bπx
γ

vi,t. (C.30)

Equation (C.30) shows that there exists a solution of the form (C.26) if we can
find coefficients bxx, bxπ, and bxi such that:

bxx =

(
bxπ + bππ

γ

)
bπx +

(
bxi + bπi−1

γ

)
bix + θ2

φ− θ1 − bxx − bπx
γ

, (C.31)

bxπ =

(
bxπ + bππ

γ

)
bππ +

(
bxi + bπi−1

γ

)
biπ

φ− θ1 − bxx − bπx
γ

, (C.32)

bxi =

(
bxπ + bππ

γ

)
bπi +

(
bxi + bπi−1

γ

)
bii

φ− θ1 − bxx − bπx
γ

. (C.33)

Equation (C.30) gives an analytical expression for the output gap innovation ux,t ≡
xt − Et−1xt in terms of the shocks vπ,t and vi,t and the solution coefficients bxx, bxπ,
and bxi:

ux,t =
bxπ + bππ

γ

φ− θ1 − bxx − bπx
γ

vπ,t +
bxi + bπi−1

γ

φ− θ1 − bxx − bπx
γ

vi,t. (C.34)

One might be concerned that the deterministic relation between ux,t, vπ,t, and ui,t in
equation (C.34) generates a singular variance-covariance matrix that would be trivial
to reject in the data. However, our observable variables are πt and it, whereas the gap
variables π̂t and ît are unobservable. The shock to the random walk component of
inflation, v∗t , ensures that the variance-covariance matrix for the observable variables
xt, πt, and it is non-singular at our point estimates for periods 1 and 2.

C.2.3 Consistency with macroeconomic Euler equation

By construction, a solution satisfying equations (C.31) through (C.33) and (C.34)
must satisfy the Euler equation (C.23). In addition, this subsection shows explicitly
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that the loglinear macroeconomic Euler equation is satisfied. From now on we assume
that we are in a portion of the parameter space where the coupled quadratic equations
(C.31) through (C.33) have at least one solution and we have picked one solution.

To see the apparent inconsistency, we use that Etxt+1 = xt+1−ux,t+1 and substitute
the inflation and interest rate dynamics (C.20) and (C.21) into the Euler equation
(C.23):

xt =

(
φ− θ1 −

bπx
γ

)
xt−1 − θ2xt−2 −

(
bππ
γ

)
π̂t−1 +

(
1

γ
− bπi

γ

)
ît−1 + ux,t,

(C.35)

where ux,t is defined as ux,t = xt−Et−1xt. Equation (C.35) has two lags of the output
gap, whereas (C.26) has only one, so the two equations might appear inconsistent.

However, if bxx, bxπ, and bxi are such (C.31) through (C.33) hold and ux,t is given
by (C.34), it is straightforward to see that there is no inconsistency. We know that
under these conditions (C.27) holds in every state. A simple re-arrangement of (C.27)
and shifting t→ t− 1 shows that it is equivalent to:(

φ− θ1 −
bπx
γ

)
xt−1 − θ2xt−2 −

(
bππ
γ

)
π̂t−1 +

(
1

γ
− bπi

γ

)
ît−1

= bxxxt−1 + bxππ̂t−1 + bxiît−1. (C.36)

Substituting this into the right-hand-side of (C.35) shows that it equals bxxxt−1 +
bxππ̂t−1 + bxiît−1 + ux,t.

C.2.4 Solving with Blanchard-Kahn

We have seen that the coefficients bxx, bxπ, and bxi are pinned down by equations
(C.31) through (C.33), showing that a VAR(1) solution for the output gap exists for
parts of the parameter space. However, because we are solving for three coefficients
rather than one, there are no simple analytic expression for bxx, bxπ, and bxi.

We use Blanchard and Kahn (1980) to find bxx, bxπ, and bxi. This requires some
simple matrix algebra, which effectively amounts to finding a rotation for bxx, bxπ and
bxi that can be easily solved.

Statement of Blanchard-Kahn

We re-state Proposition 1 of Blanchard and Kahn (1980) with an extension to the
case where there are fewer eigenvalues outside the unit circle than non-predetermined
variables. Let Xt+1 be an [n×1] vector of pre-determined variables, i.e. variables such
that EtXt+1 = Xt+1. Let Pt+1 be an [m× 1] vector of non pre-determined variables,
and let Zt be a [k × 1] vector of exogenous variables. The model is given by[

Xt+1

EtPt+1

]
= A

[
Xt

Pt

]
+ ΓZt, Xt=0 = X0, (C.37)
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where A = [(n + m) × (n + m)] and Γ = [(n + m) × k]. The exogenous shocks
Zt are assumed to satisfy regularity conditions. While Blanchard and Kahn (1980)
allow for serially correlated shocks, it is sufficient for our purposes to assume that
Etzt+i = 0 ∀i ≥ 1.

A solution (Xt, Pt) satisfies the model equation (C.37) for all potential realizations
of the exogenous shocks. Blanchard and Kahn (1980) require that a solution satisfies
the non-explosion restriction:

∀t ∃
[
X̄t

P̄t

]
∈ Rn+m, σt ∈ R such that (C.38)

−(1 + i)σt
[
X̄t

P̄t

]
≤ Et

([
Xt+i

Pt+i

])
≤ (1 + i)σt

[
X̄t

P̄t

]
∀i ≥ 0. (C.39)

Write the matrix A in the Jordan normal form:

A = C−1JC. (C.40)

It is well-known that the Jordan normal form of a matrix is unique up to the ordering
of the eigenvalues, which are listed along the diagonal in J . Further, partition J such
that

J =

[
J1 0
0 J2

]
, (C.41)

where J1 is [n × n] and J2 is [m ×m]. The matrices C, C−1 and Γ are decomposed
similarly:

C ≡


C11 C12

[n× n] [n×m]
C21 C22

[m× n] [m×m]

 , (C.42)

C−1 ≡


D11 D12

[n× n] [n×m]
D21 D22

[m× n] [m×m]

 , (C.43)

Γ ≡


Γ1

[n× k]
Γ2

[m× k]

 . (C.44)

Proposition 1 (Blanchard and Kahn (1980)): Assume that A has at least
n eigenvalues within the unit circle and let (C.40) be a Jordan normal form decom-
position such that all eigenvalues listed along the diagonal of J1 are within the unit
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circle. There exists a solution of the following form:

Xt = X0 for t = 0,
Xt = BBKXt−1 + ΣBKZt−1 for t > 0,

(C.45)

where the [n× n] matrix BBK equals

BBK = D11J1D
−1
11 , (C.46)

and the [n× k] matrix ΣBK equals

ΣBK = Γ1 − (D11J1C12 +D12J2C22)C−1
22 J

−1
2 (C21Γ1 + C22Γ2) . (C.47)

Proposition 1 of Blanchard and Kahn (1980) is originally stated for the case when
the number of eigenvalues of A outside the unit circle is equal to the number of non-
predetermined variables, m, in which case the solution is unique. When the system
has more stable eigenvalues than state variables, we pick three stable eigenvalues and
proceed, analogously to Uhlig (1999). A straightforward extension of the proof in
Blanchard and Kahn (1980) makes clear that equations (C.45) through (C.47) still
generate a solution, though this solution is no longer unique.

Proof: See section C.2.4.

Proposition 2 (Blanchard and Kahn (1980)): If the number of eigenvalues of
A outside the unit circle is greater than the number of non-predetermined variables,
m, then there exists no solution that also satisfies the non-explosion restriction.

Proof: Blanchard and Kahn (1980).

Defining the state variables

Before we can apply Blanchard-Kahn, we need to define the state vector. We
define the pre-determined (i.e. known at time t) part of the state vector as:

Xt+1 = Ŷt =

 xt
π̂t
ît

 . (C.48)

The non pre-determined part of the state vector (i.e. not known at time t) is one-
dimensional and equals:

Pt+1 =

[
xt+1 +

1

γ
π̂t+1

]
. (C.49)

The vector of exogenous variables (or shocks) is given by:

Zt =

 vπ,t
vi,t
v∗t

 . (C.50)
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We can then write the macroeconomic side of our model in matrix form:

Ã


xt
π̂t
ît

Etxt+1 + 1
γ
Etπ̂t+1

 = B̃


xt−1

π̂t−1

ît−1

xt + 1
γ
π̂t

+ Γ̃

[
vπ,t
vi,t

]
, (C.51)

where

Ã =


1 1

γ
0 0

0 1 0 0
0 0 1 0

−(φ− θ1) 0 − 1
γ

1

 (C.52)

B̃ =


0 0 0 1
bπx bππ bπi 0
bix biπ bii 0
−θ2 0 0 0

 , (C.53)

Γ̃ =


0 0 0
1 0 0
0 1 0
0 0 0

 . (C.54)

The first row of (C.51) is simply the definition of the non pre-determined state vari-
able. The second and third rows of (C.51) follow from equations (C.20) and (C.21).
The third row is a simple re-arrangement of the loglinear Euler equation (C.23).

The matrix Ã is invertible with

Ã−1 =


1 − 1

γ
0 0

0 1 0 0
0 0 1 0

φ− θ1 −φ−θ1
γ

1
γ

1

 , (C.55)

so we can re-write (C.51) in the Blanchard-Kahn form:
xt
π̂t
ît

Etxt+1 + 1
γ
Etπ̂t+1

 = A


xt−1

π̂t−1

ît−1

xt + 1
γ
π̂t

+ Γ

[
vπ,t
vi,t

]
. (C.56)

The matrices A and Γ are given by:

A = Ã−1B̃, (C.57)

Γ = Ã−1Γ̃. (C.58)
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Solving for B and Σ

From now on assume that we are in a portion of the parameter space such that A
has three or more eigenvalues within the unit circle, so there exists a non-explosive
solution. Let A = C−1JC be a Jordan normal form decomposition, such that all
eigenvalues along the diagonal of the upper-left 3 × 3 submatrix of J (denoted J1)
are within the unit circle. Let the matrix D = C−1 be defined as before and let D11

denote the upper-left 3 × 3 submatrix of D. By Proposition 1 of Blanchard and Kahn
(1980) there exists a [3× 3] matrix ΣBK such that the model (C.56) is solved by:

 xt
π̂t
ît


︸ ︷︷ ︸
Xt+1

= BBK

 xt−1

π̂t−1

ît−1


︸ ︷︷ ︸

Xt

+ ΣBK

[
vπ,t
vi,t

]
︸ ︷︷ ︸

Zt

,

(C.59)

with

BBK = D11J1D
−1
11 . (C.60)

Moreover, the solution (C.59) is non-explosive.

Proposition 1 of Blanchard and Kahn (1980) provides an explicit expression for
ΣBK . However, in our model it is more convenient to rely on the analytic expression
for the output gap shock (C.34) to derive an analytic expression for ΣBK .

It is immediate that bBKxx , b
BK
xπ , b

BK
xi , defined as the first row of the matrix BBK =

D11J1D
−1
11 , solve the coupled quadratic equations (C.31) through (C.33). By Blan-

chard and Kahn (1980), the dynamics (C.59) satisfy the model matrix equation
(C.51), which in turn is equivalent to the full model equations (C.20), (C.21), and
(C.23). Because of this equivalence, the second and third rows of BBK must simply
list the coefficients bπx, bππ, bπi and bix, biπ, bix

BBK =

 bBKxx bBKxπ bBKxi
bπx bππ bπi
bix biπ bix

 , (C.61)

and ΣBK takes the form:

ΣBK =

 σBKxπ σBKxi σBKx∗
1 0 0
0 1 0

 . (C.62)

We have already seen that the last row of (C.51) is equivalent to the loglinear Euler
equation (C.23). Because the Blanchard-Kahn solution is consistent with (C.56),
which in turn is equivalent to (C.51), it then follows that the output gap dynamics

xt = bBKxx xt−1 + bBKxπ π̂t−1 + bBKxi ît−1 + σBKxπ vπ,t + σBKxi vi,t + σBKx∗ v
∗
t , (C.63)
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combined with the inflation and interest rate dynamics (C.20) and (C.21), satisfies
the Euler equation. Because (C.63) has the same form as (C.26), the algebra in
section C.2.2 shows that bBKxx , bBKxπ and bBKxi satisfy the coupled quadratic equations
(C.31) through (C.33), and σBKxπ vπ,t + σBKxi vi,t + σBKx∗ v

∗
t must line up with the analyt-

ical expression for the output gap shock (C.34). This gives the following analytical
expression for ΣBK :

ΣBK =


bBKxπ + bππ

γ

φ−θ1−bBKxx − 1
γ
bπx

bBKxi +
bπi−1

γ

φ−θ1−bBKxx − 1
γ
bπx

0

1 0 0
0 1 0

 . (C.64)

Proof of Blanchard and Kahn (1980)

We now reproduce the proof of Blanchard and Kahn (1980) Proposition 1. We
extend the proof to show the same algebra leads to a valid (though no longer unique)
solution when the matrix A has fewer than m eigenvalues outside the unit circle.

Consider the transformation:[
Yt
Qt

]
= C

[
Xt

Pt

]
. (C.65)

Pre-multiplying the model equation (C.37) by C and taking expectations condi-
tional on information at time t gives:[

EtYt+1

EtQt+1

]
=

[
J1 0
0 J2

] [
Yt
Qt

]
+ CΓZt. (C.66)

Equation (C.66) consists of two subsystems. The first n lines give a system that, by
construction, is stable or borderline stable:

EtYt+1 = J1Yt + (C11Γ1 + C12Γ2)Zt. (C.67)

The second system is given by

EtQt+1 = J2Qt + (C21Γ1 + C22Γ2)Zt. (C.68)

There exists a non-explosive solution to (C.68) given by:

Qt = −J−1
2 (C21Γ1 + C22Γ2)Zt. (C.69)

If all eigenvalues of J2 are outside the unit circle, the process (C.69) is the unique
non-explosive solution for (C.68). From now on we impose the additional condition
(C.69), even if J2 has an eigenvalue within the unit circle. If we can find a solution
that satisfies (C.69), the model equation (C.37), and the non-explosion restriction,
then it clearly also solves the model. Imposing this condition is our only deviation
from the proof in Blanchard and Kahn (1980).
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The proof in Blanchard and Kahn (1980) then shows that there is a unique solu-
tion that satisfies both the model equation (C.37) and (C.69), provided that D11 is
invertible.2 Consider the inverse transformation:[

Xt

Pt

]
=

[
D11 D12

D21 D22

] [
Yt
Qt

]
(C.70)

Because Q0 is pinned down through (C.69), Y0 is then uniquely determined through
X0:

X0 = D11Y0 +D12Q0. (C.71)

As Xt is predetermined, the inverse transformation (C.70) imposes the relation be-
tween innovations for Yt+1 and Qt+1:

Yt+1 − EtYt+1 = −D−1
11 D12 (Qt+1 − EtQt+1) . (C.72)

E0Y1 is then uniquely determined from (C.67) and Y1 is determined from (C.72).
E1Y2 and Y2 are then uniquely determined from (C.67) and (C.72) etc.

Blanchard and Kahn (1980) then apply the inverse transformation (C.70) to obtain
the expression for Xt in their Proposition 1. Applying the inverse transformation to
(C.66): [

Xt+1

EtPt+1

]
= C−1

[
EtYt+1

EtQt+1

]
, (C.73)

=

[
D11 D12

D21 D22

] [
J1 0
0 J2

] [
Yt
Qt

]
+ ΓZt. (C.74)

It follows that

Xt+1 = D11J1Yt +D12J2Qt + Γ1Zt, (C.75)

= D11J1 (Et−1Yt + (Yt − Et−1Yt)) +D12J2Qt + Γ1Zt (C.76)

With Xt = Et−1Xt and Et−1Qt = 0, the inverse transformation (C.70) gives that
Xt = D11Et−1Yt, so:

Xt+1 = D11J1D
−1
11 Xt −D11J1D

−1
11 D12Qt +D12J2Qt + Γ1Zt. (C.77)

Now because C and C−1 are inverses, we have that D11C12 +D12C22 = 0 or D−1
11 D12 =

−C12C
−1
22 , so this can be re-written as:

Xt+1 = D11J1D
−1
11 Xt +D11J1C12C

−1
22 Qt +D12J2Qt + Γ1Zt. (C.78)

Substituting in for Qt from (C.69) gives:

Xt+1 = D11J1D
−1
11 Xt + Γ1Zt

− (D11J1C12 +D12J2C22)C−1
22 J

−1
2 (C21Γ1 + C22Γ2)Zt. (C.79)

This completes the proof.

2When J2 has one or more eigenvalues within the unit circle, this does not preclude the existence
of other non-explosive model solutions that do not satisfy (C.69).
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D Model solution

D.1 Summary: Macroeconomic dynamics

We now provide a brief summary of how to implement the macroeconomic solution.
Derivations and explanations can be found in a separate section (Appendix C).

Define the matrix A as:

A = Ã−1B̃, (D.1)

where

Ã =


1 1

γ
0 0

0 1 0 0
0 0 1 0

−(φ− θ1) 0 − 1
γ

1

 , (D.2)

and

B̃ =


0 0 0 1
bπx bππ bπi 0
bix biπ bii 0
−θ2 0 0 0

 . (D.3)

Write the matrix A in the Jordan normal form:

A = C−1JC. (D.4)

It is well-known that the Jordan normal form of a matrix is unique up to the ordering
of the eigenvalues, which are listed along the diagonal in J . Further, partition J such
that

J =

[
J1 0
0 J2

]
, (D.5)

where J1 is [3 × 3] and J2 is [1 × 1]. The matrices C, and C−1 are decomposed
similarly:

C ≡


C11 C12

[3× 3] [3× 1]
C21 C22

[1× 3] [3× 1]

 , (D.6)

C−1 ≡


D11 D12

[3× 3] [3× 1]
D21 D22

[1× 3] [1× 1]

 . (D.7)
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If A has two or fewer eigenvalues within the unit circle, we stop because there is
no non-explosive equilibrium of the desired form. Otherwise, let A = C−1JC be a
Jordan normal form representation of A, such that the eigenvalues listed in J1, are all
within the unit circle (i.e. their absolute values are less than l) and occur in complex
conjugate pairs. If A has exactly three eigenvalues within the unit circle, J1 is unique.
If A has four eigenvalues within the unit circle, J1 is not unique and each admittable
ordering of the eigenvalues leads to a different solution.

The matrices B and Σ are then given by:

B = D11J1D
−1
11 , (D.8)

and

Σ =


bxπ+ bππ

γ

φ−θ1−bxx− 1
γ
bπx

bBKxi +
bπi−1

γ

φ−θ1−bBKxx − 1
γ
bπx

0

1 0 0
0 1 0

 . (D.9)

We find the matrices B and Σ for every ordering of the eigenvalues such that the
eigenvalues listed in J1 are within the unit circle and occur in complex conjugate
pairs. When this yields more than one solution, we select between the solutions using
the procedure described in the main paper.

D.1.1 Writing macroeconomic dynamics in terms of orthogonal shocks

In order to implement the numerical solution for asset prices and to simulate the
model, it is convenient to re-write the macroeconomic dynamics in terms of a vector
of orthogonal shocks. Recall that the standard deviations and correlations of the
model shocks in equations (20)-(22) in the main paper are denoted by σπ, σi, σ∗ and
ρπi, ρπ∗, ρi∗. We define a vector of orthogonal shocks ut = [u2t, u3t, u

∗
t ]
′ such that

u∗t = v∗t and ut spans the vector of model shocks vt = [vπt, vit, v
∗
t ]
′.

We define the orthogonal shocks ut via:

vt = Mtemput, (D.10)

where the invertible transformation matrix Mtemp is given by:

Mtemp =

 1 0 ρπ∗σπ
σ∗

σi(ρπi−ρπ∗ρi∗)
σπ(1−ρ2

π∗)
1 σiρi∗

σ∗

0 0 1

 (D.11)

We denote the variance-covariance matrix of the orthogonalized shocks ut by Σu.
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We can solve for it in terms of the model parameters and Mtemp:

Σu = Et [u′tut] (D.12)

= M−1
temp

 σ2
π σπσiρπi σπσ∗ρπ∗,

σiσπρπi σ2
i σiσ∗ρi∗

σπσ∗ρπ∗ σiσ∗ρi∗ σ2
∗

M−1′

temp. (D.13)

Macroeconomic equilibrium dynamics of the form

Ŷt = BŶt−1 + Σvt, (D.14)

are then equivalent to
Ŷt = BŶt−1 +Qut, (D.15)

where the matrices Σ and Q have the following one-to-one mapping:

Q = ΣMtemp. (D.16)

D.2 Asset pricing recursion

Before deriving the asset pricing recursions, we derive some expressions that will be
useful repeatedly. We use ei to denote a row vector with 1 in position i and zeros
elsewhere.

We can use the link between stochastically detrended consumption and the output
gap (equation (2) in the main paper) to express consumption in terms of the current
and lagged output gap:

ct = g + ct−1 + xt − φxt−1. (D.17)

It follows that log consumption growth equals:

ct+1 − ct = g + xt+1 − φxt. (D.18)

We will substitute (D.18) repeatedly into the stochastic discount factor.

The matrix

QM = e1Q (D.19)

denotes the loading of consumption innovations onto the vector of shocks ut, where
e1 is a basis vector with a one in the first position and zeros everywhere else. The
volatility of consumption surprises equals:

σ2
c = QMΣuQ

′
M . (D.20)
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To simplify notation, we define ŝt as the log deviation of surplus consumption
from its steady state. The dynamics of ŝt are:

ŝt = st − s̄, (D.21)

ŝt = θ0ŝt−1 + θ1xt−1 + θ2xt−2 + λ(ŝt−1)QMut, (D.22)

where with an abuse of notation we write:

λ(ŝt) = λ0

√
1− 2ŝt − 1, ŝt ≤ smax − s̄, (D.23)

λ(ŝt) = 0, ŝt ≥ smax − s̄. (D.24)

The steady-state surplus consumption sensitivity equals:

λ0 =
1

S̄
. (D.25)

The steady state output gap is normalized to zero. The steady state real short-
term interest rate at xt = 0 and st = s̄ is then the same as in Campbell-Cochrane:

r̄ = γg − 1

2
γ2σ2

c/S̄
2 − log(β). (D.26)

In our calculations of asset prices, we repeatedly use the following expression for
the expected growth in the log SDF:

Et [mt+1] = log(β)− γg + γŝt + γφxt − γEtŝt+1 − γEtxt+1 (D.27)

= −rt −
γ

2
(1− θ0)(1− 2ŝt), (D.28)

which follows from the asset pricing Euler equation for the real short rate. We often
combine (D.28) with rt = r̄ + (e3 − e2B)Zt.

D.2.1 State space

Our state space for solving for asset prices is five-dimensional: It consists of Z̃t, which
a scaled version of Ŷt, the surplus consumption ratio relative to steady-state ŝt, and
the lagged output gap xt−1. The lagged output gap xt−1 is not actually needed as a
state variable and we have verified that our numerical solutions for asset prices do
not vary with xt−1. Our code includes xt−1 as a state variable for legacy reasons.

We next describe the definition of Z̃t. To simplify the numerical implementation
of the asset pricing recursions, it is convenient to define a scaled state vector. We
require that shocks to the scaled state vector are independent standard normal and
that the first dimension of the scaled state vector is perfectly correlated with output
gap innovations. This rotation facilitates the numerical analysis, because it is easier
to integrate over independent random variables. Aligning the first dimension of the
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scaled state vector with output gap innovations (and hence surplus consumption
innovations) helps, because it allows us to use a finer grid to integrate numerically
over this crucial dimension, where asset prices are most nonlinear.

If the scaled state vector equals Z̃t = AŶt for some invertible matrix A, the
dynamics of Z̃t are given by:

Z̃t = AŶt, (D.29)

Z̃t+1 = ABA−1︸ ︷︷ ︸
B̃

Z̃t + AQut+1︸ ︷︷ ︸
εt+1

. (D.30)

What should be the variance-covariance matrix of εt+1 and how does it constrain
our choice of A? Note that the matrix Q has rank two, because the matrix Σ has rank
two. We therefore want A such that the vector εt+1 has two dimensions distributed
as independent standard normals and the third one identically equal to zero. That
is, we need A such that

V art (εt+1) = AQΣuQ
′A′, (D.31)

=

 1 0 0
0 1 0
0 0 0

 . (D.32)

Requiring that the first dimension of εt+1 is perfectly correlated with output-gap
surprises gives a second constraint for A:

e1A = (σc)
−1 e1. (D.33)

Letting Ai denote the ith row of A (i = 1, 2, 3), we compute A using the following
three steps.

1. We set

A1 = (σc)
−1 e1. (D.34)

This ensures that condition (D.33) is satisfied.

2. We use the MATLAB function ‘null’ to compute the null space null (A1QΣuQ
′).

We define n2 as the first vector in null (A1QΣuQ
′), so by definition we know

that n2 (A1QΣuQ
′)′ = 0. We then define the second column of A as

A2 =
n2√

n2QΣuQn′2
. (D.35)

3. We define the vector n3 = null(Q′), so by definition n3Q = 0. We then define
the third row of A as

A3 = n3. (D.36)
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It is then straightforward to verify that (D.32) holds for

A =

 A1

A2

A3

 . (D.37)

D.2.2 Recursion for zero-coupon consumption claims

We now derive the recursion for zero-coupon consumption claims in terms of state
variables Z̃t, ŝt and xt−1. Let P c

nt/Ct denote the price-dividend ratio of a zero-coupon
claim on consumption at time t+ n. The outline of our strategy here is that we first
derive an analytic expression for the price-dividend ratio for P c

1t/Ct. For n ≥ 1 we
guess and verify recursively that there exists a function Fn(Z̃t, ŝt, xt−1), such that

P c
nt

Ct
= Fn

(
Z̃t, ŝt, xt−1

)
. (D.38)

We start by deriving the analytic expression for F1. The one-period zero coupon
price-consumption ratio solves

P c
1,t

Ct
= Et

[
Mt+1Ct+1

Ct

]
(D.39)

Using (D.17) to substitute for consumption growth, we factorize Mt+1
Ct+1

Ct
:

Mt+1
Ct+1

Ct
= β exp(−γ(ŝt+1 − ŝt)− (γ − 1)(ct+1 − ct))

= β exp(−γ(ŝt+1 − ŝt)− (γ − 1)(g + xt+1 − φxt)) (D.40)

Using the notation fn = log(Fn), (D.22) and (D.28) give:

f1(Z̃t, ŝt, xt−1) = log(β)− (γ − 1) g + γŝt + (γ − 1)φxt

−γEtŝt+1 − (γ − 1)Etxt+1

+
1

2
(γλ(ŝt) + (γ − 1))2σ2

c ,

= g + e1[B − φI]A−1Z̃t +
1

2
(γλ(ŝt) + (γ − 1))2σ2

c

−r̄ − (e3 − e2B)A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt). (D.41)

Next, we solve for fn, n ≥ 2 iteratively. Note that:

P c
nt

Ct
= Et

[
Mt+1Ct+1

Ct

P c
n−1,t+1

Ct+1

]
= Et

[
Mt+1Ct+1

Ct
Fn−1

(
Z̃t+1, ŝt+1, xt

)]
(D.42)
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This gives the following expression for fn:

fn(Z̃t, ŝt, xt−1) = log

[
Et
[
exp

(
log(β)− (γ − 1)g + γŝt + (γ − 1)φxt

−γŝt+1 − (γ − 1)Etxt+1 − (γ − 1)e1A
−1e′1ε1,t+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (D.43)

Here, ε1,t+1 denotes the first dimension of the shock εt+1. We clarify that the expres-
sion in parentheses depends only on the first shock to the scaled state vector, ε1,t+1.
Finally, we use (D.28) to re-write fn,t as an expectation involving fn−1,t+1, the state
variables Z̃t, ŝt, and xt−1, and ε1,t+1:

fn(Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t

−r̄ − (e3 − e2B)A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))− 1)σcε1,t+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (D.44)

D.2.3 Recursion for zero-coupon bond prices

We use P $
n,t and Pn,t denote the prices of nominal and real n-period zero-coupon

bonds. The strategy is to develop analytic expressions for one- and two-period bond
prices. We then guess and verify recursively that the prices of real and nominal
zero-coupon bonds with maturity n ≥ 2 can be written in the following form:

Pn,t = Bn(Z̃t, ŝt, xt−1), (D.45)

P $
n,t = exp(−nπ∗t )B$

n(Z̃t, ŝt, xt−1), (D.46)

where Bn(Z̃t, ŝt, xt−1) and B$
n(Z̃t, ŝt, xt−1) are functions of the state variables.

As discussed in the main paper, we assume that the short-term nominal interest
rate contains no risk premium, so the one-period log nominal interest rate equals
it = rt+Etπt+1. The means of ît and π̂t are normalized to zero, but in order to derive
bond prices we need to account for the average level of interest rates. We do this by
writing the one-period log nominal interest rate as it = ît +π∗t + r̄ and the one-period
log real interest rate as rt = ît − Etπ̂t+1 + r̄. One-period bond prices then equal:

P $
1,t = exp(−ît − π∗t − r̄), (D.47)

P1,t = exp(−ît + Etπ̂t+1 − r̄). (D.48)

We next solve for longer-term bond prices including risk premia. Substituting in
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(D.47) into the bond-pricing recursion gives:

P $
2,t = Et

[
Mt+1P

$
1,t+1 exp(−π∗t+1 − π̂t+1)

]
(D.49)

= Et
[
Mt+1 exp(−ît+1 − 2π∗t+1 − π̂t+1 − r̄)

]
(D.50)

= βEt
[
exp(−γ(ŝt+1 − ŝt)− γ(g + xt+1 − φxt)− ît+1 − 2π∗t+1 − π̂t+1 − r̄))

]
.

(D.51)

We can now verify that the two-period nominal bond price takes the form (D.46):

B$
2(Z̃t, ŝt, xt−1) = exp (log(β)− γg + γŝt + γφxt)

× exp
(
Et
(
−γŝt+1 − γxt+1 − ît+1 − π̂t+1 − r̄

))
×Et

exp

−γ (λ(ŝt) + 1)QM − [(e2 + e3)Q+ 2e3]︸ ︷︷ ︸
v$

ut+1

 .
(D.52)

Here, we define the vector v$ to simplify notation. The random walk component of
inflation π∗t does not appear in (D.52), because B$

2 is already scaled by exp(−2π∗t )
by definition (D.46). Taking logs, applying (D.28), and using the definition for the
sensitivity function λ(ŝt), we get:

b$
2 = −e3[I +B]A−1Z̃t +

1

2
v$Σuv$′

+γ (λ(ŝt) + 1)QMΣuv
′
$ − 2r̄. (D.53)

We similarly solve for two-period real bond prices in closed form:

P2,t = exp (log(β)− γg + γŝt + γφxt)

× exp
(
Et
(
−γŝt+1 − γxt+1 − ît+1 + Et+1π̂t+2 − r̄

))
×Et

exp

(−γ(λ(ŝt) + 1)QM − (e3 − e2B)Q︸ ︷︷ ︸
vr

)ut+1


(D.54)

We define the vector vr to simplify notation. Taking logs, applying (D.28), and using
the definition for λ(ŝt) gives:

b2(Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t +
1

2
vrΣuv

′
r + γ (λ(ŝt) + 1)QMΣuv

′
r − 2r̄.

(D.55)
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For n ≥ 3, we use (D.28) to obtain the following recursion for real bond prices:

Bn(Z̃t, ŝt, xt−1) = Et [exp (log (β)− γg + γŝt (D.56)

−γŝt+1 + γφxt − γxt+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]

= Et
[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t −

γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcε1,t+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]
. (D.57)

The recursion for nominal bond prices with n ≥ 3 is similar. It is complicated by
the fact that we need to integrate over shocks to the inflation target:

B$
n(Z̃t, ŝt, xt−1) = Et [exp (log(β)− γg + γŝt + γφxt (D.58)

−γŝt+1 − γxt+1 − π̂t+1 − nu∗t+1 + b$
n−1(Z̃t+1, ŝt+1, xt)

)]
.

To reduce the number of dimensions along which we need to integrate numerically,
we split u∗t+1 into a component that is spanned by εt+1 plus an orthogonal shock.
This is useful because we can then use analytic expressions to integrate over the
orthogonal component. We use the standard expression for conditional distributions
of multivariate normal random variables. The distribution of u∗t+1 conditional on εt+1

is normal with:

u∗t+1 |εt+1 ∼ N

(AQΣue
′
3)︸ ︷︷ ︸

vec∗

′
εt+1, (σ

∗)2 − (AQΣue
′
3)′(AQΣue

′
3)︸ ︷︷ ︸

(σ⊥)
2

 . (D.59)

We then write u∗t as the sum of two independent shocks:

u∗t+1 = vec∗εt+1 + ε⊥t+1, (D.60)

where ε⊥t+1 is defined as

ε⊥t+1 := u∗t+1 − vec∗εt+1 (D.61)

We integrate analytically over ε⊥t+1 and substitute in (D.28):

B$
n(Z̃t, ŝt, xt−1) = Et [exp (log(β)− γg + γŝt + γφxt − γŝt+1 − γxt+1

−π̂t+1 − nvec∗εt+1 +
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

)]
,

= Et
[
exp

(
−r̄ − e3A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))σc + e2A
−1e′1︸ ︷︷ ︸

vpi1

+ nvec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ nvec∗e′2

 ε2,t+1

+
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, xt)

)]
. (D.62)
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We define the vectors vpi1 and vpi2 as given above to avoid computing them repeat-
edly in our numerical algorithm.

D.2.4 Assessing the approximation error for the one-period nominal rate

Throughout the paper, we use the approximation

it = rt + Etπt+1. (D.63)

This approximation is useful, because it leads to log-linear macroeconomic dynamics
in the output gap, inflation, and the nominal interest rate. In order to undestand the
significance of the error in this approximation, we now derive the exact one-period
nominal bond yield while taking the dynamics for real consumption and the real
interest rate as given. The exact one-period nominal bond price equals:

P $,exact
1,t = exp (log(β)− γg + γŝt + γφxt)

× exp
(
Et
(
−γŝt+1 − γxt+1 − π̂t+1 − π∗t+1

))
×Et [exp ((−γ (λ(ŝt) + 1)QM − [e2Q+ e3])ut+1)] .

(D.64)

We now substitute in (D.28), and take logs to get:

log
(
P $,exact

1,t

)
= −rt − Etπt+1

+
1

2
(e2Q+ e3) Σu (e2Q+ e3)′ + γ (λ(ŝt) + 1)QMΣu (e2Q+ e3)′ .

(D.65)

We decompose the one-period nominal bond yield into the approximate nominal yield,
it, and approximation error:

y$,exact
1,t = rt + Etπt+1︸ ︷︷ ︸

it

−1

2
(e2Q+ e3) Σu (e2Q+ e3)′ − γ (λ(ŝt) + 1)QMΣu (e2Q+ e3)′︸ ︷︷ ︸

Approximation Error

(D.66)

At our point estimates, we find that the simulated approximation error has a
standard deviation of 4bps.
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D.2.5 Computing returns

The log return on the consumption claim equals:

rct+1 = log

(
P c
t+1 + Ct+1

P c
t

)
, (D.67)

= ∆ct+1 + log

1 +
P ct+1

Ct+1

P ct
Ct

 . (D.68)

Real and nominal log bond yields equal:

yn,t = − 1

n
bn,t, (D.69)

y$
n,t = − 1

n
b$
n,t + π∗t . (D.70)

Real log bond returns equal:

rn,t+1 = bn−1,t+1 − bn,t. (D.71)

Nominal log bond returns equal:

r$
n,t+1 = b$

n−1,t+1 − b$
n,t − (n− 1)π∗t+1 + nπ∗t . (D.72)

Real and nominal bond log excess returns then equal:

xrn,t+1 = rn,t+1 − rt, (D.73)

xr$
n,t+1 = r$

n,t+1 − it. (D.74)

D.2.6 Levered stock prices and returns

We note that the price of the levered equity claim is δP c
t , so the price-dividend ratio

equals:

P δ
t

Dδ
t

= δ
Ct
Dδ
t

P c
t

Ct
. (D.75)

Using the expression

Dδ
t+1 = P c

t+1 + Ct+1 − (1− δ)P c
t exp (rt)− δP c

t , (D.76)

and

P δ
t = δP c

t (D.77)
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gives the gross return on levered stocks:

(
1 +Rδ

t+1

)
=

Dδ
t+1 + P δ

t+1

P δ
t

, (D.78)

=
1

δ

P c
t+1 + Ct+1 − (1− δ)P c

t exp(rt)

P c
t

, (D.79)

=
1

δ

(
1 +Rc

t+1

)
− 1− δ

δ
exp (rt) . (D.80)

Log stock excess returns then equal:

xrδt+1 = rδt+1 − rt. (D.81)

To mimic firms’ dividend smoothing in the data, we report simulated moments
for the price of equities dividend by dividends smoothed over the past 64 quarters:

P δ
t /

(
1

64
(Dδ

t +Dδ
t−1 + ...+Dδ

t−63)

)
. (D.82)

D.3 Details: Risk-premium decomposition

For the risk-premium decomposition in Table 5 in the main paper, we use the following
steps. We first compute risk-neutral valuations and returns. We then decompose risk-
neutral returns further into news about the real interest rate and news about cash
flows using the Campbell and Ammer (1993) loglinear expressions. We then define
returns due to risk premia as log asset excess returns minus risk-neutral returns. We
use the superscript rn for risk-neutral, superscript cf for cash flow, and rp for risk
premium.

Risk-neutral valuations are expected cash flows discounted with the risk-neutral
discount factor, that is consistent with equilibrium dynamics for the real interest rate:

M rn
t+1 = exp(−rt) (D.83)

= exp(−ît + Etπ̂t+1 − r̄). (D.84)

D.3.1 Risk-neutral zero-coupon bond prices

We use analogous recursions to solve for risk-neutral bond prices. One-period risk-
neutral bond prices are given exactly as before:

P $,rn
1,t = exp(−ît − π∗t − r̄), (D.85)

P rn
1,t = exp(−ît + Etπ̂t+1 − r̄). (D.86)
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For n > 1, we guess and verify that the prices of real and nominal risk-neutral zero-
coupon bonds with maturity n can be written in the following form

P rn
n,t = Brn

n (Z̃t, ŝt, xt−1), (D.87)

P $,rn
n,t = exp(−nπ∗t )B$,rn

n (Z̃t, ŝt, xt−1). (D.88)

for some functions Brn
n (Z̃t, ŝt, xt−1) and B$,rn

n (Z̃t, ŝt, xt−1).

We derive the two-period risk-neutral nominal bond price analytically:

P $,rn
2,t = exp(−rt)Et

[
P $,rn

1,t+1 exp(−π∗t+1 − π̂t+1)
]

(D.89)

= exp(−rt)Et
[
exp(−ît+1 − 2π∗t+1 − π̂t+1 − r̄)

]
. (D.90)

We can hence verify that the two-period risk-neutral nominal bond price takes the
form (D.46) with:

B$,rn
2 (Z̃t, ŝt, xt−1) = exp

(
−ît + Etπ̂t+1 − r̄

)
exp

(
Et
(
−ît+1 − π̂t+1 − r̄

))
×Et

exp

−[(e2 + e3)Q+ 2e3]︸ ︷︷ ︸
v$

ut+1

 .
(D.91)

Here, the vector v$ is identical to the case with risk aversion. Taking logs, we get:

b$,rn
2 = −e3 [I +B]A−1Z̃t +

1

2
v$Σuv$′ − 2r̄ (D.92)

Comparing expressions (D.92) and (D.53) shows that they agree when γ = 0. We
similarly solve for 2-period real bond prices in closed form:

P rn
2,t = exp

(
−ît + Etπ̂t+1 − r̄

)
× exp

(
Et
(
−ît+1 + Et+1π̂t+2 − r̄

))
×Et

exp

−(e3 − e2B)Q︸ ︷︷ ︸
vr

ut+1

 . (D.93)

The vector vr is again identical to the case with risk aversion. Taking logs gives:

brn2 (Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t +
1

2
vrΣuv

′
r − 2r̄. (D.94)

We note that the risk-neutral bond prices (D.94) and bond prices with risk aversion
(D.55) are identical when the utility curvature parameter γ equals zero.

For n ≥ 3 the n-period risk neutral real bond price Brn
n satisfies the recursion:

Brn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t + bn−1(Z̃t+1, ŝt+1, xt)

)]
(D.95)
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We obtain a similar recursion for risk-neutral nominal bond prices:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−ît + Etπ̂t+1 − r̄ − π̂t+1 − nu∗t+1 + b$

n−1(Z̃t+1, ŝt+1, xt)
)]
.

We again use the decomposition u∗t+1 = vec∗εt+1 + ε⊥t+1 from Section D.2.3 to reduce
the dimensionality of the numerical integration:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−ît + Etπ̂t+1 − r̄ − π̂t+1 − n · vec∗εt+1 +

n2

2
(σ⊥)2 (D.96)

+b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]
,

= Et

exp

−r̄ − e3A
−1Z̃t − (e2A

−1e′1︸ ︷︷ ︸
vpi1

+ n · vec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ n · vec∗e′2

 ε2,t+1 +
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, xt)

 .
(D.97)

D.3.2 Risk-neutral zero-coupon consumption claims

Next, we derive recursive solutions for the risk-neutral prices of zero-coupon consump-
tion claims. Let P c,rn

nt /Ct denote the risk-neutral price-dividend ratio of a zero-coupon
claim on consumption at time t + n. The risk-neutral price-consumption ratio of a
claim to the entire stream of future consumption equals:

P c,rn
t

Ct
=

∞∑
n=1

P c,rn
nt

Ct
. (D.98)

For n ≥ 1, we guess and verify there exists a function F rn
n (Z̃t, ŝt, xt−1), such that

P c,rn
nt

Ct
= F rn

n

(
Z̃t, ŝt, xt−1

)
. (D.99)

We start by deriving the analytic expression for F rn
1 . The one-period risk-neutral

zero-coupon price-consumption ratio solves

P c,rn
1,t

Ct
= exp

(
−ît + Etπ̂t+1 − r̄

)
Et
[
Ct+1

Ct

]
(D.100)

Using (D.17) to substitute for consumption growth, we can derive the following ana-
lytic expression for f rn1 :

f rn1 (Z̃t, ŝt, xt−1) = −ît + Etπ̂t+1 − r̄ + g − φxt + Etxt+1 +
1

2
σ2
c ,

= − (e3 − e2B)A−1Z̃t − r̄ + g + e1[B − φI]A−1Z̃t +
1

2
σ2
c .

(D.101)
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Next, we solve for fn, n ≥ 2 iteratively:

P c,rn
nt

Ct
= exp

(
−ît + Etπ̂t+1 − r̄

)
Et
[
Ct+1

Ct
F rn
n−1

(
Z̃t+1, ŝt+1, xt

)]
(D.102)

This gives the following expression for f rnn :

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
−ît + Etπ̂t+1 − r̄ + g − φxt + Etxt+1 + σcε1,t+1

+f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (D.103)

Finally, we re-write f rnn,t as an expectation involving f rnn−1,t+1, the state variables Z̃t,
and period t+ 1 shocks:

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t − r̄ − (e3 − e2B)A−1Z̃t+

+σcε1,t+1 + f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (D.104)

D.3.3 Risk-neutral returns

We plug risk-neutral price-consumption ratios and bond prices into equations (D.68)
through (D.74). This gives risk-neutral returns on the consumption claim, risk-neutral
log excess bond returns, and risk-neutral bond yields. We then substitute risk-neutral
returns on the consumption claim into (D.80)-(D.81) to obtain risk-neutral log excess
stock returns.

D.3.4 Cash-flow news, real-rate news, and risk-premium excess returns

We decompose risk-neutral returns further into cash-flow news and real-rate news.
We use the approximate log-linear decomposition of Campbell and Shiller (1988):

xrδ,rnt+1 = rδ,rnt+1 − rt, (D.105)

= rδ,rnt+1 − Etr
δ,rn
t+1 (D.106)

= (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j︸ ︷︷ ︸
Cash Flow News

− (Et+1 − Et)
∞∑
j=1

ρjrt+j︸ ︷︷ ︸
Real Rate News

. (D.107)

The first equality follows, because the risk neutral SDF ensures that expected risk
neutral returns are equal to the real risk-free rate rt. Here, ρ is the log-linearization
constant corresponding to the risk-neutral price-dividend ratio

ρ =
1

1 + exp (mean(pdδ,rn))
, (D.108)
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and mean(pdrn) denotes the average risk-neutral log price-dividend ratio, which in
practice we obtain from 2 model simulations of length 10000.

We use the following analytic expression for the equity excess returns due to real-
rate news:

xrδ,rrt+1 = − (Et+1 − Et)
∞∑
j=1

ρjrt+j (D.109)

= −ρ (e3 − e2B) (I − ρB)−1Qut+1. (D.110)

We obtain cash-flow news as risk-neutral excess returns minus returns due to real-rate
news:

xrδ,cft+1 = xrδ,rnt+1 + ρ (e3 − e2B) (I − ρB)−1Qut+1 (D.111)

The risk-premium component of equity excess returns equals log excess stock
returns minus risk-neutral excess returns:

xrδ,rpt+1 = xrδt+1 − xr
δ,rn
t+1 . (D.112)

We similarly decompose bond returns into cash-flow news, real-rate news, and
risk-premium excess returns, using the log-linear exact expression from Campbell
and Ammer (1993):

xr$,rn
n,t+1 = r$,rn

t+1 − it, (D.113)

= r$,rn
n,t+1 − Etr

$,rn
n,t+1, (D.114)

= (Et+1 − Et)

{
−

n−1∑
i=1

πt+1+i −
n−1∑
i=1

rt+1+i

}
. (D.115)

The real-rate news component of nominal bond log excess returns is simply the risk-
neutral log excess return on a real n-period bond

xr$,rr
n,t+1 = (Et+1 − Et)

n−1∑
i=1

rt+1+i, (D.116)

= xrrnt+1. (D.117)

With this, we compute the cash-flow news component of nominal bond returns:

xr$,cf = xr$,rn
t+1 − xrrnt+1. (D.118)

The risk-premium component of log excess nominal bond returns is defined as the log
excess return minus the risk-neutral log excess return:

xr$,rp
t+1 = xr$

t+1 − xr
$,rn
t+1 . (D.119)
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E Details: Numerical algorithm

Since our preferences nest Campbell-Cochrane, a minimum requirement for any nu-
merical solution method is that it must be accurate for the original Campbell-Cochrane
model and calibration. We evaluate asset prices by iterating on a grid for the state
vector following Wachter (2005). Other numerical methodologies are faster, but their
cost is that they cannot replicate the economic properties of Wachter (2005)’s numer-
ical solution for Campbell-Cochrane. In unreported results, we verified that analytic
linear approximations to the sensitivity function λ (e.g. Lopez, López-Salido, and
Vazquez-Grande 2015), numerical higher-order perturbation methods using Dynare
(Rudebusch and Swanson 2008), and global projection methods give solutions for
Campbell-Cochrane that are economically very different from Wachter (2005)’s nu-
merical solution.

Other approaches in the literature are also not appropriate for our problem. While
Chen (2017) solves a model with habit and production using global projection and per-
turbation methods, his model features a linear sensitivity function and heteroskedastic
consumption. By contrast, we have homoskedastic consumption and a highly non-
linear sensitivity function. Similarly, affine term structure models, such as Dai and
Singleton (2000), generate affine relations between risk premia and state variables by
assuming analytically convenient functional forms for the pricing kernel. In contrast
to models that assume more convenient pricing kernels, our preferences are consis-
tent with the standard log-linear New Keynesian consumption Euler equation and
generate conditionally homoskedastic macroeconomic dynamics.

While iterating on a grid is significantly slower than perturbation or global pro-
jection methods, it is not prohibitively so. Our MATLAB algorithm for solving the
asset pricing recursions (described in Section E.1) takes 80 seconds to run on a Lenovo
X270 laptop with an i7-7600 CPU. Simulating the model (described in Section E.2)
takes 11 seconds. The risk-neutral asset pricing recursions and simulating the risk-
neutral stock returns take an additional 80 seconds and 11 seconds. MATLAB is not
a particularly efficient programming language, so it is plausible that further speed
ups are possible by using a lower-level programming language, such as FORTRAN or
C.

E.1 Implementing the asset pricing recursions

We implement the recursions in Sections D.2.2 and D.2.3 numerically through value
function iteration on a grid. We solve for the functions fn, bn, and b$

n using value
function iteration along a five-dimensional state vector. We use a five-dimensional
grid, with the first three dimensions corresponding to Z̃t, the fourth dimension cor-
responding to ŝt, and the fifth dimension corresponding to xt−1.
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E.1.1 Grid

In this section, we use Z̃, ŝ, x to denote the corresponding time-t variables. We use
superscripts − to denote variables in the previous period and + to denote variables in
the next period. We solve numerically for fn, bn, and b$

n as functions of the vector of

state variables
[
Z̃, ŝ, x−

]
.

Our grid is densest along the ŝ dimension to capture important non-linearities of
asset prices with respect to the surplus consumption ratio. Following Wachter (2005),
we choose a grid for the surplus consumption ratio that consists of an upper segment
and a lower segment and covers a wide range of values for st. Let Sgrid,1 denote a
vector of 20 equally spaced points between 0 and Smax with Smax included and sgrid,2
a vector of 30 equally spaced points between min (log (Sgrid,1)), and −50. The grid
for ŝt = st − s̄ then consists of the concatenation of sgrid,2 − s̄ and log (Sgrid,1)− s̄.

We find that bond and stock prices are close to loglinear in Z̃ and x̂−, so coarser
grids are sufficient along those dimensions of the state vector. In fact, the analytic
expressions for f1, b2, and b$

2 show that one-period zero-coupon consumption claims
and two-period bond prices are exactly log-linear in Z̃ and x−. Numerical results
indicate that this property translates to longer-period claims and fn, bn, and b$

n are
still approximately linear in Z̃ and x− for general n. To speed up the value function
iteration, we therefore use two grid points for each dimension of Z̃ and for x−.

For Z̃, we use an equal-spaced three-dimensional grid. Let N denote the number
of grid points along each dimension and m the width of the grid as a multiple of the
unconditional standard deviation of Z̃. For each dimension of Z̃, we choose a grid of
N equal-spaced points with the lowest point equal to −m × std(Z̃) and the highest
point equal to m× std(Z̃). Here, the unconditional variance-covariance matrix of Z̃
is determined implicitly by the equation:

std(Z̃) =

√
B̃V ar

(
Z̃
)
B̃′ + diag(1, 1, 0). (E.1)

For our baseline grid, we set N = 2 and m = 2.

For x−, we consider an equal-spaced grid with sizexm points ranging from

min
(
e1AZ̃t : Z̃ ∈ grid

)
to max

(
e1AZ̃ : Z̃ ∈ grid

)
. This choice of grid ensures that

the grid for x− covers the entire range of output gap values implied by the grid for
Z̃. In our baseline evaluation, we set sizexm = 2.

With N = 2 grid points along each of the three dimensions of Z̃, 50 gridpoints for
ŝ, and sizexm = 2 grid points for x−, the combined grid has a total of 23 ·50 ·2· = 800
points.
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E.1.2 Numerical integration

Following Wachter (2005), we use Gauss-Legendre quadrature to evaluate the expec-
tations (D.44), (D.57), and (D.62) numerically. Gauss-Legendre quadrature is or-
ders of magnitude faster than computing expectations by simulation. As in Wachter
(2005), we evaluate infinite integrals over the density of standardized consumption
shocks (ε1,t) using 40 integration node points and an integration domain ranging from
−8 standard deviations to +8 standard deviations. To conserve speed and memory,
we integrate over shocks orthogonal to surplus consumption (ε2,t) using a somewhat
smaller number of integration node points, 15, but again an integration domain of
±8 standard deviations. To evaluate bond and stock prices at points that are not on
the grid, we use loglinear multi-linear interpolation and extrapolation.

For completeness, we recap the key features of Gauss-Legendre integration. Let
xGLi, i = 1, ..., NGL and wGLi = 1, ..., NGL denote the Gauss-Legendre nodes
and weights of NGLth order. Gauss-Legendre quadrature then approximates a def-
inite integral of any smooth function f on the interval [−1, 1] by

∫ 1

−1
f (x) dx ≈∑NGL

i=1 wGLif (xGLi). By change of variable, it is immediate that we can approxi-
mate the integral of a smooth function f on an interval [−ā, ā] by

∫ ā

−ā
f (x) dx ≈

NGL∑
i=1

ā× wGLi︸ ︷︷ ︸
wGLāi

f

ā× xGLi︸ ︷︷ ︸
xGLāi

 . (E.2)

Here, we use xGLāi and wGLāi to denote Gauss-Legendre node points and weights
scaled to the interval [−ā, ā].

We implement Gauss-Legendre quadrature to take expectations over εt+1 as fol-
lows. Let N1 denote the number of Gauss-Legendre nodes and ā1 denote the integra-
tion domain for the shock ε1,t, that is perfectly correlated with output innovations.
We set xGL1,i = xGLā1

i and wGL1,i = wGLā1
i for i = 1, ..., N1, where the weights and

nodes are as defined in equation (E.2). Moreover, we set

pGL1,i =
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i/

N1∑
i=1

(
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i

)
, (E.3)

and use the scaled weights pGL1,i for numerical integration. The scaling of (E.3)
ensures that the numerical expectation of a constant is evaluated to be the same
constant (or intuitively that discretized probabilities sum to one).

36



We then evaluate numerically the expectation of any smooth function f of ε1,t via:

E [f (ε1,t)] =

∫ ∞
−∞

1√
2π
exp

(
−ε21
)
f (ε1) dε1, (E.4)

≈
∫ ā1

−ā1

1√
2π
exp

(
−ε21
)
f (ε1) dε1, (E.5)

≈
N1∑
i=1

pGL1,if (xGL1,i) . (E.6)

Accuracy increases with ā1 and N1. We follow Wachter (2006) in setting N1 = 40
and ā1 = 8.

To take expectations over ε2,t, we similarly use Gauss-Legendre quadrature with
integration domain ā2 = 8 and number of nodes N2 = 15. We set xGL2,i = xGLā2

i

and wGL2,i = wGLā2
i for i = 1, ..., N2 and define the scaled weights:

pGL2,i =
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i/

N2∑
i=1

(
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i

)
, (E.7)

Since ε1,t and ε2,t are independent, we can evaluate the expectation of any smooth
function f (ε1,t, ε2,t) as

Ef (ε1,t, ε2,t) =

∫ ∞
−∞

1√
2π
exp

(
−ε22
) ∫ ∞
−∞

1√
2π
exp

(
−ε21
)
f (ε1, ε2) dε1dε2, (E.8)

≈
N2∑
i=1

pGL2,i

[
N1∑
j=1

pGL1,jf (xGL1,i, xGL2,j)

]
. (E.9)

E.1.3 Recursive step

Let a superscript num denote the numerical counterparts to the analytic functions fn,

bn, b$
n. We start by initializing fnum1

(
Z̃, ŝ, x−

)
, bnum2

(
Z̃, ŝ, x−

)
, and b$,num

2

(
Z̃, ŝ, x−

)
at each grid point according to the analytic expressions (D.41), (D.53) and (D.55).

Next, we apply the recursive expressions (D.44), (D.57), and (D.62) along the

grid. Having computed fnumn−1 along the entire grid, we evaluate fnumn

(
Z̃, ŝ, x−

)
at a
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grid point
(
Z̃, ŝ, x−

)
as follows. We compute the expectation (D.44) numerically as:

fnumn (Z̃, ŝ, x−) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
g + e1[B − φI]A−1Z̃

−r̄ − (e3 − e2B)A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−(γ(1 + λ(ŝ))− 1)σc × xGL1,i

+fnumn−1

B̃Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(E.10)

where we evaluate x as a function of the state vector as

x = e1A
−1Z̃. (E.11)

To compute the right-hand-side of (E.10), we need to evaluate fnumn−1 at points that are
not on our grid. We interpolate fnumn−1 linearly (and hence F num

n−1 log-linearly). When
the argument is outside the range of the grid, we extrapolate fnumn−1 linearly. It is clear
from (D.41) that linear inter- and extrapolation gives a good approximation of f1. In
fact, we can see that f1 is exactly linear in Z̃, independent of x−, and that it depends
on λ(ŝ) = λ0

√
1− 2ŝ. We accommodate the fact that f1 is not linear in ŝ by choosing

a much denser grid along the ŝ dimension. We do not have analytic expressions for
fn, n > 1 (after all, that’s why we need a numerical solution), but numerical solutions
indicate that linear inter- and extrapolation gives good approximations for fn with
the chosen grid.

In terms of coding (E.10), we face a trade-off between speed and readability of
the code. We pre-allocate matrices outside loops and we code linear interpolation by
hand (rather than using a pre-written interpolation routine) to conserve speed and
memory. We also inline the linear interpolation steps (i.e. write them directly into
the main function rather than calling a separate interpolation function). This speeds
up the code substantially, while reducing its readability.

There are different methods to interpolate multidimensional functions. Specif-
ically, we use multi-linear interpolation, corresponding to interpolating along each
dimension one at a time. In order to enhance computational speed we do not rely on
a pre-programmed interpolation routine, instead coding our own minimal interpola-
tion routine. It is well-known that the result of multi-linear (or in the two-dimensional
case bi-linear) interpolation does not depend on in which order one interpolates the

different arguments. We find it convenient to interpolate fnumn−1

(
Z̃, ŝ, x−

)
first along

the x− dimension, then along ŝ, then along Z̃1, and finally along the Z̃2 and Z̃3

dimensions.

Finally, we evaluate the price-consumption ratio for the aggregate consumption
stream by approximating it as the sum of the first 300 zero-coupon consumption
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claims:

Gnum
(
Z̃t, ŝt, xt−1

)
=

300∑
n=1

exp
(
fnumn (Z̃t, ŝt, xt−1)

)
. (E.12)

We iterate bnumn

(
Z̃, ŝ, x−

)
and b$,num

n

(
Z̃, ŝ, x−

)
similarly according to:

bnumn (Z̃t, ŝt, xt−1) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
−r̄ − (e3 − e2B)A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−γ (1 + λ(ŝ))σc × xGL1,i

+bnumn−1

B̃Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 , (E.13)

and

b$,num
n (Z̃t, ŝt, xt−1) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
−r̄ − e3A

−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

− (γ (1 + λ(ŝ))σc + vpi1 + n · vec∗e′1)× xGL1,i

− (vpi2 + n · vec∗e′2)xGL2,j +
n2

2

(
σ⊥
)2

+b$,num
n−1

B̃Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(E.14)

We again use multi-linear interpolation and extrapolation to evaluate b$,num
n−1 and bnumn−1

at points that are not on the grid.

We similarly implement the recursions (D.95), (D.97), and (D.104) numerically
to obtain risk-neutral bond and consumption claim valuations Brn,num

n , Brn,$,num
n ,

Grn,num.

E.2 Simulating the Model

We simulate a draw of length T . Reported results in Tables 2 through 5 use T = 10000
and discard the first 100 simulation periods to ensure that the system has reached the
stochastic steady-state. Tables 2 through 5 report model moments averaged across 2
independent simulations.

We use superscript sim to denote simulated quantities. We use the MATLAB

function mvnrnd to draw εsim1 , ..., εsimT
iid∼ N (0, diag(1, 1, 0)). We similarly generate
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independent draws for the orthogonal shock ε⊥,sim1 , ..., ε⊥,simT

iid∼ N(0, σ⊥). We generate
draws for u∗t

sim by plugging εsimt and ε⊥,simt into (D.60). We generate draws for
Z̃sim
t , t = 1, ..., T by setting Z̃sim

1 = 0 and then updating according to (D.30). This
gives the simulated output gap, inflation gap, and interest rate gap for t = 1, 2, ..., T
through the relation[
xsimt , π̂simt , îsimt

]
= Ŷ sim

t = A−1Z̃sim
t . We generate draws for the surplus consumption

ratio by setting ŝsim1 = 0 and xsim0 = 0 and then updating according to (D.22).
We generate the simulated inflation target series π∗t , t = 1, 2, ..., T by starting from
π∗1

sim = 0 and updating it according to equation (22) in the main paper. We initialize
simulated log consumption at csim1 = 0 and update it using (D.17). We then drop
the first 100 simulation periods to allow the system to converge to the stochastic
steady-state.

Having generated draws for the five state variables Z̃sim, ŝsim, and xsimt−1, we obtain

the simulated consumption-claim price-dividend ratio as (P c/C)simt = Gnum
(
Z̃sim
t , ŝsimt , xsimt−1

)
,

n-period real bond prices as

P sim
n,t = Bnum

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

B$,sim
n,t = B$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain the corresponding risk-neutral valua-

tion ratios by plugging into the risk-neutral asset pricing solutions:

(P c/C)rn,simt = Grn,num
(
Z̃sim
t , ŝsimt , xsimt−1

)
,

P rn,sim
n,t = Brn,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

Brn,$,sim
n,t = Brn,$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain nominal bond prices P $,sim

n,t by

combining B$,sim
n,t and π∗t

sim according to (D.46). We similarly obtain risk-neutral

nominal bond prices P rn,$,sim
n,t by combining Brn,$,sim

n,t and π∗t
sim according to (D.46).

To deal with the fact that Z̃sim
t , ŝsimt , xsimt−1 are not usually on grid points we

adopt a similar linear interpolation strategy as in the numerical evaluation of the
asset pricing recursions described in Section E.1.3. We interpolate Gnum, Bnum

n , and
B$,num
n log-linearly. We simplify the interpolation strategy slightly compared to Sec-

tion E.1.3. We use the MATLAB function griddedInterpolant, sacrificing some com-
putational speed for simpler code. Even though rare events (and especially extremely
negative realizations for ŝ) matter for the value function iteration in Section E.1.3,
low-probability events have very little impact on the properties of simulated asset
prices taking as given Gnum, Bnum, and B$,num. We therefore simplify the log-linear
interpolation by truncating Z̃sim

t , ŝsimt , and xsimt−1 at the maximum and minimum values
covered by the grid.

Having generated
(
P c

C

)sim
t

, t = 1, ..., T , we compute log returns on the consump-

tion claim rc,simt+1 according to (D.68). We obtain simulated price-dividend ratios for
levered stocks by plugging into (D.75). Finally, we obtain log bond yields and stock
and bond excess returns as described in Section D.2.5. Risk-neutral bond and stock
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returns are computed by substituting
(
P c

C

)rn,sim
, P rn,$,sim

n,t , and P rn,sim
n,t into the same

relations.

We obtain cash-flow news, real-rate news, and risk-premium excess returns for
nominal bonds and levered stocks by substituting simulated returns and real rates
into the expression in Section D.3.4. In our simulations, it is possible but very rare
(less than 1 in 20000 simulation periods) that the levered price-dividend ratio turns
negative. In that event, we discard the simulation run and simulate the model again.

E.3 Parameter units

This subsection details the relation between parameter values in empirical (reported
in the paper) and natural units (used for solving the code). We solve the model in
natural units. However, it is most natural to report empirical moments and summary
statistics in empirical units for interpretability.

For comparability with empirical moments, Table 1 reports model parameters in
units that correspond to the output gap in annualized percent, and inflation and
interest rates in annualized percent. For comparability with Campbell-Cochrane, we
report the discount rate and the persistence of surplus consumption in annualized
units. Concretely, Table 1 reports the following scaled parameters:

400× g, (E.15)

400× r̄, (E.16)

θ4
0, (E.17)

β4, (E.18)
1

4
× ψ, (E.19)

400× σπ, (E.20)

400× σi, (E.21)

400× σ∗, (E.22)

4× bπx, (E.23)

4× bix (E.24)

All other parameters reported in Table 1 do not need to be scaled.
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F Details: Econometric methodology

F.1 Impulse response functions

This section describes how we estimate the macroeconomic impulse responses, that
we use for the SMM estimation and are shown in Figures 3 through 5. We follow the
procedure described below for both actual and simulated data, with the simulated
data length matching the length of the empirical sample. Model impulse responses
in Figures 3 through 5 are averaged over 100 simulations. In this section, we use
subscripts IRF if variable names would otherwise be similar to different variables
elsewhere in the paper.

We estimate a VAR(1) of the form

YIRF,t = ΠYIRF,t−1 + εt, (F.1)

where we define the vector for the VAR(1) as:

YIRF,t = [xt−1, πt, it]. (F.2)

The shocks εt are not orthogonal and we denote their estimated variance-covariance
matrix by Σε.

Next, we rotate the innovations to be orthogonal. This means that we need to
re-write the VAR(1) in the form:

R−1YIRF,t = ΠRYIRF,t−1 + ηt, (F.3)

where ηt is a vector of uncorrelated shocks, R is an invertible matrix, and ΠR = R−1Π.
We write the variance-covariance matrix of ηt as:

Ση = Eη′tηt, (F.4)

=

 σ(η1)2 0 0
0 σ(η2)2 0
0 0 σ(η3)2

 . (F.5)

There are many ways of writing the VAR(1) in the form (F.3). Following Sims
(1986), we pick a unique representation by requiring R−1 to be lower-diagonal with
ones along the diagonal. Having estimated Π and Σε, we obtain R, ΠR, and Ση as
follows:

1. Obtain the matrix CIRF as the lower-triangular Cholesky factorization such
that Σε = CIRFC

′
IRF (MATLAB: C=chol(Sigmae,’lower’))
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2. Further decompose CIRF into a lower triangular matrix with unit coefficients
along the diagonal R and a diagonal matrix DIRF , i.e. CIRF = RDIRF , where
R has ones along the diagonal and DIRF is a diagonal matrix. (MATLAB:
D=diag(diag(C)); R = C ∗ inv(D))

3. We can then multiply (F.1) by R−1 to get

R−1YIRF,t = R−1ΠYIRF,t−1 +R−1εt. (F.6)

The variance-covariance matrix of ηt = R−1εt is diagonal with

E
[
R−1εt

(
R−1εt

)′]
, (F.7)

= R−1ΣεR
−1′ , (F.8)

= R−1CIRFC
′
IRFR

−1′ , (F.9)

= R−1RDIRFD
′
IRFR

′R−1′ , (F.10)

= DIRFD
′
IRF . (F.11)

We therefore define:

ηt = R−1εt, (F.12)

Ση = DIRFD
′
IRF , (F.13)

ΠR = R−1Π. (F.14)

We can now solve for impulse responses. For the output gap impulse responses
we start with a unit standard deviation shock to the output gap. We therefore look
at macroeconomic impulse responses, where the period 1 shock equals

η1 = [σ(η1), 0, 0]′ , (F.15)

and shocks in all other periods equal zero. Equivalently, we look at the impulse
response to the shock

ε1 = R[σ(η1), 0, 0]′, (F.16)

and εt = 0 ∀t > 1. The n response to a one standard deviation shock to the output
gap then is computed as:

Πn−1ε1, (F.17)

= Πn−1R [σ(η1), 0, 0]′ . (F.18)

Impulse responses to inflation and Federal Funds rate shocks are computed analo-
gously as Πn−1R[0, σ(η2), 0]′ and Πn−1R[0, 0, σ(η3)]′.
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F.2 Expressions for correlations with the output gap

The SMM estimation procedure matches the correlation between innovations to the
20-quarter expected Federal Funds rate and output gap innovations. In the data, we
proxy for this correlation as

Ĉorrxi ≡ Ĉorr

(
1

20
(it + it+1 + ...+ it+19) , xt

)
, (F.19)

where t ranges from the first to the last quarter in either period 1 or period 2.
The empirical correlation of 5-year average inflation with the output gap is computed
analogously, with it, it+1, .., it+19 replaced by πt, πt+1, ...πt+19. The empirical inflation-
output gap correlation is computed as

Ĉorr (πt, xt) , (F.20)

where t ranges from the first to the last quarter in either period 1 or period 2.

The model conditional correlation of the 5-year expected Federal Funds rate with
the output gap is computed analytically according to:

Corrt−1

(
1

20
Et (it + it+1 + ...+ it+19) , xt

)
, (F.21)

=
QMΣu

(
e3 (I −B)−1 (I −B20)Q+ 20e3

)′√
QMΣuQ′M

√(
e2 (I −B)−1 (I −B20)Q+ 20e3

)
Σu

(
e3 (I −B)−1 (I −B20)Q+ 20e3

)′ .
(F.22)

The model conditional correlation of 5-year expected inflation with the output
gap equals:

Corrt−1

(
1

20
Et (πt + πt+1 + ...+ πt+19) , xt

)
, (F.23)

=
QMΣu

(
e2 (I −B)−1 (I −B20)Q+ 20e3

)′√
QMΣuQ′M

√(
e2 (I −B)−1 (I −B20)Q+ 20e3

)
Σu

(
e3 (I −B)−1 (I −B20)Q+ 20e3

)′ .
(F.24)

The model conditional correlation of one-quarter inflation with the output gap
equals:

Corrt−1 (πt, xt) =
QMΣu (e2Q+ e3)′√

QMΣuQ′M
√

(e2Q+ e3) Σu (e2Q+ e3)′
(F.25)
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F.3 Confidence intervals and objective function

We use a bootstrap method to compute confidence intervals for the empirical impulse
responses shown in Figures 3 through 5 and for the variances of the impulse responses
used in the SMM estimation. Let Π and Σε denote the VAR(1) coefficient matrix and
the variance-covariance matrix of shocks from estimating (F.1) on actual data. We
then generate bootstrapped data from this VAR(1) by simulating Y boot

IRF,t of identical
sample length as the true data according to

Y boot
IRF,t = ΠY boot

IRF,t−1 + εboott , (F.26)

where εboott are drawn as iid normal with mean zero and variance-covariance Σε. On
the bootstrapped data, we then apply the methodology for IRFs described in Section
F.1. That is, we re-estimate (F.1) on the bootstrapped data and use the resulting
estimates to construct bootstrapped impulse response functions. We generate 1000
independent bootstrap samples. Figures 3 through 5 show confidence intervals, such
that 95% of the time the bootstrapped impulse responses are within the interval.

For our objective function, we define the empirical target moments as follows.
Ψ̂ is [52 × 1]. It includes 51 = 6 · 9 − 3 impulse responses and the 5-year average
Federal Funds rate-output gap correlation. We have 51 impulse response moments,
because we have nine impulse responses at one (shock period), two, four, 12, 20, and
40 quarters each. However, three of the shock period impulse responses are zero by
our choice of orthogonalization and we exclude them from the objective function.
The last element of Ψ̂−Ψ(param) is the square-root of the 20-quarter Federal Funds
rate-output gap correlation in the model minus the data, defined as√∣∣∣Corrt−1 ((it + i+ t+ 1 + ...+ i19) , xt)− Ĉorr

(
1
20

(it + i+ t+ 1 + ...+ i19) , xt
)∣∣∣.

Let V̂ denote the bootstrapped variance-covariance matrix of Ψ̂boot − Ψ̂, where
the 51 first elements of Ψ̂boot − Ψ̂ are the difference between the bootstrapped im-
pulse response moments and the data impulse responses and the last element is√
Ĉorr

boot

xi − Ĉorrxi and Ĉorrxi and Ĉorr
boot

xi denote the 5-year average Federal Funds
rate-output gap correlation computed according to (F.19) in actual and bootstrapped
data. We then define the weighting matrix Ŵ for the SMM objective function as the
diagonal matrix with the inverse variances for the 51 impulse response moments and
200 along the diagonal:

Ŵ = diag(inv(V̂1,1), inv(V̂2,2), ..., inv(V̂51,51), 200). (F.27)

F.4 Grid search

We minimize the SMM objective function by grid search. Solving for the macroeco-
nomic dynamics once and simulating the macroeconomic impulse response functions
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(but not solving for asset prices) takes about 0.1 seconds. So the reason that the
estimation is computationally intensive is that we have a high-dimensional parame-
ter space, combined with the need to simulate impulse responses to adjust for small
sample effects in plausibly short empirical samples. We are minimizing over 12 param-
eters, so we have a high-dimensional optimization problem, for which gradient-based
optimization methods do not work well. We solve the challenges posed by high-
dimensional optimization by a) dividing parameters into blocks b) using the Harvard
Odyssey computing cluster c) grid search along an appropriate grid.

We minimize Obj(params) using a two-step grid search. To reduce the dimen-
sionality of the grid search, we separate the parameters into those determining the
slope coefficients in the VAR(1) paramsslope = [bπi, bππ, bπi, bix, biπ, bii] and those de-
termining the shock variances and correlations
paramsshocks = [σπ, σi, σ∗, ρπi, ρπ∗, ρi∗]. The grid search finds the parameter values
for paramsslope that minimize the objective function while holding the shock pa-
rameters at paramsvol = [0.1, 0.1, 0.1, 0, 0, 0]. This first grid search step solves and
simulates macroeconomic dynamics over a grid. The grid for this first step consists
of 10 equally-spaced points between −1 and 1 for every parameter in paramsslope. In
this first step, we thus solve and simulate the macroeconomic dynamics 106 times.
We discard parameter values in this step, where asset prices do not exist. We achieve
this high number of model evaluations by running up to 1000 model simulations in
parallel on the Harvard Odyssey computing cluster. In a second step, we find the
parameter vector paramsvol that minimize the objective function while holding con-
stant paramsslope at the previously estimated values. We use a grid with 10 points
for each of the 6 parameters in paramsslope. For the volatilities, we use equal-spaced
grids from 0.01% to 0.3%. For the correlations, we use equal-spaced grids from −0.99
to 0.99. We discard parameter vectors where asset prices do not exist.

F.5 Standard errors and hypothesis tests

F.5.1 Standard errors

This Section provides details on the parameter standard errors in Table 1. Despite
our non-standard weighting matrix, we can compute standard errors using standard
methods, similarly to Bekaert and Engstrom (2017) and CEE. Under the usual con-
ditions, the asymptotic distribution of the parameter estimates ̂params around their
true values params is given by:(

̂params− params
)
∼ N

(
0, V̂params

)
, (F.28)

V̂params =
(
M̂−1

SEĤ
′
SEŴ V̂ Ŵ ĤSEM̂

−1
SE

)
(F.29)

Ŵ is the diagonal weighting matrix used in the SMM objective function. V̂ is the
variance-covariance matrix of empirical moments. Both V̂ and Ŵ are obtained as
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described in Section F.3. The matrix ĤSE = ∇Ψ
(
̂params

)
is the Jacobian of the

model moments evaluated at the vector of point estimates, ̂params. Finally, M̂SE ≡
Ĥ ′SEŴ ĤSE.

We obtain the i’th column of ĤSE as the numerical derivative of the model mo-
ments with respect to parameter i. Specifically, we simulate moments while moving
parameter i by ±epsi from its point estimate, and dividing the difference by 2epsi.
We then compute ĤSE according to:

ĤSE =
[

Ψ( ̂params+e1eps1)−Ψ( ̂params−e1eps1)
2eps1

, . . . ,
Ψ( ̂params+e12eps12)−Ψ( ̂params−e12eps12)

2eps12

]
.

(F.30)

The matrix ĤSE is [52× 12], because we have 52 moments and 12 parameters.

There are two practical challenges when computing standard errors. The first one
is that the 12×12 matrix M̂SE may be hard to invert if its eigenvalues have drastically
different orders of magnitude. We deal with this first challenge by scaling the standard
deviations by 400 before doing the standard errors calculation. The second challenge
is that our moments are simulated, so there is simulation noise around the true
Ψ
(
̂params± eiepsi

)
. We deal with this second challenge by choosing values for

epsi that are large enough that movements in model moments are not dominated by
simulation noise. We allow for different epsilons epsi for different parameters, because
parameters have different scales. Specifically, we set epsi = 0.25×

∣∣ ̂paramsi∣∣.
F.5.2 Hypothesis tests

Let ̂params1 and ̂params2 denote the parameter point estimates for periods 1 and
2. Let V̂params,1 and V̂params,2 denote the asymptotic variance-covariance matrices for
periods 1 and 2, as defined in equation (F.29).

Table 1 reports the results from testing whether parameter i is equal in periods 1
and 2. Under the null hypothesis that params1(i) = params2(i), we have that:

̂params2(i)− ̂params1(i) ∼ N
(

0, ei

(
Vparams,1 + V̂params,2

)
e′i

)
. (F.31)

The test statistic is:(
̂params2(i)− ̂params1(i)

) (
ei

(
V̂params,1 + V̂params,2

)
e′i

)−1 (
̂params2(i)− ̂params1(i)

)
∼ χ2

1.

(F.32)

We compute p-value for the test that params1(i) = params2(i) by plugging the test
statistic (F.32) into the CDF of a chi-squared distribution with 1 degree of freedom.
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F.6 Kalman filter for Figure 1

In this section, we use subscript kal to denote parameters and processes specific to
the Kalman filter to distinguish them from variables with similar names elsewhere in
the paper. Let βt denote the bond beta estimated from daily returns over the past
quarter t. We model βt as an unobserved AR(1) component plus white measurement
noise. We denote the deviation of βt from its mean µkal by:

ykal,t = βt − µkal. (F.33)

We assume that ykal,t satisfies the plant and observation equations:

xkal,t = Akalxkal,t−1 + ukal,t, (F.34)

ykal,t = xkal,t + vkal,t, (F.35)

where ukal,t and vkal,t are mean zero, independent random variables with variances
σ2
kal,u and σ2

kal,v. The unobserved component xkal,t is the latent de-meaned beta of
nominal bonds, that we want to estimate.

We can re-write the system (F.34) and (F.35) as:

xkal,t = Akalxkal,t−1 + εkal,t, (F.36)

ykal,t = Ckalxkal,t−1 + ηkal,t, (F.37)

where

Ckal = Akal, (F.38)

Nkal = V ar(εkal,t) = σ2
kal,u, (F.39)

Lkal = Cov(εkal,t, ηkal,t) = σ2
kal,u, (F.40)

Mkal = V ar(ηkal,t) = σ2
kal,u + σ2

kal,v. (F.41)

Let Wkal,t denote the information available up to time t from observing ..., βt−1, βt.
Suppose that conditional on Wkal,0 the initial state xkal,0 is distributed N(x̂kal,0, Vkal,0)
and the state and observations obey the recursions (F.36) through (F.37). Standard
Kalman filter results then imply that conditional on Wkal,t, the current state is dis-
tributedN(x̂kal,t, Vkal,t) and that the conditional mean and variance obey the updating
recursions:3

x̂kal,t = Akalx̂kal,t−1 +Hkal,t(ykal,t − Ckalx̂kal,t−1), (F.42)

Vkal,t = Nkal + AkalVkal,t−1A
′
kal

−(Lkal + AkalVkal,t−1C
′
kal) ·

(Mkal + CkalVkal,t−1C
′
kal)
−1(L′kal + CkalVkal,t−1A

′
kal),

(F.43)

Hkal,t = (Lkal + AkalVkal,t−1C
′
kal)(Mkal + CkalVkal,t−1C

′
kal)
−1.

(F.44)

3We substitute into the Kalman filter updating equations from Richard Weber’s Optimization
and Control class notes available at http://www.statslab.cam.ac.uk/ rrw1/oc/index.html.
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The distribution of ykal,t conditional on the information available at time t − 1 is
normal with conditional mean:

E(ykal,t|Wkal,t−1) = Ckalx̂kal,t−1, (F.45)

and variance

V ar(ykal,t|Wkal,t−1) = Mkal + CkalVkal,t−1C
′
kal. (F.46)

The log-likelihood hence obeys the recursion:

LL(ykal,1, ykal,2, ..., ykal,t) = LL(ykal,1, ykal,2, ..., ykal,t−1)

−1

2
log(2π)− 1

2
log (Mkal + CkalVkal,t−1C

′
kal)

− (ykal,t − Ckalx̂kal,t−1)2

2(Mkal + CkalVkal,t−1C ′kal)
. (F.47)

We estimate the parameters µkal, Akal, σkal,u, σkal,v by maximizing the likelihood
function (F.47).

We consider a 95% confidence interval for the unobserved bond beta xkal,t + µkal
conditional on Wkal,t:

CI(xkal,t|Wkal,t) =
[
x̂kal,t + µkal − 1.96

√
Vkal,t, x̂kal,t + µkal + 1.96

√
Vkal,t

]
.

(F.48)

The estimated parameters for the betas are as follows: µkal = 0.60, Akal = 0.96,
σkalmna,u = 0.04, σkal = 0.08. We run exactly the same Kalman filter for the quarter-
end bond-stock correlations of daily returns and obtain: µkal,corr = 0.08, Akal,corr =
0.95, σkal,corr,u = 0.10, σkal,corr,v = 0.17. These parameter estimates show that both
betas and correlations are estimated to have substantial persistence, but also a high
volatility of iid noise, so filtering is useful in filtering out the noise.
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G Additional Model Results

G.1 Additional Model Moments

Table G.1: Macroeconomic Dynamics

79Q3-01Q1 01Q2-11Q4
Empirical Model Empirical Model

Nominal Short Rate Changes
Volatility 1.94 0.86 0.53 0.37
AR(1) Coefficient -0.36 -0.03 0.60 -0.10

Inflation Changes
Volatility (%) 0.83 0.96 1.03 1.28
AR(1) Coefficient -0.27 -0.06 -0.40 -0.26

Consumption growth
Volatility (%) 0.90 1.75 0.90 1.59
AR(1) Coefficient 0.21 0.03 0.60 0.25

Output gap
Volatility (%) 1.93 2.09 2.04 5.46
AR(1) Coefficient 0.92 0.91 0.94 0.99

The empirical nominal rate change equals the one-quarter change in the log end-of-quarter Federal
Funds rate from the Federal Reserve’s H.15 publication. The log Federal Funds rate is averaged over
the last five business days of each quarter and expressed in annualized percent. The inflation change
equals the one-quarter change in log quarterly inflation. Log quarterly inflation is the log change
in the seasonally adjusted GDP deflator in annualized percent. Log real quarterly consumption
growth and the log real output gap are in percent. The standard deviation of consumption growth
is annualized. We use real consumption expenditures data for nondurables and services from the
Bureau of Economic Analysis National Income and Product Accounts Tables. The output gap is log
real seasonally adjusted GDP minus log potential real GDP from the Congressional Budget Office.
Consumption, the GDP deflator, and real output variables are in chained 2009 dollars and obtained
via the St. Louis FRED. Model moments are averaged over 2 simulations of length 10000.

Table G.1 shows that the model generates a low volatility of consumption growth,
that is somewhat positively serially correlated. The volatility of nominal short rate
changes decreases from period 1 to period 2, just as in the data. The output gap
volatility of 5.46% in period 2 might at first appear high. However, we are not
concerned about this number because the output gap is also extremely persistent in
this period and the volatility of a highly persistent series from a long simulation is
hard to compare with a finite-sample volatility in the data. Notably, consumption
growth, which is a change and hence not extremely persistent, is not excessively
volatile in the model for this period.
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Table G.2: Real Bonds

79Q3-01Q1 01Q2-11Q4
Excess Returns

Term Premium 1.41 -0.94
Volatility 2.97 2.05
Sharpe Ratio 0.48 -0.46

Yields
Mean log Yield Spread 0.77 -0.44
Volatility 1.15 0.55

Bond-Stock Comovement
Bond-Stock Beta 0.13 -0.11
Bond-Stock Correlation 0.96 -0.88

This table reports model moments for 5-year real zero coupon bonds. The quarterly 5-year real
bond excess return is defined as the quarterly log return on a 5-year real zero-coupon bond in excess
of the 3-month log real risk-free rate. All moments for real bonds are computed analogously to
nominal bond moments in Table 3 in the main paper. The term premium, volatility of real bond
excess returns, and the log yield spread are in annualized percent. Model moments are averaged
over 2 simulations of length 10000.

Table G.2 shows model implications for real bonds. Model-implied real bond-
stock return correlations changed from positive in period 1 to negative in period 2.
US inflation-indexed bonds (TIPS) only became available during the second half of
our sample and even then remained illiquid. With this caveat, the model real bond
beta is in line with the data. In period 2, the stock market beta of empirical quarterly
log TIPS excess returns was −0.08 in the data, compared to −0.11 in the model.4 The
empirical correlation between log TIPS excess returns and stock returns was large and
negative at −0.33, compared to −0.88 in the model. The direction of change in the
model-implied real bond-stock correlation is also empirically plausible. US inflation-
indexed bonds were not available in our first period, but UK inflation-indexed bonds
were. Campbell, Shiller, and Viceira (2009) show that the UK inflation-indexed bond-
stock correlation was positive before 2000 and became negative thereafter, similarly
to the change implied by our model.

Table G.3 is analogous to Table 5 in the main paper, but it shows correlations
rather than covariances.

4We measure the quarterly log TIPS excess return as −(n−1)yn,t+1+nyn,t−it+πt+1, where yn,t
is measured as the five year continuously compounded TIPS yield. We obtain 5-year TIPS yields
from Bloomberg ticker ”USGGT05Y Index”.
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Table G.3: Decomposing Model Bond and Stock Return Correlations

Panel A: Stock Returns
79Q3-01Q1 01Q2-11Q4

Cash Flow Real Rate Risk Premium Total Cash Flow Real Rate Risk Premium Total
Cash Flow 1.00 0.92 0.93 0.96 1.00 -0.99 0.92 0.94
Real Rate · 1.00 0.92 0.94 · 1.00 -0.90 -0.91
Risk Premium · · 1.00 1.00 · · 1.00 1.00
Total · · · 1.00 · · · 1.00

Panel B: Bond Returns
79Q3-01Q1 01Q2-11Q4

Cash Flow Real Rate Risk Premium Total Cash Flow Real Rate Risk Premium Total
Cash Flow 1.0 -0.11 0.01 0.86 1.00 -0.32 0.07 0.80
Real Rate · 1.00 0.83 0.41 · 1.00 0.76 0.29
Risk Premium · · 1.00 0.48 · · 1.00 0.60
Total · · · 1.00 · · · 1.00

Panel C: Bond-Stock Returns
79Q3-01Q1 01Q2-11Q4

Bonds ↓/Stocks → Cash Flow Real Rate Risk Premium Total Cash Flow Real Rate Risk Premium Total
Cash Flow 0.06 -0.08 0.01 0.01 0.04 -0.16 -0.09 -0.12
Real Rate 0.90 0.98 0.88 0.91 -0.92 0.95 -0.81 -0.81
Risk Premium 0.88 0.86 0.97 0.96 -0.87 0.85 -0.95 -0.94
Total 0.53 0.43 0.49 0.50 -0.54 0.44 -0.63 -0.66

This table is analogous to Table 5 in the main paper, but it shows correlations instead of covariances. We decompose model stock and nominal bond
returns into real cash flow news, real rate news, and risk premium excess returns (Campbell and Ammer 1993). We solve for risk-neutral bond and
stock returns with the risk-neutral pricing kernel Mrn

t+1 = exp(−rt). We use the loglinear approximation of Campbell and Shiller (1988) to compute
real rate news for model stock and bond returns. Cash flow news are computed as risk-neutral excess returns minus real rate news. Risk premium
excess returns are the difference between stock or bond log excess returns and risk neutral log excess returns. For details of this decomposition see the
appendix. Panel A shows the correlations of stock return real cash flow news, real rate news, risk premium news, and total stock returns. Panel B
shows the correlations of bond return real cash flow news, real rate news, risk premium news, and total bond returns. Panel C shows the correlations
between bond real cash flow news, real rate news, risk premium news and total bond returns with stock real cash flow news, real rate news, risk
premium news, and total stock returns. Model moments are averaged over 2 simulations of length 10000.

52



G.2 Switching off the new parameters θ1 and θ2

This section shows that the new parameters θ1 and θ2 are needed to match the macroe-
conomic impulse responses. To this end, we estimate the model while constraining
the new preference parameters θ1 and θ2 to equal zero. With θ1 = θ2 = 0, agents have
exactly the same preferences as in Campbell and Cochrane (1999). Equation (13) in
the main paper shows that when θ1 = θ2 = 0, the macroeconomic Euler equation only
has a forward-looking term and no backward-looking term. Macroeconomic models
without asset prices, such as Fuhrer (2000) and Christiano, Eichenbaum, and Evans
(2005), use preferences that generate a macroeconomic Euler equation with both
backward- and forward-looking terms (typically with an approximation). The reason
given in those papers for needing a backward-looking term in the Euler equation is
that it generates hump-shaped impulse responses to an interest rate shock.

To give our model the best shot at matching the macroeconomic impulse responses
with θ1 = θ2 = 0, we re-optimize over the estimated parameters. That is, we set
θ1 = θ2 = 0 and re-run the same grid search procedure as for our baseline preference
parameters.

Table G.4: Parameters

Panel A: Calibrated Parameters conditional on θ1 and θ2 equal 0
Consumption Growth Rate g 1.89
Utility Curvature γ 2.00
Steady-State Riskfree Rate r̄ 0.94
Persistence Surplus Cons. θ0 0.87
Dependence Output Gap θ1 0
Dependence Lagged Output Gap θ2 0
Smoothing Parameter Consumption φ 0.93
Leverage δ 0.50

Implied Parameters
Discount Rate β 0.90
Euler Eqn. Lag Coefficient ρx 0
Euler Eqn. Forward Coefficient fx 1.08
Euler Eqn. Real Rate Slope ψ 0.13
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Table G.4: Parameters (continued)

Panel B: Estimated Parameters conditional on θ1 and θ2 equal 0
Lag Parameters 79Q3-01Q1 01Q2-11Q4

Inflation-Output Gap bπx 0.44 -0.44
Inflation-Inflation bππ 1.00 1.00
Inflation-Fed Funds bπi 0.56 1.00
Fed Funds-Output Gap bix -0.44 -0.44
Fed Funds-Inflation biπ 0.78 1.00
Fed Funds-Fed Funds bii 0.11 1.00

Std. Shocks (%)
Std. Infl. σπ 0.43 0.56
Std. Fed Funds σi 0.68 0.43
Std. Infl. Unit Root σ∗ 0.43 0.30

Shock Correlations
Inflation-Fed Funds ρπi -0.33 -0.11
Inflation-Infl. Unit Root ρπ∗ -0.11 0.33
Fed Funds-Infl. Unit Root ρi∗ 0.11 -0.33

Implied Parameters
Steady-State Surplus Cons. Ratio S̄ 0.07 0.06
Max. Surplus Cons. Ratio smax 0.11 0.10

This table is constructed analogously to Table 1 in the main paper, except that the calibrated
preference parameters θ1 and θ2 are set to zero. Panel A shows calibrated parameters, that are
held constant across subperiods. Consumption growth and the steady-state risk-free rate are in
annualized percent. The discount rate and the persistence of surplus consumption are annualized.
The estimated macroeconomic parameters in Panel B are reported in units corresponding to our
empirical variables, i.e. the output gap is in percent, and inflation, the Fed Funds rate and the unit
root component of inflation are in annualized percent. The implied Euler equation real rate slope
is reported in the same units, that is 1

4
1

γ(φ−θ1) . We report quarterly standard deviations of shocks

to annualized percent inflation, Fed Funds rate, and inflation target. We use superscripts *,**, and
*** to denote that for a parameter we can reject that it is constant across subperiods at the 10%,
5%, and 1% levels, accounting for estimation uncertainty in both periods.

Table G.4 shows the calibrated and estimated parameter values for the estimation
with θ1 = θ2 = 0. Table G.4, Panel B shows that many of the estimated parameters
are different from the values shown in Table 1 in the main paper. These changes
may be due to the inability of the model to fit impulse responses to interest rate
innovations with θ1 = θ2 = 0, which distorts estimates of other parameters.
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Figure G.2: Impulse Responses to Output Gap Innovations conditional on θ1 and θ2 equal 0
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This figure is analogous to Figure 3 in the main paper, but is based on the parameter values shown in Table G.4. This figure shows model (black)
and data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds rate in response to a one-standard
deviation output gap innovation. To provide a unique rotation of impulse responses, shocks are ordered such that an output gap shock affects inflation
and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the output gap contemporaneously, and a Fed Funds
rate shock affects neither inflation nor the output gap contemporaneously.
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Figure G.3: Impulse Responses to Inflation Innovations conditional on θ1 and θ2 equal 0
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This figure is analogous to Figure 4 in the main paper, but is based on the parameter values shown in Table G.4. This figure shows model (black)
and data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds rate in response to a one-standard
deviation inflation innovation. To provide a unique rotation of impulse responses, shocks are ordered such that an output gap shock affects inflation
and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the output gap contemporaneously, and a Fed Funds
rate shock affects neither inflation nor the output gap contemporaneously.
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Figure G.4: Impulse Responses to Fed Funds Innovation conditional on θ1 and θ2 equal 0
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This figure is analogous to Figure 5 in the main paper, but uses the parameter values shown in Table G.4. This figure shows model (black) and
data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds rate in response to a one-standard
deviation Federal Funds rate innovation. To provide a unique rotation of impulse responses, shocks are ordered such that an output gap shock affects
inflation and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the output gap contemporaneously, and a
Fed Funds rate shock affects neither inflation nor the output gap contemporaneously.
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Figures G.2 through G.4 show that the model with θ1 = θ2 = 0 provides an
unacceptable fit to the macroeconomic dynamics. The worse model fit with θ1 =
θ2 = 0 is particularly apparent in Figure G.4 compared to Figure 5 in the main paper.
Figure G.4 shows spikes in inflation, that subsequently mean-revert, in contrast to the
smooth and hump-shaped response in the data. Moreover, the inflation response to
an interest rate innovation has the wrong sign in Figure G.4. By comparison, Figures
3 through 5 in the main paper generate hump-shaped and smooth impulse responses
without spikes for all response variables, and the inflation responses to an interest
rate innovation match the sign in the data.
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