A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION

HARVARD
School of Public Health

Department of Epidemiology
Miguel-Angel Luque-Fernandez, PhD

July 19, 2014
INTRODUCTION

IE Definitions
IE Characteristics
Differences between IE M&E OR

COUNTERFACTUAL FRAMEWORK

History, definition and justification
What is a causal effect?

IE DESIGNS & METHODS

IE Designs: methods
IE controversies and myths
The best design

CASE STUDIES

Pre/post surveys
MSM
A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION
World Bank

"A systematic identification of the effects positive or negative, intended or not on individual households, institutions, and the environment caused by a given development activity such as a program or project"

http://web.worldbank.org
US Environmental Protection Agency

"A form of evaluation that assess the net effect of a program by comparing program outcomes with an estimate of what would have happened in the absence of the program”

http://www.epa.gov/evaluate/impact-eval/index.htm
Impact Evaluation

- **Impact Evaluation (IE)** assesses changes than can be attributed to a particular **intervention**.

- IE involves **COUNTERFACTUAL** analysis (**CAUSAL mechanism**), that is, a comparison between what actually happened and what would have happened in the absence of the intervention.
Impact Evaluation

- **Impact Evaluation (IE)** assesses changes than can be attributed to a particular *intervention*.

- IE involves **COUNTERFACTUAL** analysis (**CAUSAL mechanism**), that is, a *comparison between what actually happened and what would have happened in the absence of the intervention*.
Impact Evaluation

- **Impact Evaluation (IE)** assesses changes than can be attributed to a particular **intervention**.

- **IE** involves **COUNTERFACTUAL** analysis (**CAUSAL mechanism**), that is, a comparison between what actually happened and what would have happened in the absence of the intervention.
Impact Evaluation

- **IE** answers the question: What works for whom in what circumstances? Thus, **IE** involves **Mixed Methods**: contextual and qualitative analyzes.

- The main purpose of **IE** is to improve **evidence-based** policy making by means of providing **effectiveness** evaluations of public health interventions.
IE characteristics

Impact Evaluation

- **IE** answers the question: What works for whom in what circumstances? Thus, **IE** involves **Mixed Methods**: contextual and qualitative analyzes.

- The main purpose of **IE** is to improve **evidence-based** policy making by means of providing **effectiveness** evaluations of public health interventions.
Impact Evaluation

- **IE** answers the question: What works for whom in what circumstances? Thus, **IE** involves **Mixed Methods**: contextual and qualitative analyzes.

- The main purpose of **IE** is to improve **evidence-based** policy making by means of providing **effectiveness** evaluations of public health interventions.
Differences

Impact Evaluation

IE is the general framework where Monitoring and Evaluation (ME) and Operational Research (OR) are integrated.

- **ME** involves *evaluating* data available from the project over time in terms of goals, indicators and outcomes.

- **OR** seeks for tools that can enhance the quality of the *project*. The key element of OR is that the *research questions* are generated by identifying the constraints and challenges encountered during the implementation of program activities.
Impact Evaluation

IE is the general framework where **Monitoring and Evaluation (ME)** and **Operational Research (OR)** are integrated.

- **ME** involves **evaluating** data available from the project over time in terms of goals, indicators and outcomes.

- **OR** seeks for tools that can enhance the quality of the **project**. The key element of **OR** is that the **research questions** are generated by identifying the constraints and challenges encountered during the implementation of program activities.
Impact Evaluation

IE is the general framework where Monitoring and Evaluation (ME) and Operational Research (OR) are integrated.

- **ME** involves evaluating data available from the project over time in terms of goals, indicators and outcomes.

- **OR** seeks for tools that can enhance the quality of the project. The key element of OR is that the research questions are generated by identifying the constraints and challenges encountered during the implementation of program activities.
Differences

Impact Evaluation

- **IE** focuses on the **EFFECTIVENESS** of the project.

- **ME** focuses on the **IMPLEMENTATION** and **EVOLUTION** of the project over time.
Impact Evaluation

- **IE** focuses on the **EFFECTIVENESS** of the project.

- **ME** focuses on the **IMPLEMENTATION** and **EVOLUTION** of the project over time.

- **OR** focuses on enhancing the **QUALITY** of the project through **RESEARCH**.
Impact Evaluation

- **IE** focuses on the **EFFECTIVENESS** of the project.

- **ME** focuses on the **IMPLEMENTATION** and **EVOLUTION** of the project over time.

- **OR** focuses on enhancing the **QUALITY** of the project through **RESEARCH**.
Differences

Impact Evaluation

- **IE** focuses on the **EFFECTIVENESS** of the project.

- **ME** focuses on the **IMPLEMENTATION AND EVOLUTION** of the project over time.

- **OR** focuses on enhancing the **QUALITY** of the project through RESEARCH.
This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of causal effects from observational data. Classically known as the Neyman-Rubin Counterfactual Framework.
This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of causal effects from observational data.

Classically known as the Neyman-Rubin Counterfactual Framework.

The counterfactual framework offers an approach to IE when a Random Clinical Trial (RCT) is unfeasible or unethical.
This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of causal effects from observational data.

Classically known as the Neyman-Rubin Counterfactual Framework.

The counterfactual framework offers an approach to IE when a Random Clinical Trial (RCT) is unfeasible or unethical.
When an RCT is not possible

- This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of causal effects from observational data.

- Classically known as the Neyman-Rubin Counterfactual Framework.

- The counterfactual framework offers an approach to IE when a Random Clinical Trial (RCT) is unfeasible or unethical.
Justification

When a RCT is not possible

- The counterfactual framework offers an approach to IE when researchers need to assess treatment effects from survey data, census data, administrative data, or other types of data.

- "Data collected through the observation of systems as they operate in normal practice without any interventions implemented by randomized assignments rules" (Rubin, 1977, p.757)
When a RCT is not possible

- The counterfactual framework offers an approach to IE when researchers need to assess treatment effects from survey data, census data, administrative data, or other types of data.

- "Data collected through the observation of systems as they operate in normal practice without any interventions implemented by randomized assignments rules" (Rubin, 1977, p.757)

- Big opportunity for IE in the era of the BIG DATA REVOLUTION (e.g., Digital medical records, Births cohorts, international HIV cohorts, http://www.iedea-sa.org/-The International Epidemiologic Database to Evaluate HIV-)
Justification

When a RCT is not possible

- The counterfactual framework offers an approach to IE when researchers need to assess treatment effects from survey data, census data, administrative data, or other types of data.

- "Data collected through the observation of systems as they operate in normal practice without any interventions implemented by randomized assignments rules" (Rubin, 1977, p.757)

- Big opportunity for IE in the era of the BIG DATA REVOLUTION (e.g., Digital medical records, Births cohorts, international HIV cohorts, http://www.iedea-sa.org/-The International Epidemiologic Database to Evaluate HIV-).
The main challenge across different types of IE is to find a good counterfactual - namely, the situation a participating subject would have experienced had he or she not been exposed to the program.
Causal effects in the real world

\[\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)] \]

The outcomes for the treated and control individuals are:
Causal effect

Causal effects in the real world

\[\text{ATE} = \left[E(Y_i(1) \mid T = 1) \right] - \left[E(Y_i(0) \mid T = 0) \right] \]

The **Outcomes** for the treated and control individuals are:

\[Y_i(1) = Y_i(T = 1) \] for some treatment variable \(T \) (Treated).
Causal effects in the real world

\[\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)] \]

The **Outcomes** for the treated and control individuals are:

- \(Y_i(1) = Y_i(T = 1) \) for some treatment variable \(T \) (Treated).

- \(Y_i(0) = Y_i(T = 0) \) for some treatment variable \(T \) (Control).
Causal effect

Causal effects in the real world

\[
\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)]
\]

The Outcomes for the treated and control individuals are:

- \(Y_i(1) = Y_i(T = 1)\) for some treatment variable \(T\) (Treated).
- \(Y_i(0) = Y_i(T = 0)\) for some treatment variable \(T\) (Control).
Causal effect

Causal effects in the real world

\[\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)] \]

The Outcomes for the treated and control individuals are:

- \(Y_i(1) = Y_i(T = 1) \) for some treatment variable \(T \) (Treated).

- \(Y_i(0) = Y_i(T = 0) \) for some treatment variable \(T \) (Control).
Causal effects in an ideal world

The **Potential Outcomes** for an individual \(i \) if he/she received treatment or control are:

\[
Y_i(1) = Y_i(T = 0) \quad \text{is the counterfactual or potential outcome for}
\]

\[
Y_i(1) = Y_i(T = 1) \quad \text{(Treated)}
\]

\[
Y_i(1) = Y_i(T = 0)
\]

\[
Y_i(1) = Y_i(T = 1)
\]
Causal effect

Causal effects in an ideal world

The **Potential Outcomes** for an individual \(i \) if he/she received treatment or control are:

\[
Y_i(1) = Y_i(T = 0) \quad \text{is the counterfactual or potential outcome for} \\
Y_i(1) = Y_i(T = 1) \quad \text{(Treated)} \\
Y_i(0) = Y_i(T = 1) \quad \text{is the counterfactual or potential outcome for} \\
Y_i(0) = Y_i(T = 0) \quad \text{(Control)}
\]
Causal effects in an ideal world

The **Potential Outcomes** for an individual i if he/she received treatment or control are:

- $Y_i(1) = Y_i(T = 0)$ is the counterfactual or potential outcome for $Y_i(1) = Y_i(T = 1)$ (Treated)

- $Y_i(0) = Y_i(T = 1)$ is the counterfactual or potential outcome for $Y_i(0) = Y_i(T = 0)$ (Control)

However, we only observe:
Causal effects in an ideal world

The **Potential Outcomes** for an individual i if he/she received treatment or control are:

\[Y_i(1) = Y_i(T = 0) \]

is the counterfactual or potential outcome for
\[Y_i(1) = Y_i(T = 1) \] (Treated)

\[Y_i(0) = Y_i(T = 1) \]

is the counterfactual or potential outcome for
\[Y_i(0) = Y_i(T = 0) \] (Control)

However, we only observe:

\[Y_i(1) = Y_i(T = 1) \text{ and } Y_i(0) = Y_i(T = 0) \]
Causal effect in an ideal world

The Potential Outcomes for an individual i if he/she received treatment or control are:

\[Y_i(1) = Y_i(T = 0) \] is the counterfactual or potential outcome for \[Y_i(1) = Y_i(T = 1) \] (Treated)

\[Y_i(0) = Y_i(T = 1) \] is the counterfactual or potential outcome for \[Y_i(0) = Y_i(T = 0) \] (Control)

However, we only observe:

\[Y_i(1) = Y_i(T = 1) \] and \[Y_i(0) = Y_i(T = 0) \]
The fundamental problem of Causal inference

The counterfactual is not observed.
So the challenge of an IE is to create a convincing and reasonable comparison group for beneficiaries in light of this missing data.

Total Causal Effect

\[
[(Y_i(1) \mid T = 1) + (PO)] - [(Y_i(0) \mid T = 0) + (PO)]
\]
Causal effect

The fundamental problem of Causal inference

The counterfactual is not observed.
So the challenge of an IE is to create a convincing and reasonable comparison group for beneficiaries in light of this missing data.

Total Causal Effect

\[(Y_i(1) \mid T = 1) + (PO) - (Y_i(0) \mid T = 0) + (PO) \]
Causal effect

The fundamental problem of Causal inference

The counterfactual is not observed.
So the challenge of an IE is to create a convincing and reasonable comparison group for beneficiaries in light of this missing data.

Total Causal Effect

\[[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)] \]
Causal effect

The fundamental problem of Causal inference

The counterfactual is **not observed**.
So the challenge of an **IE** is to create a convincing and reasonable comparison group for beneficiaries in light of this **missing data**.

\[
\left(Y_i(1) \mid T = 1 \right) + \left(Y_i(1) \mid T = 0 \right) - \left(Y_i(0) \mid T = 0 \right) - \left(Y_i(0) \mid T = 1 \right)
\]
Causal effect

The fundamental problem of Causal inference

The counterfactual is not observed.
So the challenge of an IE is to create a convincing and reasonable comparison group for beneficiaries in light of this missing data.

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]
Causal effect

The fundamental problem of Causal inference

\[[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)] \]

The fundamental problem of Causal inference = Selection bias

\((Y_i(1) \mid T = 1) \neq (Y_i(1) \mid T = 0) \) and \((Y_i(0) \mid T = 0) \neq (Y_i(0) \mid T = 1) \)
Causal effect

The fundamental problem of Causal inference

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]

The fundamental problem of Causal inference = Selection bias

\[
(Y_i(1) \mid T = 1) \neq (Y_i(1) \mid T = 0) \text{ and } (Y_i(0) \mid T = 0) \neq (Y_i(0) \mid T = 1)
\]

The ATE (PATE and SATE) are biased

\[
\text{ATE} = [\mathbb{E}(Y_i(1) \mid T = 1) - \mathbb{E}(Y_i(0) \mid T = 0)] + B
\]
Causal effect

The fundamental problem of Causal inference

\[[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)] \]

The fundamental problem of Causal inference = Selection bias

\[(Y_i(1) \mid T = 1) \neq (Y_i(1) \mid T = 0) \text{ and } (Y_i(0) \mid T = 0) \neq (Y_i(0) \mid T = 1)\]

The ATE (PATE and SATE) are biased

\[
\text{ATE} = \left[E(Y_i(1) \mid T = 1) - E(Y_i(0) \mid T = 0) \right] + B \\
\text{PATE} = \frac{1}{N} \sum_i TE_i + B \\
\text{SATE} = \frac{1}{n/2} \sum_i TE_i + B
\]
Causal effect

The fundamental problem of Causal inference

\[[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]\]

The fundamental problem of Causal inference = Selection bias

\[(Y_i(1) \mid T = 1) \neq (Y_i(1) \mid T = 0) \text{ and } (Y_i(0) \mid T = 0) \neq (Y_i(0) \mid T = 1)\]

The ATE (PATE and SATE) are biased

\[
\text{ATE} = [E(Y_i(1) \mid T = 1) - E(Y_i(0) \mid T = 0)] + B
\]

\[
\text{PATE} = \frac{1}{N} \sum_i TE_i + B \quad \text{SATE} = \frac{1}{n/2} \sum_i TE_i + B
\]
Causal effect

The fundamental problem of Causal inference

In an ideal world, we would see this:

<table>
<thead>
<tr>
<th>Unit_i</th>
<th>X_i^1</th>
<th>X_i^2</th>
<th>X_i^3</th>
<th>T_i</th>
<th>Y_i(0)</th>
<th>Y_i(1)</th>
<th>Y_i(1) - Y_i(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>503</td>
<td>0</td>
<td>693</td>
<td>75</td>
<td>-698</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>985</td>
<td>0</td>
<td>111</td>
<td>108</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
<td>830</td>
<td>1</td>
<td>944</td>
<td>102</td>
<td>-842</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>938</td>
<td>1</td>
<td>14</td>
<td>111</td>
<td>97</td>
</tr>
</tbody>
</table>
Causal effect

The fundamental problem of Causal inference

In the real world, this is what we see:

<table>
<thead>
<tr>
<th>Unit_i</th>
<th>X_i^1</th>
<th>X_i^2</th>
<th>X_i^3</th>
<th>T_i</th>
<th>$Y_i(0)$</th>
<th>$Y_i(1)$</th>
<th>$Y_i(1) - Y_i(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>503</td>
<td>0</td>
<td>693</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>985</td>
<td>0</td>
<td>111</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
<td>830</td>
<td>1</td>
<td>?</td>
<td>102</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>938</td>
<td>1</td>
<td>?</td>
<td>111</td>
<td>?</td>
</tr>
</tbody>
</table>
Causal effect

The fundamental problem of Causal inference

In the real world, this is what we see:

- Infant birth weight (grams)
- Mother's age
- Smoker (red dots)
- Nonsmoker (blue dots)
Causal effect

The fundamental problem of Causal inference

In an ideal world, this is what we see:

- Observed (solid) and Unobserved (hollow) outcomes

![Graph showing observed and unobserved outcomes for smokers and nonsmokers vs. mother's age.]
Causal effect

The fundamental problem of Causal inference

In an ideal world, this is what we see:
Causal effect in an EXPERIMETAL study

The solution to the fundamental problem of Causal inference

\[
[(Y_i(1) | T = 1) + (Y_i(1) | T = 0)] - [(Y_i(0) | T = 0) + (Y_i(0) | T = 1)]
\]
Causal effect in an EXPERIMETAL study

The solution to the fundamental problem of Causal inference

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]

RANDOMIZATION makes the ATE UNBIASED:

\[
[(Y_i(1) \mid T = 1) = (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) = (Y_i(0) \mid T = 1)]
\]
Causal effect in an EXPERIMENTAL study

The solution to the fundamental problem of Causal inference

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]

RANDOMIZATION makes the ATE UNBIASED:

\[
[(Y_i(1) \mid T = 1) = (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) = (Y_i(0) \mid T = 1)]
\]
Causal effect in an EXPERIMETAL study

The solution to the fundamental problem of Causal inference

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]

RANDOMIZATION makes the ATE UNBIASED:

\[
[(Y_i(1) \mid T = 1) = (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) = (Y_i(0) \mid T = 1)]
\]

The solution to the fundamental problem of Causal inference

\[
\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)]
\]
Causal effect in an EXPERIMETAL study

The solution to the fundamental problem of Causal inference

\[
[(Y_i(1) \mid T = 1) + (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) + (Y_i(0) \mid T = 1)]
\]

RANDOMIZATION makes the ATE UNBIASED:

\[
[(Y_i(1) \mid T = 1) = (Y_i(1) \mid T = 0)] - [(Y_i(0) \mid T = 0) = (Y_i(0) \mid T = 1)]
\]

The solution to the fundamental problem of Causal inference

\[
\text{ATE} = [E(Y_i(1) \mid T = 1)] - [E(Y_i(0) \mid T = 0)]
\]
Causal effects in OBSERVATIONAL studies

When randomization is unethical or infeasible

Causal effect is biased (B):

\[
\text{ATE} + B
\]

Type of bias

1. **Observed**: The treatment assignment is not random.

2. **Unobserved**: Unobserved factors associated with both the treatment and the effect.
Causal effects in OBSERVATIONAL studies

When randomization is unethical or infeasible

Causal effect is biased (B):

\[\text{ATE} + B \]

Type of bias

1. **Observed**: The treatment assignment is not random.
2. **Unobserved**: Unobserved factors associated with both the treatment and the effect.
Causal effects in OBSERVATIONAL studies

When randomization is unethical or infeasible

Causal effect is biased (B):

\[\text{ATE} + B \]

Type of bias

1. **Observed**: The treatment assignment is not random.

2. **Unobserved**: Unobserved factors associated with both the treatment and the effect.
Causal effects in OBSERVATIONAL studies

How to use the Neyman-Rubin Counterfactual framework?

1. Be guided by the appropriate theory in our area of research.

2. We have to have a substantial knowledge of the context and program to evaluate.
Causal effects in OBSERVATIONAL studies

How to use the Neyman-Rubin Counterfactual framework?

1. Be guided by the appropriate theory in our area of research.

2. We have to have a substantial knowledge of the context and program to evaluate.

3. Apply the Neyman-Rubin Counterfactual Framework in order to consider an effect to be CAUSAL.
Causal effects in OBSERVATIONAL studies

How to use the Neyman-Rubin Counterfactual framework?

1. Be guided by the appropriate theory in our area of research.

2. We have to have a substantial knowledge of the context and program to evaluate.

3. Apply the Neyman-Rubin Counterfactual Framework in order to consider an effect to be CAUSAL.
How to use the Neyman-Rubin Counterfactual framework?

1. Be guided by the *appropriate theory* in our area of research.

2. We have to have a substantial knowledge of the *context* and program to evaluate.

3. Apply the Neyman-Rubin Counterfactual Framework in order to consider an effect to be *CAUSAL*.
Causal effects in OBSERVATIONAL study

ASSUMPTIONS to consider a CAUSAL EFFECT

Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundenedness or conditional Independence).

\[T_i \mid X_i \]
Causal effects in OBSERVATIONAL study

ASSUMPTIONS to consider a CAUSAL EFFECT

Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[T_i \perp X_i \]
Causal effect in OBSERVATIONAL study

ASSUMPTIONS to consider a CAUSAL EFFECT

Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]

- IID random variables.
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i | X_i\]

- IID random variables.
- The model used to estimate the assignment probability has to be correctly specified.
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundenedness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i | X_i\]

- IID random variables.
- The model used to estimate the assignment probability has to be correctly specified.
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]

- IID random variables.
- The model used to estimate the assignment probability has to be correctly specified.

- SUTVA: We have assumed that there is only one version of the treatment and the assignment to the treatment to one unit doesn’t affect the outcome of another unit.
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment Assumption (Unconfoundeness or conditional Independence).

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]

- IID random variables.
- The model used to estimate the assignment probability has to be correctly specified.

SUTVA: We have assumed that there is only on version of the treatment and the assignment to the treatment to one unit doesn’t affect the outcome of another unit.
Causal effect in OBSERVATIONAL studies

ASSUMPTIONS to consider a CAUSAL EFFECT

- Rosebaum & Rubin, 1983: **The Ignorable Treatment Assignment Assumption** (Unconfoundeness or conditional Independence).
 \[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]

 - IID random variables.
 - The model used to estimate the assignment probability has to **be correctly specified**.

- **SUTVA**: We have assumed that there is **only one version of the treatment** and the assignment to the treatment to one unit doesn’t affect the outcome of another unit.
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. Classic and Modern *Quasi-experimental* designs
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. **Classic and Modern** Quasi-experimental designs

3. **Mixed methods:**
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. Classic and Modern **Quasi-experimental** designs

3. **Mixed methods**:
 - Experimental + Qualitative Research.
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. Classic and Modern **Quasi-experimental** designs

3. **Mixed methods**:
 - Experimental + Qualitative Research.
 - Non-experimental + Qualitative Research.
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. Classic and Modern **Quasi-experimental** designs

3. **Mixed methods**:
 - Experimental + Qualitative Research.
 - Non-experimental + Qualitative Research.
Study designs

1. **Experimental**: RCT and CRT (considered the gold standard)

2. Classic and Modern **Quasi-experimental** designs

3. **Mixed methods**:
 - Experimental + Qualitative Research.
 - Non-experimental + Qualitative Research.
IE Methods

Different IE approaches

- **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental** Classical Methods
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
 - Marginal structural models (MSM) with Inverse probability weighting
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
 - Marginal structural models (MSM) with Inverse probability weighting
 - Double-difference (DD) (Panel data and Fixed-effect methods)
Different IE approaches

<table>
<thead>
<tr>
<th>Experimental Designs</th>
<th>Quasi-experimental Classical Methods</th>
<th>Quasi-experimental: Neyman-Rubin counterfactual framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomization evaluations (RCT&CRT)</td>
<td>Time series analysis</td>
<td>Matching methods (MM) (Propensity Score)</td>
</tr>
<tr>
<td>Steeped wedge design (one way crossover)</td>
<td>Before/After or Pre/Post designs</td>
<td>Inverse probability weighting (IPW) (Propensity score)</td>
</tr>
<tr>
<td></td>
<td>Repeat cross-sectional surveys</td>
<td>Marginal structural models (MSM) with Inverse probability weighting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Double-difference (DD) (Panel data and Fixed-effect methods)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumental variable (IV)</td>
</tr>
</tbody>
</table>
IE Methods

Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
 - Marginal structural models (MSM) with Inverse probability weighting
 - Double-difference (DD) (Panel data and Fixed-effect methods)
 - Instrumental variable (IV)
 - Regression discontinuity (RD)
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
 - Marginal structural models (MSM) with Inverse probability weighting
 - Double-difference (DD) (Panel data and Fixed-effect methods)
 - Instrumental variable (IV)
 - Regression discontinuity (RD)
Different IE approaches

1. **Experimental Designs**
 - Randomization evaluations (RCT&CRT)
 - Steeped wedge design (one way crossover)

2. **Quasi-experimental Classical Methods**
 - Time series analysis
 - Before/After or Pre/Post designs
 - Repeat cross-sectional surveys

3. **Quasi-experimental**: Neyman-Rubin counterfactual framework
 - Matching methods (MM) (Propensity Score)
 - Inverse probability weighting (IPW) (Propensity score)
 - Marginal structural models (MSM) with Inverse probability weighting
 - Double-difference (DD) (Panel data and Fixed-effect methods)
 - Instrumental variable (IV)
 - Regression discontinuity (RD)
CHALLENGES

1. **RCTs/CRTs** are challenged as the *gold standard* because.
 - They are expensive.
IE controversies

CHALLENGES

1. **RCTs/CRTs** are challenged as the gold standard because.
 - They are expensive.
 - They are difficult to implement in populations.
RCTs/CRTs are challenged as the gold standard because:

- They are expensive.
- They are difficult to implement in populations.
- They are affected by loss to follow-up (attrition).
CHALLENGES

RCTs/CRTs are challenged as the gold standard because.

- They are expensive.
- They are difficult to implement in populations.
- They are affected by loss to follow-up (attrition).
- They involve compliance issues.
CHALLENGES

- RCTs/CRTs are challenged as the gold standard because.
 - They are expensive.
 - They are difficult to implement in populations.
 - They are affected by loss to follow-up (attrition).
 - They involve compliance issues.
 - Randomization and balance between groups does not always work.
RCTs/CRTs are challenged as the **gold standard** because.

- They are expensive.
- They are difficult to implement in populations.
- They are affected by loss to follow-up (attrition).
- They involve compliance issues.
- Randomization and balance between groups does not always work.
- They are sometimes unethical.
CHALLENGES

1. **RCTs/CRTs** are challenged as the *gold standard* because.
 - They are expensive.
 - They are difficult to implement in populations.
 - They are affected by loss to follow-up (attrition).
 - They involve compliance issues.
 - Randomization and balance between groups does not always work.
 - They are sometimes unethical.

2. Causal inference is difficult and counterfactual theory makes plenty of assumptions.
CHALLENGES

1. RCTs/CRTs are challenged as the gold standard because.
 - They are expensive.
 - They are difficult to implement in populations.
 - They are affected by loss to follow-up (attrition).
 - They involve compliance issues.
 - Randomization and balance between groups does not always work.
 - They are sometimes unethical.

2. Causal inference is difficult and counterfactual theory makes plenty of assumptions.
IE controversies

Myths

- Evaluations must be randomized.
- Valid inference requires individual level data.
IE controversies

Myths

- Evaluations must be randomized.
- Valid inference requires individual level data.
- Evaluation of population level health interventions must be time and cost prohibitive.
IE controversies

Myths

- Evaluations must be randomized.
- Valid inference requires individual level data.
- Evaluation of population level health interventions must be time and cost prohibitive.
IE controversies

Myths

- Evaluations must be randomized.
- Valid inference requires individual level data.
- Evaluation of population level health interventions must be time and cost prohibitive.
The best design

The gold standard of scientific research

1. The simplest way to conceptually compare treated and control units.

2. Units are randomly assigned to treatment and control groups.
The best design

The gold standard of scientific research

1. The simplest way to conceptually compare treated and control units.

2. Units are randomly assigned to treatment and control groups.

3. If randomization is not possible, use the conditional ignorability assumption.
The best design

The gold standard of scientific research

1. **The simplest** way to conceptually compare treated and control units.

2. Units are **randomly assigned** to treatment and control groups.

3. If randomization is not possible, use the **conditional ignorability** assumption.

4. If experimentation is not possible, **try to mimic** the principles of experimentation in your study design.
The best design

The gold standard of scientific research

1. **The simplest** way to conceptually compare treated and control units.

2. Units are *randomly assigned* to treatment and control groups.

3. If randomization is not possible, use the *conditional ignorability* assumption.

4. If experimentation is not possible, *try to mimic* the principles of experimentation in your study design.

5. In both quasi-experimental and experimental designs use the *intention to treat* approach.
The best design

The gold standard of scientific research

1. **The simplest** way to conceptually compare treated and control units.

2. Units are *randomly assigned* to treatment and control groups.

3. If randomization is not possible, use the *conditional ignorability* assumption.

4. If experimentation is not possible, **try to mimic** the principles of experimentation in your study design.

5. In both quasi-experimental and experimental designs use the *intention to treat* approach.
The best design

The gold standard of scientific research

1. **The simplest** way to conceptually compare treated and control units.

2. Units are *randomly assigned* to treatment and control groups.

3. If randomization is not possible, use the *conditional ignorability* assumption.

4. If experimentation is not possible, **try to mimic** the principles of experimentation in your study design.

5. In both quasi-experimental and experimental designs use the *intention to treat* approach.
The truth must be causal

- **Causality** is almost always complex.

- Estimations of causal effect are hardly ever the real truth.
The truth must be causal

- Causality is almost always complex.

- Estimations of causal effect are hardly ever the real truth.

- Truth is better approached by using different methods and theories.
Causal effect

The truth must be causal

- Causality is almost always complex.
- Estimations of causal effect are hardly ever the real truth.
- Truth is better approached by using different methods and theories.
- Thus, truth must reside between the borders of different disciplines (econometrics, politics, sociology, public health, mathematics, statistics, etc.).
Causal effect

The truth must be causal

- **Causality** is almost always complex.

- Estimations of causal effect are hardly ever the real truth.

- Truth is better approached by using different methods and theories.

- Thus, truth must reside between the borders of different disciplines (econometrics, politics, sociology, public health, mathematics, statistics, etc.).
The truth must be causal

- Causality is almost always complex.

- Estimations of causal effect are hardly ever the real truth.

- Truth is better approached by using different methods and theories.

- Thus, truth must reside between the borders of different disciplines (econometrics, politics, sociology, public health, mathematics, statistics, etc.).
A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
Case studies

1. Time series analysis: Cholera and Climatic Change

2. Pre/post surveys:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.

3. **Operational Research**: Mid-upper-arm-circumference accuracy.
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.

3. **Operational Research**: Mid-upper-arm-circumference accuracy.

4. **Borders between disciplines, GIS**: Determinants of cholera epidemics.
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.

3. **Operational Research**: Mid-upper-arm-circumference accuracy.

4. **Borders between disciplines, GIS**: Determinants of cholera epidemics.

5. **Marginal structural models**: Effectiveness of patients clubs as models of care for HIV infected people in Khayelisha, South Africa.
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.

3. **Operational Research**: Mid-upper-arm-circumference accuracy.

4. **Borders between disciplines, GIS**: Determinants of cholera epidemics.

5. **Marginal structural models**: Effectiveness of patients clubs as models of care for HIV infected people in Khayelista, South Africa.
Case studies

1. **Time series analysis**: Cholera and Climatic Change

2. **Pre/post surveys**:
 - Two stage cluster retrospective mortality survey (malaria).
 - Two stage cluster vaccination coverage survey (all antigens) and measles vaccination effectiveness.

3. **Operational Research**: Mid-upper-arm-circumference accuracy.

4. **Borders between disciplines, GIS**: Determinants of cholera epidemics.

5. **Marginal structural models**: Effectiveness of patients clubs as models of care for HIV infected people in Khayelista, South Africa.

Miguel Ángel Luque Fernándeza,\ast, Ariane Bauernfeindb, Julio Diaz Jiménezc, Cristina Linares Gild, Nathalie El Omeiria,\ast, Dionisio Herrera Guiberte

a National Centre of Epidemiology (CNE), Programa de Epidemiología Aplicada de Cerezo (PEAC), Instituto de Salud Carlos III (ISCIII), C/Símon Bolívar 6, Pabellón 11, 28029 Madrid, Spain
b Médecins Sans Frontières (MSF), Brussels Operational Centre, Rue Dupré 54, 1040 Brussels, Belgium
c Escuela Nacional de Sanidad (ENS), Instituto de Salud Carlos III (ISCIII), C/Símon Bolívar 6, Pabellón 7, 28029 Madrid, Spain
d European Programme for Intervention Epidemiology Training (EPIT), Stockholm, Sweden
* National Centre of Epidemiology (CNE), Instituto de Salud Carlos III (ISCIII), C/Símon Bolívar 6, Pabellón 12, 28029 Madrid, Spain

Received 11 March 2008; received in revised form 28 July 2008; accepted 28 July 2008

Summary In this study, we aimed to describe the evolution of three cholera epidemics that occurred in Lusaka, Zambia, between 2003 and 2006 and to analyse the association between the increase in number of cases and climatic factors. A Poisson autoregressive model controlling for seasonality and trend was built to estimate the association between the increase in the weekly number of cases and weekly means of daily maximum temperature and rainfall. All epidemics showed a seasonal trend coinciding with the rainy season (November to March). A 1°C rise in temperature 6 weeks before the onset of the outbreaks explained 5.2% [relative risk (RR) 1.05, 95\% CI 1.04–1.06] of the increase in the number of cholera cases (2003–2006). In addition, a 50 mm increase in rainfall 3 weeks before explained an increase of 2.5% (RR 1.02, 95\% CI 1.01–1.04). The attributable risks were 4.9% for temperature and 2.4% for rainfall. If 6 weeks prior to the beginning of the rainy season an increase in temperature is observed followed by an increase in rainfall 3 weeks later, both exceeding expected levels, an increase in the number of cases of cholera within the following 3 weeks could be expected. Our explicative model could contribute to developing a warning signal to reduce the impact of a presumed cholera epidemic. © 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Analysis of the evolution of cholera epidemics in Zambia

Figure 4: Time plots of number of cholera cases per month and monthly mean temperature (°C) in Lusaka, Zambia, 2003–2006 (Medecins Sans Frontieres, unpublished data).
Jane Olwoch, a senior environmental science lecturer at the University of Pretoria, South Africa, pointed out that besides the biological factors, "Floods caused by heavy rains can contaminate drinking water with the bacterium; in droughts, the bacterium can grow more easily in stagnating water in ponds and rivers."

Researchers in Africa, led by Miguel Ángel Luque Fernández from the Institute of Health Carlos III, based in Madrid, Spain, were the first to show a link between higher temperature and rainfall and the incidence of cholera in Zambia in a study published in the Transactions of the Royal Society of Tropical Medicine and Hygiene, in the UK.

Cholera outbreaks between 2003 and 2006 in Zambia showed that a one-degree Celsius rise in temperature six weeks before an outbreak began allowed the bacteria to multiply in enhanced conditions, leading to almost 5 percent more cholera cases, while a 50mm increase in rainfall three weeks ahead of an outbreak pushed up the number of cases by more than 2 percent.

A study in South Africa’s coastal province of KwaZulu-Natal in 2008, by researchers from the Environmental Change Institute at the UK-based Oxford University Centre for the Environment, found a similar link between warmer sea water, floods, and cholera outbreaks.

"We know there is an indisputable link between cholera and poverty, poor sanitation, quality of drinking water, but there are biological agents involved in cholera that react to changes in climate," Olwoch said.

"We cannot therefore think that we can solve the cholera problem by ignoring these factors, especially now, when we know very well that our climate is changing."

jk/he

Theme(s): Early Warning, Environment, Health & Nutrition, Natural Disasters, Water & Sanitation,

[This report does not necessarily reflect the views of the United Nations]
Table 2 Association between the number of cholera cases and climate variables: final autoregressive Poisson model including lags of weekly mean temperature and rainfall (Médecins Sans Frontières, unpublished data)\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>Coefficient (SE)(^b)</th>
<th>RR (95% CI)</th>
<th>% change(^c)</th>
<th>AR (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (6 weeks earlier)</td>
<td>0.05 (0.006)</td>
<td>1.05 (1.04–1.06)</td>
<td>5.2</td>
<td>4.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Rainfall (3 weeks earlier)</td>
<td>0.02 (0.01)</td>
<td>1.02 (1.01–1.04)</td>
<td>2.5</td>
<td>1.9</td>
<td>0.011</td>
</tr>
</tbody>
</table>

RR: relative risk; AR: attributable risk.
\(^a\) Adjusted for seasonality.
\(^b\) Standard errors (SE) scaled using square root of Pearson \(\chi^2\) based dispersion.
\(^c\) Percent change in expected count for 1°C increase in temperature and 50 mm in rainfall.

COMPLEX SURVEYS
Evaluation quali-quantitative du projet « Agents Paludisme »

Enquête de morbi-mortalité due au paludisme dans le district sanitaire de Bongor (Tchad), avril 2008

Miguel Ángel Luque Fernández
Centre Nationale d'épidémiologie, Madrid (Spain)
C/Sesile Delgado 6, Pabellón 12
Programa de Épicentros de Aplicación de Campo (PECAC)
Reid Epidemiology Training Program (FETP)
miguelluque@isciii.es
ENQUÊTE DE COUVERTURE VACCINALE: ENFANTS (12 À 59 MOIS) ET FEMMES (15-45 ANS) EN RDC (LUBUTU) 2009
ENQUÊTE DE COUVERTURE VACCINALE EN RDC (LUBUTU), JUIN 2009

Couverture Vaccinale à Lubutu et efficacité vaccinale à la rougeole, Juin 2009, République Démocratique du Congo
\[\text{ev} = \frac{(\text{pcv} - \text{ppv})}{\text{ppv}(\text{pcv} - 1)} \]

PPV = 0.661
PCV = 0.532
EV (1) = 0.4170061
Accuracy of mid-upper-arm circumference to detecting severe acute malnutrition measured with the new WHO Growth Standards.
Accuracy of MUAC in the Detection of Severe Wasting With the New WHO Growth Standards

WHAT’S KNOWN ON THIS SUBJECT: MUAC measurements are used to screen rapidly for malnutrition among children 6 to 59 months of age. With the introduction of a new growth curve for children by the WHO in 2006, an evaluation of MUAC diagnostic accuracy is needed.

WHAT THIS STUDY ADDS: This study confirms the need to change the MUAC cutoff value from <110 mm to <115 mm. This change is needed to maintain the same diagnostic accuracy and to identify children at greatest risk of death resulting from severe wasting.

ABSTRACT

OBJECTIVES: The objectives of this study were to estimate the accuracy of using mid-upper-arm circumference (MUAC) measurements to diagnose severe wasting by comparing the new standards from the World Health Organization (WHO) with those from the US National Center for Health Statistics (NCHS) and to analyze the age independence of the MUAC cutoff values for both curves.

METHODS: We used cross-sectional anthropometric data for 34,937 children between the ages of 6 and 59 months, from 39 nutritional surveys conducted by Doctors Without Borders. Receiver operating characteristic curves were used to examine the accuracy of MUAC diagnoses. MUAC age independence was analyzed with logistic regression models.

RESULTS: With the new WHO curve, the performance of MUAC measurements, in terms of sensitivity and specificity, deteriorated. With different cutoff values, however, the WHO standards significantly improved the predictive value of MUAC measurements over the NCHS standards. The sensitivity and specificity of MUAC measurements were the most age independent when the WHO curve, rather than the NCHS curve, was used.

CONCLUSIONS: This study confirms the need to change the MUAC cutoff value from <110 mm to <115 mm. This increase of 5 mm produces a large change in sensitivity (from 16% to 25%) with little loss in specificity, improves the probability of diagnosing severe wasting, and reduces false-negative results by 12%. This change is needed to maintain the same diagnostic accuracy as the old curve and to identify the children at greatest risk of death resulting from severe wasting.

AUTHORS: Miguel Ángel Luque Fernández, MA, MPH, FETP, Pascale Delchevalerie, MSc, and Michel Van Herp, MD, MPH
Medical Department, Brussels Operational Center, Doctors Without Borders, Brussels, Belgium

KEY WORDS
malnutrition, anthropometry, mid-upper-arm circumference, diagnostic errors, epidemiology

ABBREVIATIONS
MUAC—mid-upper-arm circumference
NCHS—National Center for Health Statistics
WHO—World Health Organization
CI—confidence interval

Dr. Luque Fernández’s current affiliation is the Brussels-Capital Health and Social Observatory, Research Centre for the Joint College Services of the Joint Community Commission, Brussels, Belgium.

www.pediatrics.org/cgi/doi/10.1542/peds.2009-2175
doi:10.1542/peds.2009-2175
Accepted for publication Mar 17, 2010

Address correspondence to Miguel Ángel Luque Fernández, MA, MPH, Médecins Sans Frontières OCB-Belgique, Medical Department, Rue Dupré 97, 1090 Jette, Brussels, Belgium. E-mail: miguelluong.de@brussels.msf.org or watzilei@hotmail.com

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).
Copyright © 2010 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.
1 - Specificity

Area under ROC curve = 0.82 95%CI=(0.79-0.83)

Area under ROC curve = 0.80 95%CI=(0.79-0.82)
Crisis 2008, Hyperinflation
Cholera Epidemic in Zimbabwe

100,000 cases

4,000 deaths

Source: The Guardian and The Nytimes

Miguel Ángel Luque Fernández a,*, Peter R. Mason b, Henry Gray c, Ariane Bauernfeind a, Jean François Fesselet d, Peter Maes c

a Médecins Sans Frontières, Medical department (Brussels Operational Center), 94, rue Dupre, 1090 Brussels, Belgium
b Biomedical Research and Training Institute, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
c Médecins Sans Frontières, Medical Department, Water, Hygiene and Sanitation Unit, Brussels Operational Centre, Belgium
d Médecins Sans Frontières, Public health department, Water, Hygiene and Sanitation Unit, Amsterdam Operational Centre, Holland

A R T I C L E I N F O

Article history:
Received 15 April 2010
Received in revised form 1 October 2010
Accepted 1 October 2010
Available online xxx

Keywords:
Cholera
Disease Outbreaks
Epidemiology
Zimbabwe
Africa

A B S T R A C T

This ecological study describes the cholera epidemic in Harare during 2008-2009 and identifies patterns that may explain transmission. Rates ratios of cholera cases by suburb were calculated by a univariate regression Poisson model and then, through an Empirical Bayes modelling, smoothed rate ratios were estimated and represented geographically. Mbare and southwest suburbs of Harare presented higher rate ratios. Suburbs attack rates ranged from 1.2 (95% Cl = 0.7–1.6) cases per 1000 people in Tynwald to 90.3 (95% Cl = 82.8–98.2) in Hopley. The identification of this spatial pattern in the spread, characterised by low risk in low density residential housing, and a higher risk in high density south west suburbs and Mbare, could be used to advocate for improving water and sanitation conditions and specific preparedness measures in the most affected areas.

© 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd.
All rights reserved.

1. Introduction

On 20 August 2008 an outbreak of 118 cholera cases was declared in St. Mary’s and Zengeza wards of Chitungwiza, a large urban centre on the outskirts of Harare. Vibrio cholerae El Tor 01 was isolated from 18 (30%) of the 59 specimens collected, thus supporting the clinical evidence for an outbreak. Two months after this initial outbreak, a second wave of cases was reported with numerous suburbs being affected within the city of Harare and within every province of the country. This was the largest and most extensive outbreak of cholera recorded in Zimbabwe and indeed in Africa, affecting rural and urban areas with more than 100 000 cases and 4000 deaths, about half of which occurred in the urban centres of Harare and Chitungwiza.2–7

During the 2008–2009 Zimbabwe cholera epidemic the country was in economic crisis and the health care system had become dysfunctional, with most government hospitals unable to provide services or closed due to a lack of essential medical supplies. Many staff in health structures had not been paid, and many were unable to report for duty. Water supplies were irregular and sanitation systems had collapsed. The reason for this was a lack of maintenance of the system, with frequent power interruptions affecting pumping stations.8–11

By 2008, Chitungwiza had been without adequate water supply water for more than two years. People had become dependent on shallow wells that were at risk of contamination because of the lack of sewage disposal.1,9,11 On 1 December 2008, problems with the main pumping station meant that, without prior warning, the water supply was shut off for Harare, leaving large populations without
Environmental Risk Factors

Harare in 2008
Socioeconomic chaos
Environmental Risk Factors

Descriptive Spatial Analysis of the Cholera Epidemic in Harare

Source: Médécins Sans Frontières (MSF)
http://www.zimbabwesituation.com
Environment Risk Factors: Housing

Mbare House

Mount Pleasant House
Environment Risk Factors: Population mobility and Sanitation
Pearson's Coefficient of Correlation = 0.31

Elevation and cholera: an epidemiological spatial analysis of the cholera epidemic in Harare, Zimbabwe, 2008-2009

Miguel A Luque Fernandez1*, Michael Schomaker1, Peter R Mason2, Jean F Fesselet3, Yves Baudot4, Andrew Boulle1 and Peter Maes5

Abstract

Background: In highly populated African urban areas where access to clean water is a challenge, water source contamination is one of the most cited risk factors in a cholera epidemic. During the rainy season, where there is either no sewage disposal or working sewer system, runoff of rains follows the slopes and gets into the lower parts of towns where shallow wells could easily become contaminated by excretes. In cholera endemic areas, spatial information about topographical elevation could help to guide preventive interventions. This study aims to analyze the association between topographic elevation and the distribution of cholera cases in Harare during the cholera epidemic in 2008 and 2009.

Methods: We developed an ecological study using secondary data. First, we described attack rates by suburb and then calculated rate ratios using whole Harare as reference. We illustrated the average elevation and cholera cases by suburbs using geographical information. Finally, we estimated a generalized linear mixed model (under the assumption of a Poisson distribution) with an Empirical Bayesian approach to model the relation between the risk of cholera and the elevation in meters in Harare. We used a random intercept to allow for spatial correlation of neighboring suburbs.

Results: This study identifies a spatial pattern of the distribution of cholera cases in the Harare epidemic, characterized by a lower cholera risk in the highest elevation suburbs of Harare. The generalized linear mixed model showed that for each 100 meters of increase in the topographical elevation, the cholera risk was 30% lower with a rate ratio of 0.70 (95% confidence interval=0.66-0.76). Sensitivity analysis confirmed the risk reduction with an overall estimate of the rate ratio between 20% and 40%.

Conclusion: This study highlights the importance of considering topographical elevation as a geographical and environmental risk factor in order to plan cholera preventive activities linked with water and sanitation in endemic areas. Furthermore, elevation information, among other risk factors, could help to spatially orientate cholera control interventions during an epidemic.

Background

On the 20th of August 2008, an outbreak of 118 cases was declared at St. Mary’s and Zenenga wards of Chitungwiza, a large urban centre on the outskirts of Harare [1,2]. Vibrio Cholerae El Tor 01 was isolated from 18 (30%) of the 59 specimens submitted for examination, thus supporting the clinical evidence for an outbreak [3]. Following this initial outbreak in Chitungwiza, a second wave of infections was reported a few months later with numerous wards being affected and a rapid transmission of the infections to the whole city of Harare. This is one of the largest and most extensive outbreaks of cholera yet recorded in Zimbabwe affecting rural and urban areas [1-4].
Elevation and Cholera

Descriptive Spatial Analysis of the Cholera Epidemic in Harare

HSPH-Miguel Ángel Luque Fernández, PhD
Descriptive Spatial Analysis of the Cholera Epidemic in Harare

Legend
- All-boreholes
 - 1 Dot = 20 cases

Districts-OCHA_U36gps
Distance to Chitungwiza in meters
- 0 - 5085
- 9096 - 18944
- 18945 - 23702
- 23703 - 28900
- 28901 - 37152

Observed Rate Ratios vs. Altitude in meters
- Fitted values
Reinforcing Retention in Care: RCC
Patient Adherence Clubs: A New Model of Care to Reinforce Long-Term Retention on Antiretrovirals

Department of Infectious Disease Epidemiology and Research, CIDER-UCT

MA.LuqueFernandez¹, G.VanCutsem¹,², E.Goemaere¹,², K.Hilderbrand¹,², M.Schomaker¹, N.Mantangana³, S.Mathee³, V.Dubula⁴, A.Boule¹

UCT-CIDER¹, MSF-South Africa², Provincial Government of the Western Cape³ and Treatment Campaign⁴

February 24, 2012
INTRODUCTION
COUNTERFACTUAL FRAMEWORK
IE DESIGNS & METHODS
CASE STUDIES

A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION
Justification

- The number of patients initiating antiretroviral treatment (ART) in resource-limited settings continues to increase, leading to concerns that conventional health systems will become increasingly overloaded.

- More effective models of ART delivery and new strategies of retention in care have been identified as the most urgent operations research priorities in HIV.
The number of patients initiating antiretroviral treatment (ART) in resource-limited settings continues to increase, leading to concerns that conventional health systems will become increasingly overloaded.

More effective models of ART delivery and new strategies of retention in care have been identified as the most urgent operations research priorities in HIV.

Community adherence groups has been suggested to be one of these new strategies aiming to improve the quality of services delivery and retention in care.
The number of patients initiating antiretroviral treatment (ART) in resource-limited settings continues to increase, leading to concerns that conventional health systems will become increasingly overloaded.

More effective models of ART delivery and new strategies of retention in care have been identified as the most urgent operations research priorities in HIV.

Community adherence groups has been suggested to be one of these new strategies aiming to improve the quality of services delivery and retention in care.
The number of patients initiating antiretroviral treatment (ART) in resource-limited settings continues to increase, leading to concerns that conventional health systems will become increasingly overloaded.

More effective models of ART delivery and new strategies of retention in care have been identified as the most urgent operations research priorities in HIV.

Community adherence groups has been suggested to be one of these new strategies aiming to improve the quality of services delivery and retention in care.
A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION
1.2 ART ADHERENCE CLUBS IN A NUTSHELL

ART adherence clubs (ART clubs) are a long term retention model of care catering for stable ART patients. 30 stable patients meet and are facilitated by a non-clinical staff member who provides quick clinical assessment, referral where necessary, peer support and distribution of pre-packed ART every 2 months. Once a year, a clinician provides follow up clinical management.

COUNSELLOR/PEER EDUCATOR RUN
Every 2 months
1. Quick clinical assessment
2. Collection of 2 month ART supply
3. Quick optimized group support
4. Simplified monitoring
See ART club short film - Annexure 1.

NURSE SUPPORTED
Once a year
1. Blood taken for CD4 and viral load
2. Clinical consultation with clinician
1.1 WHY ART ADHERENCE CLUBS?

South Africa’s National Strategic Plan 2012-2016 targets:

- 80% of all patients eligible on ART by 2016: estimated at more than 3 million patients
- 70% retained in care 5 years after treatment initiation

By mid 2011, 1.79 million patients were initiated on ART with retention in care estimated at less than 60% at 4 years.
INTRODUCTION
COUNTERFACTUAL FRAMEWORK
IE DESIGNS & METHODS
CASE STUDIES

MSM

2289 patients on ART >18 months on 01.11.2007, eligible for club participation at the start of the study

857 patients reached 18 months on ART during the study time

Excluded: transferred out or absence of any viral load data, n=317

Total available for analysis n=2829

502 (17.7%) patients enrolled in an adherence club a median 8 months after becoming eligible

2327 (82.3%) patients remain in usual clinic-based care throughout follow-up

14 lost to follow-up
1 death
14 with virologic rebound

214 had virologic rebound

309 loss to follow-up
39 Died
Direct Acyclic Graph

Participation in an Adherence club (t = 0) ----> Participation in an Adherence club (t = 1)

Underlying immuno-virological status ----> Death or LTF and Virologic Rebound

Baseline confounders CD4 and VL (t = 0) ----> Time-varying Confounders: CD4 and VL (t = 1)

Time dependent confounding
- Past CD4 and viral load predict current and future treatment.
- Current CD4 and viral load predict current and future outcome, depending on past treatment.
Direct Acyclic Graph

- **Underlying immuno-virological status**
- **Baseline confounders CD4 and VL (t = 0)**
- **Time-varying Confounders: CD4 and VL (t = 1)**
- **Participation in an Adherence club (t = 0)**
- **Participation in an Adherence club (t = 1)**
- **Death or LTF and Virologic Rebound**

Time dependent confounding
- Past CD4 and viral load predict current and future treatment.
- Current CD4 and viral load predict current and future outcome, depending on past treatment.
Inverse-probability-of-treatment weights: stabilized version

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]
Inverse-probability-of-treatment weights: stabilized version

\[
(Y_i(1), Y_i(0)) \perp T_i \mid X_i
\]

\[
W(t) = \prod_{t=0}^{t} \frac{f[P(t) \mid \bar{P}(t-1), V]}{f[P(t) \mid \bar{P}(t-1), V, \bar{L}(t)]}
\]
Inverse-probability-of-treatment weights: stabilized version

\[(Y_i(1), Y_i(0)) \perp T_i \mid X_i\]

\[W(t) = \prod_{t=0}^{t} \frac{f[P(t) \mid \bar{P}(t-1), V]}{f[P(t) \mid \bar{P}(t-1), V, \bar{L}(t)]}\]

\[W(t) = \prod_{t=0}^{t} \frac{f[P(t) \mid (Past \ treatment),(Baseline)]}{f[P(t) \mid (Past \ treatment),(Baseline),(Time \ dependent)]}\]
Inverse-probability-of-treatment weights: stabilized version

\[
(Y_i(1), Y_i(0)) \perp T_i \mid X_i
\]

\[
W(t) = \prod_{t=0}^{t} \frac{f[P(t) \mid \bar{P}(t-1), V]}{f[P(t) \mid \bar{P}(t-1), V, \bar{L}(t)]}
\]

\[
W(t) = \prod_{t=0}^{t} \frac{f[P(t) \mid (Past \ treatment),(Baseline)]}{f[P(t) \mid (Past \ treatment),(Baseline),(Time \ dependent)]}
\]
Adherence club of patients effect

LTF or death

- Unweighted model, no covariates HR= 0.23 (0.14-0.37)
- Unweighted model, baseline covariates HR= 0.46 (0.26-0.82)
- Weighted model, baseline covariates HR= 0.43 (0.21-0.91)

Virologic rebound

- Unweighted model, no covariates HR= 0.32 (0.19-0.56)
- Unweighted model, baseline covariates HR= 0.28 (0.16-0.52)
- Weighted model, baseline covariates HR= 0.33 (0.16-0.67)

Weighted models with baseline covariates estimate parameters of marginal structural model. Weights adjust for confounding due to measured time-dependent covariates.
MSF acknowledges the following partnerships that contributed significantly to the ART adherence club model pilot:

MSF Khayelitsha Office
Tel: +27 (0) 21 364 5490
www.msf.org.za
Effectiveness of Patient Adherence Groups as a Model of Care for Stable Patients on Antiretroviral Therapy in Khayelitsha, Cape Town, South Africa

Miguel Angel Luque-Fernandez1,*, Gilles Van Cutsem1,2, Eric Goemaere1,2, Katherine Hilderbrand1,2, Michael Schomaker1, Nompumelelo Mantangana3, Shaheed Mathee3, Vuyisela Dubula4, Nathan Ford1,5, Miguel A. Hernán6,7, Andrew Boulle1

1 Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa, 2 Médecins sans Frontières, Cape Town, South Africa, 3 Khayelitsha Community Health Centre, Department of Health, Provincial Government of the Western Cape, Cape Town, South Africa, 4 Treatment Action Campaign, Cape Town, South Africa, 5 Médecins sans Frontières, Geneva, Switzerland, 6 Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America, 7 Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Boston, Massachusetts, United States of America

Abstract

Background: Innovative models of care are required to cope with the ever-increasing number of patients on antiretroviral therapy in the most affected countries. This study, in Khayelitsha, South Africa, evaluates the effectiveness of a group-based model of care run predominantly by non-clinical staff in retaining patients in care and maintaining adherence.

Methods and Findings: Participation in “adherence clubs” was offered to adults who had been on ART for at least 18 months, had a current CD4 count >200 cells/ml and were virologically suppressed. Embedded in an ongoing cohort study, we compared loss to care and virologic rebound in patients receiving the intervention with patients attending routine nurse-led care from November 2007 to February 2011. We used inverse probability weighting to estimate the intention-to-treat effect of adherence club participation, adjusted for measured baseline and time-varying confounders. The principal outcome was the combination of death or loss to follow-up. The secondary outcome was virologic rebound in patients who were virologically suppressed at study entry. Of 2829 patients on ART for >18 months with a CD4 count above 200 cells/μl, 502 accepted club participation. At the end of the study, 97% of club patients remained in care compared with 85% of other patients. In adjusted analyses club participation reduced loss-to-care by 57% (hazard ratio [HR] 0.43, 95% CI = 0.21–0.91) and virologic rebound in patients who were initially suppressed by 67% (HR 0.33, 95% CI = 0.16–0.67).

Discussion: Patient adherence groups were found to be an effective model for improving retention and documented virologic suppression for stable patients in long term ART care. Out-of-clinic group-based models facilitated by non-clinical staff are a promising approach to assist in the long-term management of people on ART in high burden low or middle-income settings.

Introduction

Retaining patients in lifelong HIV care is a major challenge in many countries in sub-Saharan Africa, where antiretroviral treatment (ART) has been rapidly scaled up to some 5 million people as of the end of 2010. [1] In recent years in South Africa, an increasing proportion of patients on ART are being lost to follow-up (LTF) as overall the numbers on treatment increase. [2] Although up to a third of adult patients lost to care are estimated to have died, the majority are alive: without treatment, they are at increased risk of morbidity and mortality. [3].

Decentralization of services and task-shifting aspects of care to nurses and non-clinical staff, including patients, has been found to be feasible with good clinical outcomes.[4–12] However, such approaches are reaching their limits as increasing numbers of patients are initiated on ART. Accessible and flexible ART services that differentiate between the needs of clinically ill patients starting ART, and clinically stable patients who have been on ART for some time, have been suggested as important strategies for maintaining and improving retention and quality of care. [15]. Patient support groups have long been recognized as an important adjunct to clinical care that encouraged retention and...
A COUNTERFACTUAL APPROACH FOR IMPACT EVALUATION
Some important references

5. Rubin, Donald B. Matched Sampling for Causal Effects.

MOSTLY HARMLESS ECONOMETRICS

An Empiricist's Companion

Joshua D. Angrist and Jörn-Steffen Pischke
2. PSCORE AND IPW

Two excellent resources to learn more about PSA
Pweto DRC 2003

THANKS

mluquefe@hsph.harvard.edu