Inside the War on Drugs:
Effectiveness and Unintended Consequences of a Large Illicit Crops Eradication Program in Colombia

Alberto Abadie* Maria C. Acevedo* Maurice Kugler† Juan Vargas‡

April 19, 2015

Abstract
This article reports the results of an econometric evaluation of the effects of Plan Colombia, the largest US aid package ever received by a country in the western hemisphere. We assess how the aerial spraying of illegal crops affects both the size of the land cultivated with coca bushes as well as the dynamics of localized violence in the context of Colombia’s armed conflict. In particular, we show that the marginal effect of spraying one acre of coca reduces the cultivated area by about 11 percent of an acre. Since aerial spraying may shift coca crops to neighboring municipalities, this result should be interpreted as an upper bound, or at best local effect. To study the impact on conflict dynamics, we examine both the short-term and the long-term effects of crop spraying. Our results suggest that guerrilla-led violence increases both in the short and the long term. We interpret this result as evidence that the guerrilla tries to hold on violently to the control of an asset that is of first order importance for their survival.

Keywords: War on Drugs, Plan Colombia, Illicit Crops, Conflict, GMM.
JEL: C33, D74, G14.

*Harvard University, John F. Kennedy School of Government. 79 John F. Kennedy Street, Cambridge, MA 02138. Emails: alberto_abadie@harvard.edu, and maria_cecilia_acevedo@hksphd.harvard.edu.
†United Nations Development Program, Human Development Report Office. 304 E. 45th Street, 12th Floor, New York, NY 10017. Email: maurice.kugler@undp.org.
‡Universidad del Rosario, Economics Department. Calle 12c No. 4-59, of 315. Email: juan.vargas@urosario.edu.co.
1 Introduction

In this article we conduct an econometric evaluation of Plan Colombia (PC): the largest aid package ever received by a country in the western hemisphere. PC was launched in 1999 as a $7.5 billion policy-package co-financed by the American and the Colombian governments, with the stated goal of reducing by 50 percent the cultivation, processing, and distribution of illegal narcotics over a period of six years, starting in 2000. Indeed, with PC the US effectively took the War on Drugs to the country producing 90 percent of the cocaine that reached its border (GAO, 2008a). As a byproduct, by cutting their main source of finance, another important goal of PC was to weaken the illegal armed groups that challenge the Colombian state, and hence to ameliorate the intensity of the country’s civil strife. While PC has been the subject of continuous political debate both in Colombia and the US, there are surprisingly very few quantitative evaluations of the program with which to back such debates.\(^1\) Indeed, after over a decade, we know very little on whether PC has been effective or not in achieving its goals, and what elements of PC if any could be improved. Studying the effectiveness of PC is important as most of the cocaine that enters the US comes from Colombia.

We assess both the short run and the long run effects of PC in terms of the two outcomes the program intended to affect: the production of coca bushes and the dynamics of the Colombian armed conflict. We do so by focusing on one particular but well defined policy instrument: the aerial spraying of illegal-crop fields, over the initial period of PC (1999-2005). Aerial spraying is the most important eradication tool in Colombia, as it allows operating in remote and insecure areas where manual eradication is cost prohibitive or too dangerous.

Using satellite images on the location and extension of coca fields, as well as event-based data on the aerial spraying of coca fields and a rich longitudinal dataset on the dynamics of the internal conflict, we investigate the long-term effect of the aerial spraying program on coca production and violence.\(^2\) The violence outcomes studied are attacks performed by guerrilla groups, clashes between these groups and government forces, and casualties from the civilian and the combatant population.\(^3\)

\(^1\) One exception is Mejía and Restrepo (2010) who calibrate a general equilibrium model of the wholesale market of cocaine to conclude that PC has been ineffective in reducing the amount of drugs that reach the border of the US in spite if the eradication efforts in Colombia.

\(^2\) While the satellite measures of coca cultivation are available only annually, the rest of the variables have daily frequency. Hence, we can only estimate the long-term effect of the eradication program on the size of illegal cropping. Instead, the effect on violence can be estimated both in the short and the long-term.

\(^3\) We limit our analysis to guerrilla violence for two main reasons. First, guerrilla groups have been associated with the complete chain of drug production and trafficking, even since before the the big Colombian drug cartels were dismantled in the first half of the 1990s (Vargas, 2009). Second, the other major illegal group, composed by paramilitary militias under the umbrella organization called AUC, started a peace
Our results show that one additional acre of coca eradicated reduces the cultivated area by about 11 percent of an acre on the margin. The mean effect of the eradication effort on coca crops is however plausibly larger, as the same coca field can be sprayed more than once during a given year. However, as our data on aerial spraying is aggregated at the municipal level, it is impossible to know for certain which fields are re-sprayed. Hence, we are only able to report the marginal effect of the eradication program on the size of coca crops. Moreover, while it is also possible that the eradication efforts cause substitution of coca crops to neighboring municipalities, our estimates do not account for this effect, as we focus on within-municipality variation. To the extent that this is plausible our results, which should be interpreted as local effects, would overestimate the true effect of the eradication campaign on coca growing.

In terms of the effect of the aerial spraying program on violence our estimates indicate that guerrilla violent activity increases in sprayed areas. The guerrilla reaction is in turn challenged by the government, which increases two-sided clashes between the government and the guerrilla as well as the killing of combatants and civilians. This result is consistent with the hypothesis that while coca eradication weakens the guerrilla by cutting its main source of finance, localized violence increases as the guerrilla tries to hold on to control of the strategic coca fields.

We also investigate the short-term effect of the spraying program on violence using daily data on coca spraying and conflict dynamics, disaggregated across over 1,000 municipalities from 1999 to 2005. For this purpose we create two "event" windows: the preparation stage window and the post-eradication window. This allows us to measure by how much high frequency violence outcomes changed around the days that the spraying was carried out in excess to the average behavior observed in the places affected by the spraying program.

Echoing the long-term results, the short-term estimates also suggest that guerrilla activity increases in sprayed areas. However, in contrast to the long-term, in the short term the government does not seem to challenge the guerrilla reaction. This is consistent with the hypothesis that short-term eradication efforts at the dawn of PC were largely unaccompanied by military presence for consolidation purposes, something that the current government (2010-2014) has explicitly addressed.

Our contribution is fourfold. First, in terms of studying the effect of eradication on coca process and demobilization campaigns since 2003, and hence it is not active for our whole period of analysis. Once a coca field is sprayed the land takes six to eight months to regenerate to a point in which coca can be grown again there. However if it rains or if growers wash the crops immediately after the spraying the effect of the spraying is mitigated and the land recovers much faster. These plots are likely to be re-sprayed (UNODC, 2007).

The municipality is the smallest administrative unit of Colombia. It is equivalent to the US county.
growing, while Mejía et al. (2013) and Rozo (2013) look at local effects by exploiting plausible exogenous variation of spraying at the local level (respectively the border with Ecuador and the areas hosting natural parks), we are the first to look at the average effect over the entire country. This may explain why our estimated substantive effect is about half as large as that of the other two papers, the analysis of which focuses on areas that are not necessarily the average coca-growing region. Still, as mentioned, our estimates may overestimate the true effect of coca eradication on the area cultivated. Second, we focus on the period for which Plan Colombia was originally conceived and hence can compare our estimates with the program’s state objectives at the time of its release, prior to any endogenous re-adjustment upon internal evaluations a posteriori. For instance starting in 2006 the aerial spraying eradication component has been scaled down and the manual rooting out of the crops has gained a larger focus. Third, while there is a growing literature of the effects on violence of illicit crops production (in the case of Colombia Angrist and Kugler, 2008 and Mejía and Restrepo, 2013), to the best of our knowledge there little prior of the costs in terms of violence of large drug eradication programs. This paper concludes that one such program, incidentally the largest ever carried out by the US and with the state objective of reducing violence, may have exacerbated the intensity of Colombia’s long standing armed conflict. Fourth, the dataset used for the short-term analysis includes much of the information on coca and conflict the Colombian government observed during the period of study. This is crucial in the setting of this article as the outcomes studied here are most likely taken into account to define the places where policies are targeted as well as their intensities.

Two papers that are contemporaneous to our study have also estimated the effect of coca eradication on the intensity of coca growing. Mejia et al. (2013) use a diplomatic agreement between the governments of Colombia and Ecuador as a natural experiment. In 2008 Colombia conceded to stop any anti-drug aerial spraying within a 10Km band around the border with Ecuador. Using geo-referenced data on the location of coca crops the authors estimate a difference-in-differences model to conclude that the eradication of one hectare of coca reduces the areas cultivated by about 20% of a hectare. Consistent with our estimates, the authors acknowledge that their point estimate is likely to be an upper bound of the true effect. Also using geo-referenced data on coca growing, Rozo (2013) exploits the variation given by the prohibition of spraying in protected national parks and indigenous territories. The estimated effect is even larger than Mejia et al. (2013)’s upper bound: aerial eradication reduces the coca cultivated land by 25% of the sprayed area.

6Personal communication with officials from DIRAN, November, 2013.
7Clemens (2013) studies the effect of the US anti-opium enforcement in Afghanistan but the outcome studied is not violence and his empirical strategy is the calibration of a theoretical model.
The study of the consequences of anti-drug campaigns is not limited to Colombia. Using data for Afghanistan, Clemens (2013) calibrates a theoretical model of enforcement to conclude, in line with the Colombia findings, that drug supply-reduction efforts are ineffective. The link between coca production and violence in Colombia has also been studied before. Using state-level variation and a difference-in-differences strategy, Angrist and Kugler (2008) assess the consequences on crime rates and labor market outcomes of the shift in coca production from neighboring countries to Colombia, in the early 1990s. They conclude that income shock derived from coca production, while generating few economic benefits, fueled local violence. In a very similar recent paper Mejía and Restrepo (2013) use a coca suitability index interacted with exogenous demand shocks for Colombian coca to estimate the effect of coca growing on violence outcomes, particularly the homicide rate. The results resonate with those of Angrist and Kugler (2008) in that economic opportunities in illegal markets create violence.

The rest of the paper is organized as follows. Section 2 gives details on the relationship between drugs and violence in Colombia and describes PC, especially its illegal crop spraying component. Section 3 describes the data sources. Section 4 presents the empirical strategy for the long-term analysis and the main results on the effect of aerial spraying on coca cultivation and conflict violence. Section 5 presents the empirical strategy for the short-term analysis and the main results on the effect of spraying events on immediate violent responses. Finally, section 6 concludes.

2 Background

2.1 Illegal Drugs and Violence in Colombia

Illegal armed groups in Colombia finance their activity with the proceeds of drug trafficking. In fact, the link between illegal drugs and armed conflict in Colombia is well known. For instance, the Revolutionary Armed Forces of Colombia (known by the Spanish acronym, FARC) produce about 60 percent of the cocaine exported from Colombia to the US. FARC is in fact Colombia’s largest insurgent organization and in 2001 was designated by the US Department of Justice a terrorist organization (GAO, 2009).

FARC got involved in the cocaine business when the Medellin cartel expanded its operation to southeastern Colombia around the end of the 1970s (Arreaza et al., 2011). At first, FARC’s involvement was limited to taxing farmers with 10 percent of coca base production (ICG, 2005). However, during the VII FARC’s Conference in 1982, the group exhorted its fronts to get involved in this kind of taxation for financing purposes (Pizarro, 2006; Pecaut, 2018).
Later on, at the VIII Conference in 1993, FARC decided to get involved in other stages of the cocaine trafficking chain besides taxing production. Different units specialize in different activities, including growing coca bushes, transforming coca base into cocaine in illegal laboratories, controlling traffic routes and exporting the final product to the foreign markets. Indeed, by the late 1990s each local front commander was responsible for financing his own operation (Felbab-Brown, 2010).

FARC devote around fifty percent of its force to drug-trafficking activities (Bibes, 2000). Drug profits have allowed FARC to expand modernize its military equipment. For example, a single airdrop in Russia in October 1999, received by a local mafia, secured the insurgent group a 50-million dollars worth shipment of AK-47s (Berry, et al. 2002).

2.2 The aerial spraying of coca fields

The PC strategy against coca crop cultivation includes a number of measures ranging from aerial spraying, to forced or voluntary manual eradication (including “alternative development" and crops’ substitution programs), and scaling up the military initiative against drug producers (DNE, 2007).

In this article we study the efficacy of the aerial eradication component of PC, while controlling for the roll out of the other components in the form of crop substitution programs and the expansion of the country’s military capacity.

The aerial eradication program is designed to inflict significant economic damage to both the farming and refining segments of the cocaine industry. A damage large enough to produce both a sizable reduction of cocaine production in the medium term, and ultimately bankruptcy in the longer term for producers. The program is carried out by DIRAN with extensive financial and operative support from the US State Department. Detailed aerial recognition of cultivation areas precedes all spray missions. Missions are cancelled if wind speed at the originating airport is greater than 10mph, if relative humidity is below 75 percent, or if temperature is over 32 degrees Celsius (90 Fahrenheit). For efficacy reasons, spraying missions are planned so as to avoid spraying wet coca. The ideal conditions include no rain on the targeted fields from two hours before to four hours after the spraying. Poor atmospheric conditions often are the cause of mission cancellations. For example, in 1998 and 1999, spraying took place on 125 days of the year. During the other 240 days the spray planes were grounded, with the majority of cancellations due to bad weather (U.S. State Department, 2002).
3 Data sources

3.1 Data on illicit crops

Our dependent variable is the municipal area (measured in hectares) cultivated with coca each year over the period 1999-2005. The source is the Integrated Monitoring System of Illicit Crops (SIMCI by its Spanish acronym) of the United Nations Office on Drugs and Crime (UNODC). SIMCI is a satellite-based monitoring system that estimates the extension of coca crops annually since 1999. It uses satellite imagery of the entire territory of Colombia’s mainland (roughly 114 million hectares/282 million acres). Based on these satellite pictures, SIMCI experts geo-reference the area that they interpret as coca producing, based on visual inspection. All areas interpreted as coca producing, are confirmed via high definition photographs through helicopter flights.

The estimation date is set arbitrarily by SIMCI on December 31st (UNODC, 2007). However, because the entire satellite imagery used to produce the coca estimate cannot feasibly be purchased, interpreted and tabulated on one day, and in order to have a more accurate estimate, the input is retrieved over a much longer period. About 70 percent of the images are obtained between November of the estimate year and February of the following year. Of the remaining 30 percent, roughly half is obtained from August to November of the estimate year, and half between March and April of the following year. SIMCI purposefully uses satellite images from the first few months of the following year, to allow the coca estimate to include fields that could have not been detected in the current year. This is the case if coca bushes are newly planted, or coca is eradicated and then replanted toward the end of the year, and thus the size of the bushes and the density of the plantation make certain fields undetected by the satellite. In all, efforts are made to have an accurate estimate of the magnitude of coca crops that are productive by December 31st. We discuss in Appendix A.2 the advantages of using this dependent variable, relative to alternative ways of measuring coca cultivation at the municipal level.

Provided by DIRAN, we also have municipal-level data on the number of acres of illicit crops sprayed by Colombian authorities. The dataset lists every eradication event including the date of occurrence, the exact location, and the area sprayed. The data covers over 10,000 spraying events in the period 1999-2005. We observe all this information.

Figure 1a shows the aggregate evolution of the amount of land cultivated with coca and

8Eradication can occur either through aerial spraying or manually, depending on the nature of the economic exploitation of the fields: While large-scale plots are sprayed, smaller plots are rooted out manually. We study aerial spraying here because during our sample period manual eradication figures are negligible compared to aerial spraying. Including manual eradication, however, does not change our basic results.
the intensity of the spraying campaign during the sample period. After monotonic decline in the cultivated area the figure stabilizes in 2003. Conversely after a sharp increase in the eradication campaign in the first few years of Plan Colombia spraying efforts stabilize in 2002.

3.2 Data on conflict

Conflict-related variables come from an event-based conflict dataset on Colombia. For every event the dataset records its type, the date, location, perpetrator, and victims involved in the incident. The dataset is described thoroughly by Restrepo et al. (2004), and has been previously used by Dube and Vargas (2013). Here we provide a succinct account of the data collection process.

The dataset is built on the basis of events published by CINEP, a local NGO that monitors political violence. Most of the event information comes from two primary sources: The Catholic Church, which has representation in almost every municipality in Colombia—and over 25 newspapers with national and local coverage. The inclusion of reports from Catholic priests, who are often located in rural areas that are unlikely to receive press coverage, greatly broadens the municipality-level representation. Based on these sources, the resulting data includes every municipality that has ever experienced a conflict related action (either a unilateral attack or a clash between two groups).

In our analysis we employ several outcomes related to the dynamics Colombia’s armed conflict. These are clashes between insurgent groups and government forces, attacks by left-wing guerrillas, and civilian and combatant casualties resulting from clashes or attacks. Figure 1b to 1e report the evolution of these outcomes during our sample period.

3.3 Other components of Plan Colombia

Recall that the PC strategy against coca crop cultivation includes, in addition to the eradication of illicit crops, initiatives for substituting coca with alternative crops as well as the expansion of the military capacity of the army. A common objective of both these complementary initiatives is to increase what could be called “state presence” in areas previously controlled by drug traffickers or rebel organizations. In order to identify the effect of aerial eradication we control for these additional components of PC.

First, from government’s agency Acción Social, we have the municipal-specific area engaged in government-backed projects of illegal-crop substitution. Acción Social channels resources from both Colombia and foreign aid (particularly from USAID) to promote alternative crops among rural farmers known to have been involved in growing illegal crops. The
raw data contains information on the number of crop-substitution projects as well as details on the timing of their execution, the plots involved and their size. This allows us to measure municipal-level project intensity (in terms of the area covered as a proportion of the total area of the town) by year.\(^9\)

Second, using data compiled from the website of the Colombian army and press archives, we construct an indicator of the presence of army mobile brigades by municipality and year. Then, using GIS techniques, we construct for each municipality the orthodromic distance to the closest brigade on a yearly basis.\(^{10}\) The inverse of such measure is a proxy of the presence of state security forces.

3.4 Rainfall

We control for precipitation levels in all specifications. We use the Tropical Rainfall Measuring Mission (TRMM) database on near-real-time tropical rainfall estimates. The TRMM is a joint project between NASA and the Japan Aerospace Exploration Agency (JAXA). The estimates are provided on a \(0.25^\circ \times 0.25^\circ\) grid over the latitude band \(50^\circ\) North-South so we matched the available rainfall estimates with the coordinates of each municipality.

4 Long-term analysis

4.1 Empirical strategy

We use annual data to study the long-term effect of the eradication program on the area cultivated with illegal coca crops and on conflict-specific outcomes. To assess the impact on coca crops we estimate the following model:

\[
y_{it} = \alpha y_{it-1} + \delta \text{EradicatedArea}_{it} + \beta_i + \beta_t + \gamma' X_{it} + \varepsilon_{it}\]

(1)

where \(y_{it}\) represents the amount of land cultivated with illicit crops in municipality \(i\) and year \(t\), and \(\text{EradicatedArea}_{it}\) is number of hectares (ha) of coca crops eradicated through aerial spraying in municipality \(i\) and year \(t\). By including the lagged value of the outcome, \(y_{it-1}\), we

\(^9\)When plots covered within a project extend over more than one municipality we impute land shares according to the proportion of the total land of each municipality involved in the aggregate area of all the municipalities included. In addition, since single projects are set to be implemented during several years we assign to the first year the total project-covered area weighted by the inverse of the entire duration of the project, and thereafter the same share year-by-year in a cumulative way.

\(^{10}\)The orthodromic distance is the shortest distance between any two points on a surface of a sphere measured along a path on the surface of the sphere, as opposed of going through the sphere’s interior. Results are however robust to using the latter (Euclidean distance).
take into account the persistence of coca fields. X_{it} is a vector that includes the area involved in crop-substitution programs, the distance to the nearest base of an army’s mobile brigade and average rainfall levels.11 We also include both municipality (β_i), and year (β_t) fixed effects to capture both time-invariant municipal-specific characteristics or aggregate annual shocks that may confound the estimates of interest. The term ε_{it} represents municipality-specific yearly shocks, and are allowed to be correlated across time for the same municipality in all regressions.

We are also interested in the long-term effect of eradication efforts on the dynamics of the local conflict. Given the count nature of the conflict outcomes, and in order to take care of the potential endogeneity of coca eradication, we we adopt a nonlinear specification and estimate the next model using the Wooldridge (1997) estimator, that fits an exponential specification that allows for multiplicative fixed effects (Cameron and Trivedi, 2005, pp. 802-808).12

$$y_{it} = \beta_i \exp (\delta EradicatedArea_{it} + \lambda t + \gamma' X_{it} + \varepsilon_{it})$$ (2)

where y_{it} represents either guerrilla attacks, civilian casualties, combatant casualties, or clashes between government forces and left-wing guerrilla groups; X_{it} is the same as in equation (1); λt is a linear time trend and β_i a municipality specific fixed effect.13

4.2 Long-term results

4.2.1 Impact on coca cultivation

Figure 2 shows the distribution of coca fields across municipalities in 1999 (Figure 2a) and 2005 (Figure 2b), respectively the first and last year of our sample. The grey scale uses the same intensity cutoffs in both years, namely the quartiles of the distribution of coca crops in the initial year (1999). This is done for comparison purposes. It allows us to show the inter-period change in the location and intensity of coca fields.14 Darker municipalities correspond to a higher coca intensity relative to the municipality area.15 In the initial sample year (1999)16

\footnotesize
\begin{itemize}
 \item 11Because new brigades were created throughout our period of analysis, the distance to the closest base is time-varying and so this control is not collinear with the municipal fixed effect.
 \item 12Because we lack a similarly convincing identification strategy, we do not test the effect of eradication on the country’s aggregate level of violence.
 \item 13To control for potential aggregate shocks overtime we include a linear trend instead of time dummies because when adding time fixed effects the optimization procedure of the Wooldridge encounters a flat region and fails to converge.
 \item 14This practice is repeated in all the subsequent figures, that map all the variables of interest in the first and the last years of our sample.
 \item 15In the case of the percentage of the municipal area cultivated with coca, the first (lower intensity) quartile (lightest gray) goes from 0.03 to 1.04 hectares of coca for every thousand hectares of land; the second quartile
\end{itemize}

9
coca was present in 89 municipalities and the mean acreage of coca conditional on having a positive amount was 1,845 ha. In contrast in 2005 coca had doubled its municipal presence reaching 190 towns, albeit with a much lower average field extension (451 ha) which suggests a secular atomization of the production. Indeed, keeping the same intensity quartiles of Figure 2a, Figure 2b shows a much more sparse coca production, but with a lower incidence of dark colors.

When we normalize coca cultivated areas by the total municipality area in hundreds of hectares, we find that, on average, each municipality in Colombia has 0.11 hectares of coca for every hundred hectares of land (Table 1).

Figure 3 presents the geographic distribution of the coca spraying program in 1999 and 2005, with quartiles of spraying intensity measured in 1999 and normalized by the municipal area. Darker municipalities are places more intensively sprayed. 27 municipalities witnessed spraying in 1999. The mean sprayed area conditional on a positive value of spraying was 1,597 ha. In 2005 the program was expanded to 111 municipalities, and the mean eradicated area was 1,250 ha. Figure 3 reveals that the intensity of the eradication campaign (share of municipal surface that experienced coca spraying) increased significantly from 1999 to 2005. The mean area sprayed per municipality/year is 0.07 hectares per hundred hectares of land (Table 1).

We then estimate the effectiveness of the aerial spraying on coca growing, which is the outcome that should be directly affected by eradication efforts. To this end we estimate equation (1) as a linear dynamic panel, using the Arellano-Bond (1991) estimator. Table 2 reports the results of the effect of the aerial spraying of coca fields on the area cultivated with the illicit crop at the municipal level. The benchmark specification, which in addition to the municipality and year fixed effects controls for the lagged coca cultivation, is reported in column 1. Other controls are included additively in the subsequent columns. Column 2 adds rainfall levels to control for climatic conditions that may affect both the incidence of crops and the aerial eradication efforts. Column 3 adds further a variable that measures the distance to the closest base of a mobile military brigade. These military units, the firsts of which were created in the late 1990s, are supposed to perform timely deployments and

We computed the total area of the municipalities from the Colombia GIS datasets provided by IGAC, the country’s official geography and cartography bureau.

Note that the comparison of Figures 2a and 3a, and 2b and 3b, implies that in a few instances there appear to be eradication efforts in areas where coca is not present. This is explained by the fact that the satellite images of coca fields are captured at the end of each calendar year, while the spraying figures are the cumulative sprayed areas over each municipality across the entire year.
complicated tactic maneuvers to increase the military control in areas with known presence of illegal armed groups. The bulk of the mobile brigades was created during the Uribe administration (2002-2010) when the size of the military increased from 260 thousand to about 450 thousand (Florez, 2011). Because mobile brigades with different jurisdictions where introduced in Colombia at different points in time, this specification can also be estimated including fixed effects. The last column adds the municipal-level area affected by government-led crop substitution program. This is an important potential confounder because the crop-substitution efforts are intended to make the growers of illicit crops to voluntarily substitute these for legal crops, with the technical and financial support from the government.

The estimated coefficient of the impact of the aerial eradication efforts on the area cultivated with coca is very similar across the four specifications and in all cases it is significant at the 5 percent level.\footnote{In Table 2 neither rainfall (column 2) nor any of the controls of the other components of PC (columns 3 and 4) is significant at conventional statistical levels. This suggests that coca growing does not depend on weather variability and is not affected by the proximity of military brigades. In the case of crop substitution programs the lack of significance is consistent with previous findings for Afghanistan by Clemens (2008). There, efforts to develop alternative livelihoods for local poppy farmers have limited capacity to shift the supply of opium.} Table 2 suggests that on average, during our period of analysis, the marginal acre of illicit coca crops sprayed reduced the cultivated area in 11 to 12 percent of an acre. This figure is however likely to underestimate the mean effect of the spraying campaign since the same coca filed can be eradicated more than once (see footnote 4).

Recall that Table 2 includes in all specifications year fixed-effects, that control flexibly for any shock that may affect simultaneously all municipalities. Instead, Table 3 examines the extent to which the effect of aerial spraying of coca on the area cultivated with the crop is robust to accounting for different type of trends of coca growing. Columns 1 and 2 include a linear aggregate trend. In columns 3 and 4 the linear trend is specific to each department.\footnote{The 1,117 Colombian municipalities of our sample are aggregated in 32 departments, equivalent to US states.} Columns 5 and 6 include a linear trend for each geographic region.\footnote{The 32 departments are in turn aggregated into six geographical regions, which are clusters of states commonly used in Colombia for public policy and planning objectives.} While the odd columns include no controls beyond the specific trend and municipal fixed effects, the even columns include all the controls as in the last column of Table 2. Across all columns (i.e. including different type of trends and with and without controls) the estimated coefficient of the effect of eradication of the size of the coca fields is remarkably stable and indistinguishable from the benchmark 11-12 percent reduction of Table 2.

As a further robustness check, Table 4 reports the results coming form a specification similar to the one reported in Table 2, but where municipalities are conditioned on having
had a positive amount of coca in the 1999 satellite snapshot (the first year of our sample, and the first year in which coca land in Colombia is measured by SIMCI/UNODC). This strategy allows us to investigate the robustness of our estimates of the effect of aerial spraying on coca cultivation using a specification that is much less zero-inflated. As shown in Table 5, 89 municipalities were identified as having coca in 1999. By the end of the of the period coca persisted in 81 of those (91 percent).

According to Table 4, each acre of coca sprayed in the municipalities that presented the illicit crop in 1999 reduced the cultivated area in 15 percent of an acre. Again, the coefficient is robust in magnitude and significant (this time at the 1 percent level) to the additive inclusion of the controls described for the last table.

It is worth highlighting that due to data availability our estimates should be interpreted as local effects. Indeed, in this paper we do not take into account neither the multiple spraying that may take place on the same fields, nor potential general equilibrium effects like the fact that the eradication that takes place in one municipality can make coca growers move their illegal crops to neighboring municipalities. Our results are however consistent with accounts that suggest that the illegal crop eradication initiative has been relatively ineffective, mainly due to the fast recovery of coca fields after eradication efforts. (e.g. GAO, 2008 and Mejía and Restrepo, 2010).

The literature suggests three broad potential explanations for this phenomenon. First, coca is often replanted on sprayed fields, and unless these are repeatedly sprayed, bushes can provide up to four harvests a year depending on the plant variety, its age and the ecological conditions of the field (Mejía and Rico, 2010). In addition, coca farmers prune the plants after spraying, cultivate areas where plants are harder to localize and spray (such as under dense foliage), and intersperse coca plants with legal crops (Felbab-Brown, 2010). Second, eradication campaigns also drive the illicit crops into remoter regions, and induce a shift to smaller-scale plots. Third, the productivity of coca bushes may have increased overtime in terms of the capacity to transform the coca leaf into cocaine base (Mejía and Restrepo, 2010). These three phenomena constitute an obstacle to eradication, especially to aerial spraying by increasing its costs and reducing its effectiveness.

The variety of potential reasons explaining the lack of effectiveness of the eradication efforts imply significantly different policy responses. It is then important to try to assess their relative salience. Table 4 provides evidence supporting the first mechanism. Estimated coefficients in this table are interpreted to what extent the regions in which coca was present at the start of PC experienced successful eradication. While the effect is larger than the baseline 11 percent (Table 2), it is not so by a high proportion. In addition, Figure 3 provides visual evidence in favor of the second mechanism too, as it shows a substantial
geographical atomization of coca during our period of analysis. Coca fields doubled from 89 municipalities in 1999 (Figure 2a) to 190 in 2005 (Figure 2b), and the average crop size decreased four times from 1,845 hectares in the first year to 451 in the last. Hence, in addition to the crops being replanted on the same municipalities in which eradication takes place (either on the same fields or in more frontier areas of the town), coca fields also witnessed a large atomization. In contrast, using various rounds of a representative survey of coca growers, which among other things asks about coca yields, Rozo (2012) finds no evidence supporting the third mechanism, namely an increase in the productivity of coca leaves in the production of cocaine base.

That coca grows again on sprayed fields or the surrounding areas is consistent with a lack of government-led consolidation efforts to take full control of regions in which illicit crops are eradicated. Indeed, the lack of short-term security and long-term institutional consolidation initiatives in the territories gained to the rebels and where eradication took place is the main objection of the current presidential administration (2010–) to the Democratic Security Policy promoted by president Uribe (2002–2010). We will come back to this hypothesis when discussing the short-term results in the next section.

4.2.2 Impact on conflict outcomes

Figure 4 presents the geographic distribution of guerrilla attacks in 1999 and 2005, normalized by the municipal population. The (un-normalized) mean of guerrilla attacks is 0.78 per municipality/year (Table 1). However, the number of municipalities that receive a guerrilla attack decreased from 294 in 1999 to 158 in 2005. Similarly, the maximum number of attacks witnessed by the same town decreased 18 at the beginning of the period to 10 in 2005. Figure 4 suggests that the reduction in the intensity of attacks is mainly driven by a significant drop of the guerrilla activity in the north-east of the country.

Figure 5 maps the incidence of (population-normalized) clashes between government forces and guerrilla groups. The total number of clashes decreased from 211 in 1999 (Figure 5a) to 160 in 2005 (Figure 5b). In addition to more geographically concentrated, clashes became more intense during this period: The maximum number of clashes per municipality/year rose from 6 in 1999 to 10 in 2005. According to Figure 5, the hot spot of clashes that appears in the north-east of the country in 1999 disappeared by 2005. Instead, spots of intense clashing emerged in the center and south of the country. However other areas persisted in terms of clashes between government forces and guerrillas, specifically the north-west of the country.

More civilians than combatants died as a direct result of the conflict during the period of analysis. The mean total number of civilian casualties is 1.98 and that of combatants is 1.30
per municipality/year (Table 1). Figures 6 and 7 show respectively the spatial distribution of incidence of combatant and civilian casualties in conflict events involving the guerrillas (i.e. guerrilla attacks or clashes with the guerrillas) across Colombian municipalities in 1999 and 2005. The figures show that both combatants and civilians experienced a large improvement in their security over this period.

Our second set of results then estimate the impact of aerial spraying on the incidence of conflict-specific violence, as measured by the outcomes already described. Table 6 reports the long term impact of coca eradication efforts on measures of conflict-specific outcomes. There is one column for each outcome and all specifications include as controls municipality fixed effects, linear time trends, and the distance to the closest mobile military brigade.²¹

We report the marginal effects. These are obtained by multiplying the estimated coefficient times 100 and should be interpreted as the impact of one additional unit of the independent variable of interest on the percentage change of the dependent variable. Since, to account for the heterogeneity in municipal areas, coca eradication is measured as the percentage of hectares that are sprayed relative to the extension of the municipality, the reported coefficients can be interpreted as the percentage change in each of the violence outcomes for an additional 1 percent of the municipality area sprayed. Hence, according to column 1 of Table 6, an additional 1 percent of the municipality area witnessing coca eradication leads to 22 percent more guerrilla attacks and this is significant at the 1 percent level. Note that the average is 0.11.

The armed initiative of the guerrilla in Colombia is not uncontested. As reported in column 2 of Table 6, an additional 1 percent of the municipality area witnessing coca eradication is associated with 24 percent more clashes between the guerrilla and the government (also significant at the 1 percent level). This is consistent with the contestation story summarized in the conceptual framework at the beginning of this subsection, and further suggested by the positive and significant result on unilateral guerrilla attacks reported in column 1: When the guerrilla tries to recover the coca-growing areas they face the government forces, which try to hold the upsurge of guerrilla attacks. The result that coca eradication has increased guerrilla attacks in municipalities where eradication took place instead of weakening their military power via a reduction in coca income is consistent with the idea that instead of running away to non-coca-growing (and therefore not exposed to spraying) municipalities, guerrillas do not easily cede the control of coca-growing municipalities. According to Felbab-Brown (2010, Chapter 4), fighting eradication efforts helps the guerrilla gain the support and allegiance of local coca farmers.²²

²¹In this specification, contemporaneous and lagged rainfall levels are used to instrument municipal eradication. The presence of the alternative crops program is not included due to endogeneity.
²²Although the results is also consistent with anecdotal evidence linking guerrillas’ adaptation to eradication
One way of fighting eradication is by shooting spraying aircrafts. Up to the year 2007, 1,116 spraying aircraft had been impacted by gun fire (Semana, 2007). A likely consequence of these shootings and the clashes mentioned above, is surely the death of combatants from both the government forces and the rebels. In column 3 of Table 6 we look specifically at this outcome and estimate a positive and significant effect of 22 percent.

Unfortunately, civilians in this context also get their share of victimization. An additional 1 percent of the municipality area witnessing coca eradication leads to 16 percent more civilians killed. This is consistent with the short-term findings that we describe in the next section.

Overall, we show that eradication efforts in the context of PC have led to higher violence outcomes in the municipalities where aerial spraying of coca fields took place. The stated intention of the eradication campaign, besides the reduction of drug supply, has been the abatement of violence inflicted by illegal armed groups by crunching their main financial source pushing them to retract and slow down their violent activities. However the eradication of illegal coca crops may also increase violence perpetrated by the parties who benefit from the drug trade. As we argue, this is because armed groups are not willing to give up the control of coca regions to the government without disputing them violently.

These findings are in line with recent scholarship that has found a positive relationship between drug enforcement policies and the level of violence. Jeffrey Miron has argued that the traditional anti-drugs approach of prohibition create black markets and that these type of markets often resort to violence to resolve disputes. Controlling for the traditional determinants of the homicide rate he finds that increases in enforcement of prohibition of illegal substances has been associated with higher homicide rates in the US (Miron, 1999) and that differences in the enforcement of drug prohibition can predict differences in violence across countries (Miron, 2001). Also, Dell (2015) shows causal evidence that the PAN-led campaign against drug cartels in Mexico under the Calderón administration had the unintended consequence of increasing violence. She argues that after successful defeats of incumbent cartel leaders rival traffickers dispute violently the territories that remain leaderless.

In a similar vein, Clemens (2013) argues that the effect of US efforts to reduce the Afghan opium trade have backfired because as demand is inelastic, when supply shrinks the rents of the remainder producers surge. A similar argument is used by Mejía and Restrepo (2010) to explain the relatively little success of PC in eliminating coca production.

The hit to the finance of terrorists and their violent reaction to dispute their rents’ root are two opposing forces that are consistent with a stylized fact documented in this paper. While violence increased in the sprayed areas, it shrank in the country as a whole (see by switching to kidnapping and extortion in their areas of influence.
Table 6 and Figure 4 respectively). This is because armed groups have both a national political agenda but localized financial sources. If the mechanism explaining the observed escalation of violence was instead similar to the one proposed by Clemens (2013) for the ineffectiveness of the anti-opium enforcement in Afghanistan, namely that the eradication-led supply shrinkage increases the rents of the remainder traffickers feeding their bellicose capacity, then we would expect violence to surge in the rest of the country and less so in sprayed regions. Not only is this the opposite from what we find, but also, as discussed in section 4.2.1, eradication has been rather ineffective in reducing coca supply.

By providing evidence that eradication efforts lead to an increase of violence at the local level, in this section we highlight an unintended negative consequence of PC in terms of on of the program’s main objectives, namely the reduction of violence in Colombia.

5 Short-term analysis

5.1 Empirical strategy

In this section we focus primarily on the effect of illicit crops eradication efforts on short term violence outcomes, using daily frequency data at the municipal level. The events of interest in our study are each of the aerial fumigations of coca fields that are carried out in Colombia during our sample period, 1999-2005. We define the “event window” as the period over which the violence outcomes are observed around each spraying event. Using daily data, in order to capture the short-term violence dynamics both pre and post each event, our benchmark event window spans for a month (30 days) both before and after every event.\(^\text{23}\) The pre-event window is meant to capture previous conflict dynamics, which are of interest because military forces are generally scheduled to arrive to the areas to be sprayed several days in advance in order to secure the places.\(^\text{24}\) The post-event window, instead, will capture the short-term violent reaction to the spraying events.

We estimate the model:

\[
y_{it} = \beta_i \exp (\gamma PRE_t + \alpha POST_t + \delta_t + \varepsilon_{it})
\]

where \(y_{it}\) represents each of the violence variables in municipality \(i\) recorded on day \(t\). \(PRE_t\) is a time indicator that captures the window spanning for 30 days before the eradication event. That is, \(\gamma\) captures the effect of the eradication on the incidence of violent outcomes prior to it taking place. We include this term in order to control for previous conflict dynamics.

\(^{23}\)Rarely two or more eradication events occur in the same municipality one shortly after the other.

that may affect where and when current fumigation efforts are going to be implemented. We include the time indicator $POST_t$, spanning for 30 days after the eradication event. That is, α is our main coefficient of interest as it captures the violent reaction of the eradication event. We include municipality fixed effects (β_i) to capture time invariant municipal-specific characteristics that may be related to conflict and eradication variables, such as geographic variables (Abadie, 2006). We also include $6 \times 84 = 504$ dummy variables, represented by δ_{rt}, that capture the effect of time shocks that are common to all the municipalities located within the same geographical region.

Because of the count nature of the outcome, in equation (1) we adopt an exponential model (Cameron and Trivedi, 2005, pp. 802-808).

5.2 Short term results

Table 7 reports the marginal effects in percentage terms of the estimated coefficients. We only find significant changes in the month before the spraying events in the number of combatant casualties. In contrast, shortly after the occurrence of the events civilian casualties present a significant 22.8 percent increase (column 4). We do not find significant effects of the coca spraying events on guerrilla attacks, or clashes between the government forces and the guerrillas (columns 1 and 2). Consistent with this, in column 3 we do not find a significant increase in combatant casualties.

Our short-term results are consistent both with the functioning of the spraying program, and with recent theoretical accounts of civilian victimization in civil conflict. Take on the one hand our finding that there is an increase in combatant casualties prior to the spraying events. As explained in our empirical strategy, government forces are sent to ‘clear’ territories to be sprayed. Spraying aircraft have to fly low for the herbicides to hit the target and minimize the chance they are blown to near coca-free spots by the wind. If a guerrilla squad with anti-aerial artillery or ranged weapons is present, spraying airplanes are at risk of being hit. In fact, according to a local magazine, up to year 2007 1,116 spraying aircraft had been impacted by gun fire (Semana, 2007). Thus, military platoons sent for advanced territorial clearing often find local armed resistance.

On the other hand, we show that civilian casualties increase after eradication. Kalyvas (2006)’s theory on selective violence argues that the extent to which violence against civilians is used in civil conflicts depends on the degree of control that armed groups have over valuable territories. In cases of territorial contestation among more than one group, non-state actors rely on selective violence to deter defection or active collaboration with the rival actor. Rather, in cases in which actors exercise territorial hegemony violence is seldom used as
it hampers the group’s legitimacy. We argue that pre-eradication deployment of troops, as well as the eradication events *per se*, increase contestation in rebel controlled coca-producing areas, and hence primes non-state actors to exert violence. Moreover, because the process of pre-eradication preparation exposes them to interacting with the government, (coca) farmers in sprayed areas are more likely to be seen as collaborating with the enemy. In all, once the spraying takes place, coca-profiting armed actors conduct selective killings to punish alleged collaboration with the government. This is consistent with vast anecdotal evidence that guerrilla groups punish farmers thought to have collaborated with government forces. More systematically, Vargas (2009) shows that territorial contestation increases civilian targeting by illegal armed groups in Colombia.

However, in contrast with the long-term results, the short-term guerrilla punishment upsurge following eradication efforts is not contested by the government as clashes are not significantly different from zero (column 2). This is consistent with the hypothesis that short-term eradication efforts at the dawn of PC were largely unaccompanied by military presence for consolidation purposes, something that the current government (2010-2014) has explicitly addressed.

In short, we show that the eradication efforts in the context of PC have had the unintended consequence of making sprayed territories more violent. This finding is consistent with recent claims of the existence of a positive association between drug enforcement policies and violence in different contexts: drug and alcohol prohibition efforts in the US (Miron, 1999), the war against drug cartels in Mexico (Dell, 2015) and the war against opium production in Afghanistan (Clemens, 2013).

6 Conclusion

In this paper we conduct for the first time a rigorous econometric evaluation of Plan Colombia, the largest aid package ever received by a country in the western hemisphere. While Plan Colombia has been the subject of continuous debate, criticism and praise has come mostly from NGOs and journalistic accounts, while evidence-based arguments are usually absent. Indeed, after over a decade of its existence, surprisingly there has been very little academic research on whether PC has been effective or not in achieving its goals, or what elements of it could be improved.

We assess both the short- and the long-term effect of PC in terms of the two outcomes the package intended to affect: The production of coca and the dynamics of the Colombian armed conflict. We do so by focusing on one particular and well defined policy instrument: the eradication of illegal-crop fields. We investigate the long-term effect of eradication on
coca production and a large set of conflict-related violence outcomes controlling for various state presence measures as well as climate conditions, municipality and time fixed effects and linear time-trends.

Our preferred estimate suggests that one additional acre of coca eradicated reduces the cultivated area by about 11 percent of an acre on the margin. The mean effect of the eradication effort on coca crops is however plausibly larger since, as explained, as the same coca fields can be re-sprayed. However, as the available data on aerial spraying is aggregated at the municipal level, it is impossible to know for certain which fields are re-sprayed. Hence, we are only able to report the marginal effect which is most likely a lower bound of the mean effect of the eradication program on the size of coca crops.

In terms of the effect of the aerial spraying program on violence our estimates indicate that both in the short and the long run, guerrilla activity increases in sprayed areas. In addition, while in the short run this results in significantly higher numbers of civilian casualties, in the long run guerrilla attacks are challenged by government forces which increases two-sided clashes and the killing of combatants. These results are consistent with the hypothesis that while coca eradication weakens the guerrilla by cutting one of its main source of finance, it is not enough to decrease localized violence as the guerrilla tries to hold on to control of the coca fields.

References

[22] Presidencia de la Republica de Colombia (2008), Press release about manual and aerial spraying of coca fields.

Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th></th>
<th>2005</th>
<th></th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Mean</td>
<td>St. Dev.</td>
<td></td>
</tr>
<tr>
<td>Illicit crops measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coca crops</td>
<td>147.05</td>
<td>973.65</td>
<td>76.66</td>
<td>440.20</td>
<td>SIMCI/UNODC</td>
</tr>
<tr>
<td>Coca crops normalized</td>
<td>0.11</td>
<td>1.19</td>
<td>0.04</td>
<td>0.16</td>
<td>SIMCI/UNODC</td>
</tr>
<tr>
<td>Sprayed area</td>
<td>38.60</td>
<td>367.61</td>
<td>124.24</td>
<td>1055.69</td>
<td>DIRAN</td>
</tr>
<tr>
<td>Sprayed area normalized</td>
<td>0.07</td>
<td>1.00</td>
<td>0.10</td>
<td>0.58</td>
<td>DIRAN</td>
</tr>
<tr>
<td>Conflict Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clashes government-guerrilla</td>
<td>0.26</td>
<td>0.62</td>
<td>0.40</td>
<td>1.16</td>
<td>CERAC/URosario</td>
</tr>
<tr>
<td>Guerrilla attacks</td>
<td>0.78</td>
<td>1.89</td>
<td>0.38</td>
<td>1.24</td>
<td>CERAC/URosario</td>
</tr>
<tr>
<td>Civilian casualties</td>
<td>1.98</td>
<td>6.12</td>
<td>1.73</td>
<td>5.74</td>
<td>CERAC/URosario</td>
</tr>
<tr>
<td>Combatant casualties</td>
<td>1.30</td>
<td>5.59</td>
<td>0.98</td>
<td>3.36</td>
<td>CERAC/URosario</td>
</tr>
<tr>
<td>Institutional controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land under crops substitution program</td>
<td>1.45</td>
<td>10.47</td>
<td>146.46</td>
<td>599.75</td>
<td>Acción Social</td>
</tr>
<tr>
<td>Land under crops substitution program norm.</td>
<td>0.01</td>
<td>0.08</td>
<td>0.74</td>
<td>3.62</td>
<td>Acción Social</td>
</tr>
<tr>
<td>Distance to closest military base</td>
<td>391.44</td>
<td>204.29</td>
<td>160.72</td>
<td>90.93</td>
<td>Army and press</td>
</tr>
<tr>
<td>Rainfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall</td>
<td>1,872.92</td>
<td>638.39</td>
<td>1,476.54</td>
<td>591.71</td>
<td>TRMM/NASA</td>
</tr>
</tbody>
</table>

Notes: Number of municipalities 1,117. Number of observations 7,819 (= 1,117 × 7). a Number of hectares cultivated/sprayed. b Normalized by municipality area and multiplied times 100. c Variable not normalized: count of events. d Orthodromic distance measured in kilometers. e Variable measured in cubic millimeters.
Table 2: Effect of aerial coca spraying on coca area (long term)

<table>
<thead>
<tr>
<th>Dependent variable: Coca cultivated area</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eradicated area</td>
<td>-.114**</td>
<td>-.115**</td>
<td>-.119**</td>
<td>-.121**</td>
</tr>
<tr>
<td></td>
<td>(.052)</td>
<td>(.052)</td>
<td>(.051)</td>
<td>(.053)</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag. Cultivated area</td>
<td>.698***</td>
<td>.699***</td>
<td>.702***</td>
<td>.705***</td>
</tr>
<tr>
<td></td>
<td>(.057)</td>
<td>(.056)</td>
<td>(.056)</td>
<td>(.059)</td>
</tr>
<tr>
<td>Rain</td>
<td>.013</td>
<td>.007</td>
<td>-.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.011)</td>
<td>(.008)</td>
<td>(.006)</td>
<td></td>
</tr>
<tr>
<td>Dist. military base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.013</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crops substitution</td>
<td>-.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Number of municipalities 1,117. Number of observations 5,585. Regressors not shown include municipality and year fixed effects. Robust standard errors are in parentheses. Instruments are lags from 2 on back (until 1999) of the coca cultivated area, lags from 1 on back (until 1999) of the policy variables (eradication, crop substitution and distance to closest military base) and the first difference of rain. *** is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.
Table 3: Effect of aerial coca spraying on coca area (long term) – Robustness

<table>
<thead>
<tr>
<th>Dependent variable: Coca cultivated area</th>
<th>Agg. lin. trend</th>
<th>Dept. lin. trend</th>
<th>Reg. lin. trend.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Panel A: Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eradicated area</td>
<td>-.115**</td>
<td>-.121**</td>
<td>-.114**</td>
</tr>
<tr>
<td></td>
<td>(.051)</td>
<td>(.050)</td>
<td>(.055)</td>
</tr>
<tr>
<td>Panel B: Normalized cultivated and eradicated area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eradicated area</td>
<td>-.048</td>
<td>-.061</td>
<td>-.053</td>
</tr>
<tr>
<td></td>
<td>(.050)</td>
<td>(.046)</td>
<td>(.042)</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag. Cultivated area</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rain</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dist. military base</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Crops substitution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: Number of municipalities 1,117. Number of observations 5,585. Regressors not shown include municipality fixed effects in all columns and municipality fixed effects plus the full set of controls in the even columns. Robust standard errors are in parentheses. Instruments are lags from 2 on back (until 1999) of the coca cultivated area, lags from 1 on back (until 1999) of the policy variables (eradication, crop substitution and distance to closest military base) and the first difference of rain. *** is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.
Table 4: Effect of aerial coca spraying on coca area for 1999 coca municipalities (long term)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eradicated area</td>
<td>-0.148***</td>
<td>-0.151***</td>
<td>-0.152***</td>
<td>-0.154***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.049)</td>
<td>(0.048)</td>
<td>(0.047)</td>
</tr>
</tbody>
</table>

Controls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag. Cultivated area</td>
<td>0.703***</td>
<td>0.716***</td>
<td>0.705***</td>
<td>0.693***</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.065)</td>
<td>(0.067)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>Rain</td>
<td>.376</td>
<td>.259</td>
<td>.261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.212)</td>
<td>(.226)</td>
<td>(.225)</td>
<td></td>
</tr>
<tr>
<td>Dist. military base</td>
<td></td>
<td>- .608</td>
<td>- .608</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.918)</td>
<td>(0.889)</td>
<td></td>
</tr>
<tr>
<td>Crops substitution</td>
<td></td>
<td>-.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.527)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Number of municipalities 89. Number of observations 445. Regressors not shown include municipality and year fixed effects. Robust standard errors are in parentheses. Instruments are lags from 2 on back (until 1999) of the coca cultivated area, lags from 1 on back (until 1999) of the policy variables (eradication, crop substitution and distance to closest military base) and the first difference of rain. *** is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.

Table 5: Municipalities with coca presence 1999 and 2005

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>920</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>928</td>
</tr>
</tbody>
</table>

Source: SIMCI/UNODC
Table 6: Effect of aerial coca spraying on conflict violence – Marginal effects (long term)

<table>
<thead>
<tr>
<th>Dep variable:</th>
<th>Guerrilla attacks (1)</th>
<th>Clashes gov.-guer. (2)</th>
<th>Combatant casualt. (3)</th>
<th>Civilian casualt. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eradicated area</td>
<td>22.413*** (5.319)</td>
<td>24.476*** (9.458)</td>
<td>22.087*** (7.258)</td>
<td>15.578** (7.819)</td>
</tr>
</tbody>
</table>

Notes: Number of municipalities 1,117. Number of observations 5,585. Regressors not shown include a linear trend, the distance to the closest base of a military mobile brigade, and municipality fixed effects. Instruments for Eradicated area are rain and lagged rain. We report marginal effects, obtained by multiplying the estimated coefficient times 100 and which should be interpreted as the impact of one additional acre of coca sprayed on the percentage change of the dependent variable. Clustered standard errors by municipality are in parentheses. *** is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.

Table 7: Effect of aerial coca spraying on conflict violence, percentage change (short term)

<table>
<thead>
<tr>
<th>Dep variable:</th>
<th>Guerrilla attacks (1)</th>
<th>Clashes gov.-guer. (2)</th>
<th>Combatant casualt. (3)</th>
<th>Civilian casualt. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-event window</td>
<td>6.038 (11.046)</td>
<td>0.399 (10.965)</td>
<td>22.486** (10.573)</td>
<td>4.201 (8.867)</td>
</tr>
<tr>
<td>Post-event window</td>
<td>7.929 (10.978)</td>
<td>-3.854 (11.002)</td>
<td>-3.112 (11.028)</td>
<td>22.820*** (8.482)</td>
</tr>
</tbody>
</table>

Notes: Number of observations per municipality 2,557. Regressors not shown include municipality fixed effects and region-level linear trends, where region is a cluster of neighboring departments. We report marginal effects, obtained by multiplying the estimated coefficient times 100 and which should be interpreted as the impact of one additional acre of coca sprayed on the percentage change of the dependent variable. Standard errors are in parentheses. *** is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.
Figure 1: Evolution of main variables during sample period

Figure 1a: Coca crops and coca spraying

Figure 1b: Guerrilla attacks

Figure 1c: Clashes government-guerrilla

Figure 1d: Combatant casualties

Figure 1e: Civilian casualties
Figure 2: Spatial distribution and intensity of coca crops across Colombian municipalities: 1999 and 2005

Notes. This figure shows coca intensity in Colombian municipalities in 1999 and 2005. Coca intensity is measured as the land used for cultivating coca (in thousands of hectares normalized by the municipal area). Sources: Shape file from IGAC; data on coca crops from SIMCI/UNODC (see data appendix for details).
Figure 3: Spatial distribution and intensity of aerial spraying of coca crops across Colombian municipalities: 1999 and 2005

Notes. This figure shows the intensity of the spraying of coca crops in Colombian municipalities in 1999 and 2005. This is measured as the area of coca fields sprayed from airplanes (in thousands of hectares normalized by the municipal area). Sources: Shape file from IGAC; coca spraying from DIRAN (see data appendix for details).
Figure 4: Spatial distribution and intensity of guerrilla attacks across Colombian municipalities: 1999 and 2005

Notes. This figure shows the number of guerrilla attacks in Colombian municipalities in 1999 and 2005 (in thousands of inhabitants normalized by the municipal population). Sources: Shape file from IGAC; conflict violence data from Universidad del Rosario (see data appendix for details).
Figure 5: Spatial distribution and intensity of clashes between government forces and guerrilla groups across Colombian municipalities: 1999 and 2005

Figure 5a: Clashes 1999

Figure 5b: Clashes 2005

Notes. This figure shows the number of clashes between government forces and guerrilla groups in Colombian municipalities in 1999 and 2005 (in thousands of inhabitants normalized by the municipal population). Sources: Shape file from IGAC; conflict violence data from Universidad del Rosario (see data appendix for details).
Figure 6: Spatial distribution and intensity of combatant casualties in guerrilla events across Colombian municipalities: 1999 and 2005

Notes. This figure shows the number of combatant casualties in guerrilla events (attacks and clashes) in Colombian municipalities in 1999 and 2005 (in thousands of inhabitants normalized by the municipal population). Sources: Shape file from IGAC; conflict violence data from Universidad del Rosario (see data appendix for details).
Figure 7: Spatial distribution and intensity of civilian casualties in guerrilla events across Colombian municipalities: 1999 and 2005

Notes. This figure shows the number of civilian casualties in guerrilla events (attacks and clashes) in Colombian municipalities in 1999 and 2005 (in thousands of inhabitants normalized by the municipal population). Sources: Shape file from IGAC; conflict violence data from Universidad del Rosario (see data appendix for details).
A Appendix

A.1 Data sources

1. Dirección Nacional de Estupefacientes -DNE-: Dirección Nacional de Estupefacientes provided us with daily data on manual eradication events as well as aerial spraying events at the municipality level, from 1999 to 2005. The illicit crop eradication policy in Colombia includes two differentiated strategies, according to the plant type and the nature of the economic exploitation of the fields: industrial exploitation of coca and opium poppy are sprayed while the small plots of the same crops and marijuana are manually eradicated. The data is event-based, and covers over 10,000 eradication related events over the period. For each event, the dataset records the date, location, type of crop eradicated, agency in charged, eradicated or fumigated area and whether the event was a manual eradication or an aerial spraying.

2. National Bureau of Statistics –DANE from the Spanish acronym–: Official population projections by municipality for the period 1995-2005 are publicly available for 1,105 municipalities. Projections are discriminated between urban and rural.

3. Centro de Recursos para el Análisis de Conflictos –CERAC–: CERAC provided us with 21,000 conflict data over the period 1988-2005 at the municipality level. For each event, the dataset records the date, location, type, perpetrator, number of victims and whether the victims were civilians or combatants involved in the incident. Each recorded incident may be classified into an uncontested attack, or a clash, which involves an exchange of fire between two or more groups. The perpetrators are either guerilla or paramilitary groups. There are two primary sources for data gathering: the first is press articles from more than 20 daily newspapers of both national and regional coverage; the second is reports from human rights NGO’s and other organizations on the ground such as local public ombudsmen and, particularly, the clergy.

4. United Nations Office of Drug Control – Programa de Monitoreo de Cultivos Ilícitos (SIMCI): UNODC has supported the monitoring of illicit crops since 1999, and has produced eight annual surveys through a special satellite based analysis program called SIMCI (from the Spanish initials). The monitoring of coca cultivation in Colombia is based on the interpretation of various types of satellite images. The images cover the whole national territory (excluding the islands of San Andres and Providence) equivalent to 1,142,000 square km. Based on these surveys, we obtained an estimate of the number of hectares of coca cultivation at the municipality level. The estimation
of the total area under coca cultivation is the result of the following steps: i) identification and acquisition of satellite images; ii) image preprocessing (geo-referencing, radiometric and spatial enhancements, band combinations); iii) Digital land cover classification of land use and vegetation; iv) Visual interpretation of the coca fields; iv) verification flights; v) corrections (manual eradication, spraying, clouds and differences in acquisition dates of images that allows to get the estimates at the cut-off date of 31st December).

5. Instituto Geografico Agustin Codazzi –IGAC–: IGAC provided us with Colombian GIS datasets, which allowed us to create maps of the variables described before. IGAC is Colombia’s national mapping agency responsible for producing the official map and base cartography of Colombia, supporting geographic studies in the form of land development support and professional training and education in geographic information system (GIS) technology and coordinating the Colombia Spatial Data Infrastructure. For the past 70 years, IGAC has produced georeferenced cartographic maps at several scales using the most modern technology available at the time. IGAC also provided us with the area, and geographic coordinates (longitude and latitude) of each municipality.

6. Tropical Rainfall Measuring Mission, TRMM, NASA: The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. A series of quasi-global, near-real-time, TRMM-based precipitation estimates is available to the research community via anonymous ftp. The estimates are provided on a global 0.25 ° x 0.25 ° grid over the latitude band 50 ° N-S.

7. Presidential Agency for Social Action, Colombia: Accion Social provided us with alternative development data at the municipality level, from 1998 to 2005. The database includes name of executing agency, municipalities covered in the project, number of hectares to be planted with legal crops and start and end date of the project. The database includes projects financed by government programs and also by USAID or both. When more than one municipality was the main location of the project, we imputed values according to the area of the municipalities involved. For example, the hectares to be planted by an alternative development project benefiting two municipalities was split into the two municipalities, and the percentage used to assign the value for each municipality was the fraction of each municipality in the total combined municipality areas. Besides, the value corresponding to the first year is the inverse of the number of years the project last; the value corresponding to the second year is the
cumulative value of the first year plus the net value of the hectares planted the second year and so on, until 2005.

A.2 Measuring coca cultivation

In section 3.1 we describe our dependent variable, defined as the amount of municipal land cultivated with coca each year. We provide a detailed explanation of how this measure is estimated. In addition, SIMCI also estimates and alternative variable, albeit only from 2001 onwards. It is the amount of municipal land that has been “affected” by coca crops each year. This is the sum of our coca cultivation estimate plus the municipal area that, while affected by coca at some point during the year, was coca free by December 31st. This is done by comparing the (December 31st) coca cultivation estimate with detailed geo-referenced event-based data on coca eradication. SIMCI makes sure there is no double counting: if the same plot is sprayed more than once during the year, that area is only counted once. Likewise, if the same plot appears as coca producing on December 31st but it was sprayed at least once during the year, that area is only counted once.

Multiple spraying of the same area is not uncommon. In fact it is quite possible that the total sprayed area in a given year is larger than the area cultivated in the same year. Indeed, coca farmers have learned different adaptation techniques in reaction to spraying (GAO, 2008, p.6): First, in some cases the spraying is ineffective as the herbicide can be “washed out” from plants, as long as this is done right after the spraying has taken place (UNODC, 2011, pg. 2). Second, even in the event of successful eradication, farmers often replant coca in plots previously sprayed. If replanting is done before the end of the calendar year then sprayed areas will appear as coca producing. Some estimates point to 50 percent of spraying area being replanted within 15 months (UNODC, 2011). Given both plant protection and replanting, spraying is carried out in the same geographic area more than once, even several times within a year. Therefore the sum of the sprayed area in a given municipality may exceed the end-of-year estimate of the cultivated area in the same municipality.

Figure A.1a plots the estimate of the cultivated area (by December 31st) as well as that of the total area affected by coca during the calendar year, for the period 2001-2005. As expected given the aerial spraying program, coca cultivated is smaller than the affected area throughout the period. Of course the difference between coca producing and coca affected area would be much larger if double-counting due to replanting and multiple spraying was allowed. Figure A.1b shows this is the case.

Because we are interested to evaluate the effect of the spraying campaign on coca cultivation, we use as dependent variable the cultivated area as estimated by the end of each
year, rather than the total area affected during the year. While the cultivated area variable allows us to measure the extent to which the spraying policy can reduce the amount of land cultivated in a calendar year, one of the components of the affected area is precisely the eradicated area so we would be regressing spraying on itself, artificially creating a high correlation.
Figure A.1: Coca cultivated estimate versus alternative measures of coca presence

Figure A.1a: Coca cultivated vs coca affected

Figure A.1b: Two measures of coca affected