Nuclear energy’s role in decarbonizing China’s energy system: Loosening constraints, mitigating risks

Matthew Bunn
HKS Energy Policy Seminar
2 April 2018
belfercenter.org/managingtheatom

The questions, and why they matter

- What are the key constraints on, and risks of, growth of nuclear energy on China to a scale large enough to play a substantial role in decarbonizing China’s energy system later this century?
- What can be done about these constraints and risks through:
 - Improved policies
 - Improved technologies
- What policies can China adopt in the next few years that would maximize its nuclear options decades from now?
- China is building more reactors than any other country (23 of 38 reactors started up since 2012 were in China) – if nuclear energy does not play a major role in decarbonizing China’s energy system, it will not play a major global role.
The huge scale of growth required

- In 2nd half of 21st century, China is likely to be consuming ~ 3-6 TW of energy
 - To provide 15-50% of total energy would require 0.5-3 TW of nuclear power
 - Many hundreds of 1 GWe plants, or thousands of small plants – of order 15-50x current
 - More than entire world nuclear energy today
- Growth on this scale would mean transforming China’s nuclear enterprise in many ways
- Currently China has 34.5 GWe of nuclear energy; 19 GWe under construction; goal of 58 GWe in 2020 will be delayed several years
 - China is also funding RD&D on several advanced nuclear technologies
 - China is also moving into nuclear export markets

Growth could follow multiple paths: e. g. steady, or slow with a later surge
Nuclear energy provides a tiny share of China’s energy today

Growth in energy demand has slowed, coal (probably) has peaked, developments suggest that China’s energy future may look quite different from its past

Source: IEA, World Energy Outlook 2017

Nuclear is currently expected to play only a small role in China’s decarbonization

Decarbonization likely to occur more slowly than this
- Nuclear may play bigger role later in 21st century

Source: IEA, World Energy Outlook 2017
Particulates may be more important than climate in driving clean energy in China

Smog in Beijing. Source: inhabitat.com

- ~1 million deaths/yr in China from outdoor fine particulates

Key constraints on large-scale nuclear energy growth in China

- Cost – and financing
- Safety risks – real and perceived
- Security risks – real and perceived
- Siting and public acceptance
- Nuclear waste management – mostly politics
- Limited government and industry capacity
 - Including human resources
- Regulatory delays
- Integration into future renewables-heavy energy system
- Proliferation risks – mainly from the nuclear fuel cycle
- U supply: Not likely to be a constraint this century

Both policy and technology could help address these constraints
Economics are a smaller constraint in China than elsewhere – for now

- Nuclear energy costs driven by:
 - Very high capital costs
 - High costs of financing (with extra premium for nuclear risks – delays, cost over-runs…)
- Where there are low gas prices, no carbon prices, no government-backed financing, nuclear is uncompetitive
 - Rarely chosen by utilities in competitive markets
- But China’s market currently provides favorable conditions:
 - State-owned nuclear companies can finance plants at low rates (HUGE effect on overall economics compared to United States)
 - Reactors built somewhat faster, at lower costs, with less uncertainty
 - Government can (and does) enforce higher rates for favored electricity sources
- Future reforms MAY change some of those conditions

Policy + technology for improving nuclear economics

- Policy:
 - Maintain cheap financing (n.b.: only changes apparent cost, not total social cost…)
 - Maintain high, predictable electricity prices for nuclear
 - Avoid undue regulatory delays, uncertainty
- Technology (advanced reactors):
 - Some advanced systems MAY offer lower capital cost
 - Some are factory-built (shorter build times, potentially better learning)
 - Some designed to provide both electricity and process heat, could increase electricity output when prices are high
 - Offshore systems MIGHT offer lower land, foundation costs

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>High</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate-High</td>
</tr>
</tbody>
</table>
Nuclear costs: most experts are not expecting a breakthrough

Most experts in an elicitation expected Gen. III reactor costs to increase by 2030.

Higher projected costs for Gen. IV and small reactors in 2030.

Safety risks – a key constraint

- Fukushima accident significantly slowed nuclear energy in China
 - All new starts put on hold temporarily during safety review
 - New requirements imposed, increased focus on Gen. III reactors
 - Planned construction pace significantly reduced
 - Inland sites still not yet approved to start construction
- Another major accident – particularly one in China – could make it impossible for nuclear energy to grow at the scale needed for major part in China’s decarbonization
- China has taken many steps to ensure nuclear safety, but:
 - Poor overall safety record elsewhere in China’s economy
 - Rapid, low-cost construction raises concerns over whether corners are being cut
 - Regulator has smaller staff/reactor, less experience, than U.S. or European counterparts
Policy + technology for reducing real and perceived safety risks

- Policy:
 - Strengthen nuclear regulator
 - Establish industry-level group comparable to INPO
 - Training, incentives, other programs to build up safety culture
 - Counter corruption

- Technology (advanced reactors):
 - Most advanced systems offer increased passive safety
 - FHR: “I can't figure out how to engineer a release from this reactor”
 - Some advanced systems underground or offshore
 - Some passive safety systems more demonstrable, understandable

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology impact</td>
<td>High</td>
</tr>
</tbody>
</table>

Security risks – also important

- Terrorists could cause a Fukushima-scale release – or worse
 - More reactors does NOT lead to more risk of theft of nuclear bomb material – UNLESS China shifts to use of plutonium or HEU fuels
 - More reactors DOES create more targets for sabotage
 - Fire in spent fuel pool could cause release larger than Chernobyl (but tricky for saboteurs to achieve)

- China experiencing increased terrorism
 - Mostly low-level so far

- China has put substantial security measures in place
 - Armed guards, extensive alarms, barriers
 - Substantial influence from U.S. advice
 - Insider protections may be less effective
 - Regulator, industry devote less attention to security than to safety (as is true in most countries)
Policy + technology for reducing real and perceived security risks

- Policy:
 - Avoid plutonium reprocessing, recycling, and use of HEU fuel
 - Strengthen nuclear security requirements (national design basis threat, realistic testing, strengthened insider protection…)
 - Training, incentives, other programs to build up security culture
 - Regular briefings for managers, staff on real terrorist nuclear threats

- Technology (advanced reactors):
 - Making it more difficult for releases to be caused accidentally also makes it more difficult to cause them intentionally
 - Some small or underground reactors may be easier to protect

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology impact</td>
<td>High</td>
</tr>
</tbody>
</table>

Extensive Belfer analysis on nuclear security in China is available

- Hui Zhang and Tuosheng Zhang, Securing China’s Nuclear Future, March 2014
 https://tinyurl.com/yc8jp8ut

- Hui Zhang, China’s Nuclear Security: Progress, Challenges, and Next Steps, March 2016
 https://tinyurl.com/y7gfestm
Siting and public acceptance are key constraints – even in China

- Siting and public acceptance issues have slowed or stopped multiple nuclear plants in China
 - Several facilities abandoned after protests
 - Inland sites not yet approved – concerns over contamination of rivers
 - No commercial nuclear plants within >50 km of Beijing or Shanghai
 - Few plausible coastal sites for additional plants (except at existing sites)
 - Corruption scandals (e.g., arrest of the head of the largest nuclear corporation) could undermine public confidence

- Chinese government has launched major public acceptance campaigns
 - Propaganda, public meetings, benefits for host communities
 - Research suggests real but limited impact of these efforts
 - Local administrations being judged in part by ability to avoid large-scale public protests – affecting their enthusiasm for nuclear energy

Policy + technology for addressing siting and public acceptance constraints

- Policy:
 - Most important: avoid accidents, sabotage, scandals
 - Engage in depth with local communities – build trust over time by fulfilling all promises, addressing concerns, step-by-step
 - Avoid rushing, railroading projects through – “go slow to go fast”

- Technology (advanced reactors):
 - Some advanced systems may offer more demonstrable, easy-to-understand safety and security
 - Offshore plants may be able to address many siting issues, allow large-scale deployment close to energy demand of coastal cities
 - Some designs do not need water for cooling, broadens siting options

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate-High</td>
</tr>
</tbody>
</table>
Nuclear waste management likely less of a constraint in China than elsewhere

- If managed properly, environmental impacts of nuclear waste are small and VERY long-term
 - Tiny potential deaths/MW-hr, occurring >10,000 years in future
 - But nuclear waste very important to public attitudes toward nuclear

- China has several advantages for managing nuclear waste
 - Most recent reactors and future reactors designed with decades of fuel storage capacity in their pools
 - Authoritarian government could establish centralized interim stores, repositories in remote, desert areas with limited opposition
 - Technology of dry cask storage is cheap, safe, secure for decades, while permanent repositories are developed
 - Available time makes it possible to proceed cautiously, build trust with potential host communities, allow technology to develop, financing to accumulate interest…
 - No near-term need for reprocessing of spent fuel

Policy + technology for managing the nuclear waste constraint

- Policy:
 - Design, plan, for life-of-reactor fuel storage
 - Focus on voluntary citing approaches for centralized stores, building trust with potential host communities
 - Avoid rushing, railroading projects through

- Technology (advanced reactors and fuel cycles):
 - Some concepts involve high burnup (less volume of waste per MWh)
 - Some concepts involve multiple recycling to burn long-lived species (still undemonstrated, likely to involve higher costs for modest environmental benefit)

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate-High</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Limited government and industry capacity may prove to be important constraints

- Even current construction rate is straining available capacity
 - Capacity includes ability to provide sufficient trained, experienced personnel; ability to build reactors safely; ability to operate reactors safely and securely; ability to regulate all aspects of the enterprise
 - Non-nuclear firms being brought in to help with construction
 - Rapid training of new personnel — but result is that many in both industry and regulator have limited experience
- Growth at scale required would demand huge expansion in capacity for construction, operation, regulation
 - If growth accelerates slowly over decades, system should be able to adapt and respond
 - Path of slow growth followed by rapid surge may strain capacity — unless advanced designs require far less human capacity

Policy + technology for addressing capacity constraints

- Policy:
 - Provide resources needed for training, recruitment, retention at all levels
 - In particular, ensure regulator has adequate personnel, resources, independence, authority, expertise to ensure safety and security
 - Continue construction to keep industry building experience
 - Maintain several firms building, operating reactors
- Technology (advanced reactors):
 - Many advanced systems potentially offer simpler construction, operation, more inherent safety, requiring fewer people
 - Factory manufacturing could greatly increase construction capacity

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>High</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate-High</td>
</tr>
</tbody>
</table>
Regulatory delays are likely to be less of a constraint in China than elsewhere

- So far, regulatory issues have only rarely imposed major delays for nuclear projects in China
 - Nevertheless, regulator does examine proposals in detail before approval
- In some cases, larger government decision-making delays — including, but not limited to, the regulator — have been substantial
 - Approval of inland sites being debated for 7 years since Fukushima
 - No new construction approved in 2016 or 2017 (in part because of lack of need for new capacity)
 - Reprocessing plant and fast reactors have moved slowly for over a decade — justifiably, since pilot facilities have not performed well, and projected costs of large facilities is high

Policy + technology for addressing regulatory delays

- Policy:
 - Ensure a focused, step-by-step, and cooperative regulatory process
 - Ensure the regulator has adequate personnel, resources, expertise, and authority to identify and address key issues
 - Avoiding loading up too many issues to be addressed at the same time
 - Increase focus on small number of reactor types
- Technology (advanced reactors):
 - Increased passive safety and simpler designs may reduce regulatory complexity and uncertainty

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>High</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Low</td>
</tr>
</tbody>
</table>
Integration into renewable-heavy energy system may require different approaches

- A future decarbonized energy system is likely to involve large fractions of intermittent renewables
 - For 20-80% decarbonization of electricity, renewables backed up by natural gas and limited storage may be cheapest
 - For 90-100% decarbonization, low-carbon alternatives to natural gas backup likely to be needed to reduce costs
- Ideal backup would provide both steady baseload power and ability to ramp up and down to compensate for renewable intermittency – and contribute to other energy needs
 - Existing nuclear designs can do limited load-following, but rapid ramp-ups and downs are difficult, cannot readily provide peaking power
 - Existing nuclear designs mainly provide baseload electricity – future systems could also provide process heat, other products, fill larger portion of total energy demand

Policy + technology for integration in renewable-heavy energy systems

- Policy:
 - Ensure reactors operated in a way that permits some load following
 - Design energy system to integrate all planned sources, make use of their strengths and weaknesses
- Technology (advanced reactors):
 - Some advanced systems designed to shift energy from electricity to other products depending on needs, prices – even provide peaking power
 - Example: FHR might make hydrogen for chemical synthesis when electricity prices are low, burn hydrogen to speed up turbine when peaking power is needed – creates more revenue for reactor

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Low</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate-High</td>
</tr>
</tbody>
</table>
Proliferation resistance – an often overlooked issue

- China is already a nuclear weapon state, but its decisions matter for nuclear nonproliferation
 - China likely to have the world’s largest reactor fleet, be the nuclear energy leader of the 21st century
 - Large-scale reprocessing, use of plutonium fuels could encourage others to do the same, increasing chance that reprocessing would spread
 - Reprocessing, use of plutonium or HEU fuels would also increase danger of theft of nuclear material, transfer to terrorists
 - China’s enforcement of nuclear and dual-use export controls (and sanctions) to date is weak – much of the key technology Iran and North Korea have acquired has come from China or through China
 - Potentially sensitive technologies are dual-use, with many civilian applications – more and more countries in China will be able to provide them (irrespective of the future growth of China’s nuclear industry)

Policy + technology for proliferation resistance

- Policy:
 - Postpone reprocessing, fast reactors indefinitely
 - Avoid HEU fuels
 - Limit sensitive exports, and institute more effective export controls and other measures to stop illicit trade
 - Participate actively in global nonproliferation initiatives

- Technology (advanced reactors and fuel cycles):
 - Avoid those systems based on reprocessing, plutonium fuels
 - Some advanced systems could offer advantages: no need for enrichment or reprocessing after initial fuel load; sealed cores; offshore plants could be towed away if a serious issue arose

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate-High</td>
</tr>
<tr>
<td>Technology impact</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Uranium supply – not likely a serious constraint in this century

- Uranium is abundant
 - Current use ~ 57,000 tU/yr
 - IAEA estimates 15 M tU available (known+speculative)
 - U being found faster than it’s being used – for decades
 - With huge nuclear growth, and no recycling, uranium resources might be an issue – in the 22nd century

- China has access to plenty of uranium
 - “3 markets” policy – domestic, foreign markets, foreign mines
 - ~ 2M tons domestic resource, though much of it high cost

- Hence, plutonium reprocessing and breeder reactors are not needed at least for many decades
 - Reprocessing – separating plutonium from spent fuel to recycle it – is more expensive and raises proliferation, safety, and terrorism risks

Policy + technology for uranium supply

- Policy:
 - Invest in ensuring adequate supply (including in further exploration)
 - Avoid being snowed by claims of imminent shortage

- Technology (advanced reactors and fuel cycles):
 - Extending the U resource not urgently needed
 - Some “breeding in place” systems can potentially extend U resource 2-3x w/o reprocessing
 - If cost, proliferation, safety, security issues could be resolved, reprocessing and breeding could extend resource manifold
 - Fusion may become economic faster than reprocessing does

<table>
<thead>
<tr>
<th>Degree of constraint</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy impact</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology impact</td>
<td>High</td>
</tr>
</tbody>
</table>
Belfer analysis on uranium supply for China’s nuclear growth

 https://tinyurl.com/y7dvw556

Belfer analysis on reprocessing in China

 https://tinyurl.com/ybtsaqvs
Near-term choices China can make to maximize long-term nuclear options

- Invest in safety and security
 - Reaction to a major accident would greatly limit prospects for really large-scale growth
 - Beef up regulator, create industry-level INPO-like group
 - Training, incentives, other steps to strengthen safety and security culture
 - Emphasize Gen. III reactors and beyond

- Maintain, expand industry and government capacity
 - Continue construction, at least at modest pace
 - Strengthen training programs, consider expanded exchanges
 - Ensure regulator has needed capacity, independence, authority

- Ensure steady progress toward eventual nuclear waste repository – designed for range of potential wastes

Near-term choices China can make to maximize long-term nuclear options (II)

- Fund, facilitate RD&D on selected advanced systems, with
 - Reduced cost and economics
 - Increased passive (and demonstrable, understandable) safety
 - Simplified, accelerated construction
 - Improved ability to integrate with renewables, meet other energy needs
 - Strong security, proliferation-resistance

- Establish institutional approach to setting RD&D approaches that focus on addressing the most important constraints, ensuring goals are being met, cutting less promising projects

- Ensure several options demonstrated, prepared for commercial deployment by mid-century
 - Don’t focus only on technologies available soon
Near-term choices China can make to maximize long-term nuclear options (III)

- Avoid long-term lock-in on expensive, risky technologies such as plutonium reprocessing
 - Near-term construction of a large reprocessing plant would be
 - Expensive
 - Unneeded
 - Less safe, secure, proliferation resistant than storage
 - A major constraint on shifting to future approaches

- Invest in building public confidence
 - Real engagement with local communities – listening to and addressing concerns, giving them oversight roles
 - Fulfill promises step-by step
 - Incorporate data collection to allow learning-by-doing to improve effectiveness of public engagement over time

Backup slides if needed
Will new technology help? Ex.: fluoride high-temperature reactors

- Idea:
 - Fluoride salt coolant (> 1300°C boiling temp)
 - Fuel in TRISO particles embedded in graphite pebbles
 - High temperature → high efficiency, ability to make chemicals when electricity price is low → much better economics
 - Excellent safety: “I can’t figure out how to cause a release with this reactor”

- Conceived at MIT, Berkeley, and Wisconsin
 - China funding 1st test systems

Nuclear innovation: reasons for optimism

- Exciting new ideas:
 - Hoped-for lower costs (and smaller size to ease financing), passive safety, high temperature to provide process heat
 - 2 classes of concepts:
 - Near term: variants on light-water reactors
 - Longer term: different coolants, fuels, etc.

- Dozens of start-up firms
 - Drawing in venture capital, new people
 - Some large firms also pursuing new concepts

- New technologies that were not available before, e.g.:
 - Radically improved computer simulation
 - New materials
 - Modular and factory construction approaches
Nuclear innovation: reasons for pessimism

- Market and technology structure:
 - Commodity market
 - Low-cost gas means little profit potential
 - EXTREMELY conservative buyers – utilities
 - Product life-cycle measured in decades
 - Billion-dollar tests – few real “shots on goal”
 - Stringent, conservative regulation
 - HUGE barriers to entry

- Past experience:
 - No really new reactor concept has been commercialized for >50 years
 - 0% of past predictions of new cheap systems have proved to be correct
 - Current “Gen. III” reactors were supposed to be cheaper than Gen. II – are more expensive

Rickover: Paper reactors will always beat real reactors

"An academic reactor or reactor plant almost always has the following basic characteristics: (1) It is simple. (2) It is small. (3) It is cheap. (4) It is light. (5) It can be built very quickly. (6) It is very flexible in purpose. (7) Very little development will be required. It will use off-the-shelf components. (8) The reactor is in the study phase. It is not being built now.

On the other hand a practical reactor can be distinguished by the following characteristics: (1) It is being built now. (2) It is behind schedule. (3) It requires an immense amount of development on apparently trivial items. (4) It is very expensive. (5) It takes a long time to build because of its engineering problems. (6) It is large. (7) It is heavy. (8) It is complicated."

Nuclear innovation: a thought experiment

Imagine:
- Prototype of a new reactor concept starts operation in 10 years (very aggressive schedule)
- 2 years of operation is enough to sell 10 GWe of commercial plants, which take only 3 years to build
- 2 years after those sales, 20 GWe more are sold
- Then increases to 40, 60, etc. every 2 years, and stabilizes at 100 GWe/yr (reaching that level in 2048)
- Even that extremely aggressive (and highly unlikely) schedule leads to ~1100 GWe in 2050 – an important, but ultimately modest, contribution

For near-term bending of the climate curve, new policies likely to be more important than new technologies – most electrons from nuclear power by 2050 likely to be from existing reactors or types

New policies likely more important than new technologies – for now

- Financing
 - Can we find politically acceptable ways to reduce financing costs?
- Regulation
 - Can all relevant countries maintain very high safety and security standards?
 - At the same time, can we develop more flexible, less cumbersome approaches – especially for new technologies?
- Public acceptance
 - Can we build real dialogue with host and neighbor communities, address their concerns in a way that genuinely builds trust?
- Fuel cycle
 - Can we manage the fuel cycle in ways that minimize proliferation risk?
Two things we shouldn’t do

- Plutonium reprocessing
 - Separates plutonium from spent fuel to recycle as new fuel
 - Could also provide plutonium for bombs
 - Fortunately, there’s plenty of uranium, reprocessing is expensive and provides only modest benefits, dry cask storage provides a safe alternative for decades

- Widespread uranium enrichment
 - Same technology used to produce low-enriched fuel for reactors can produce highly enriched uranium for bombs
 - Most countries with nuclear power do not enrich their own fuel

- Institutional steps can help
 - E.g., “fuel leasing” — offering lifetime fuel supply and spent fuel take-back for states that rely on international fuel supply

A personal view

- We should be doing what we can to fix the problems that have constrained nuclear growth, so that it can really be an expandable option to help cope with climate change

- Will be more difficult to cope with climate without a significant contribution from nuclear — but will be difficult to get a significant contribution from nuclear

- Poorly managed nuclear energy with weak rules will not, and should not, grow at the scale required

- Well-managed nuclear, with stringent safety, security, and nonproliferation measures in place, and reduced costs, might grow on a scale that could contribute to climate change — but it won’t be easy
Nuclear growth implies nuclear spread: the story so far

Governance indicators of emerging nuclear power states

<table>
<thead>
<tr>
<th>Country</th>
<th>Control of Corruption</th>
<th>Regulatory Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Belarus</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Chile</td>
<td>94</td>
<td>90</td>
</tr>
<tr>
<td>Egypt</td>
<td>49</td>
<td>41</td>
</tr>
<tr>
<td>Indonesia</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>Iran</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>Israel</td>
<td>81</td>
<td>75</td>
</tr>
<tr>
<td>Italy</td>
<td>78</td>
<td>59</td>
</tr>
<tr>
<td>Jordan</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>Kuwait</td>
<td>56</td>
<td>69</td>
</tr>
<tr>
<td>Malaysia</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>Morocco</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Nigeria</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>Poland</td>
<td>79</td>
<td>71</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>Thailand</td>
<td>62</td>
<td>51</td>
</tr>
<tr>
<td>Turkey</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>69</td>
<td>81</td>
</tr>
<tr>
<td>Venezuela</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Vietnam</td>
<td>31</td>
<td>37</td>
</tr>
</tbody>
</table>

Source: Drawn from World Bank Governance Indicators and World Nuclear Assoc.
Safety culture matters:
Davis-Besse vessel head hole

Making nuclear energy broadly available

- Complex 1-1.6 GWe LWRs not appropriate for many countries, regions
 - Requires substantial infrastructure of trained personnel, regulation, safety and security culture...
 - Grids can’t support that much power at one spot
- Potential for small and medium factory-built reactors
 - More appropriate for smaller, less well-developed grids, or off-grid locations
 - Much lower capital cost per reactor eases financing (even in U.S.)
 - Smaller sizes make safety design easier – potential for “walk-away safe” designs (still to be demonstrated), underground siting
 - Could be built with lifetime fuel built-in, sealed core, no access to nuclear fuel by host state
Making nuclear energy available for a broader array of purposes

- Electricity beyond the baseload
 - Nuclear reactors could generate electricity when needed, storable products (e.g., hydrogen) when not
 - Hydrogen could provide additional peaking power — could even back up intermittent renewables
 - Economics as yet unproven

- Transportation fuel
 - Electricity for electrics and hybrids
 - Heat and hydrogen for refineries and biorefineries (could cut land area needed for biomass fuels in half), and for oil shale recovery

- Heat for desalination and many industrial processes
 - Many applications require high-temperature reactors

More R&D required to explore these many possibilities

IAEA low and high estimates of nuclear capacity up to 2050

Nuclear is not likely to dominate the climate answer

- Electricity supply and additions by fuel type — “bridge” scenario (to achieve 2°C stabilization)
- Nuclear additions smaller than coal from now to 2030!

New nuclear power in the United States – what are the prospects?

- Subsidies: 2005 EPAct provides production tax credit for first 6 plants; $18.5B in loan guarantees authorized (industry wants $100B); insurance against reg. delays
- Projects finishing half-built reactors moving ahead (e.g., Watts Bar 2) — not Gen. III/III+ technology
- First approved new-design projects are Vogtle 1+2 and Summer 3+4 (both AP-1000) — Vogtle $14 billion estimate (nearly $6000/kW)
- Economics has led several companies to reconsider
 — $2-$5 natural gas; no carbon price
 — Escalating nuclear construction costs, nuclear “risk premium”
 — Post-Fukushima worries and politics a smaller factor
- Prognosis: no unsubsidized plants in unregulated markets likely
Expanding nuclear energy need not increase terrorist nuclear bomb risks

- Could have global nuclear energy growth with no use of directly weapons usable nuclear material in the fuel cycle
 - Low enriched uranium (LEU) fresh fuel cannot be made into a bomb without technologically demanding enrichment
 - Plutonium in massive, intensely radioactive spent fuel beyond plausible terrorist capacity to steal and process
- If scale of reprocessing, transport, and use of plutonium from spent fuel expands, nuclear energy contribution to nuclear terrorist risks would increase
 - Reprocessing converts plutonium into portable, not very radioactive, readily weapons usable forms
 - With major exception of Rokkasho in Japan, current trend seems to be away from reprocessing — reduced operations at La Hague and Mayak, phase-out at Sellafield

Preventing nuclear proliferation

- Global nuclear nonproliferation regime is under severe stress — Iran, North Korea, the A.Q. Khan network, the global spread of technology, potential growth and spread of nuclear energy, disputes over disarmament, India deal...
- But, the regime has been both successful + resilient
 - 9 states with nuclear weapons today — 9 states 25 years ago
 - More states that started nuclear weapons programs and verifiably gave them up than states with nuclear weapons — nonproliferation succeeds more often than it fails
 - Every past shock has led to parties introducing new measures to strengthen the system
 - All but 4 states are parties to the NPT, and believe it serves their interests
- With right policies today, can hope to have only 9 states with nuclear weapons 20 years from now — or fewer
Limiting fuel cycle proliferation risks

- Incentives for states not to build their own enrichment and reprocessing facilities
 - International centers in which all states can participate (but not get sensitive technology), such as Angarsk IUEC
 - Fuel banks (including Russian, U.S., IAEA-controlled)
 - Offers of “cradle-to-grave” fuel services
 - Regional repositories
 - “Fuel leasing”
 - “Reactor leasing”
 - Potential role for marketing factory-built small and medium reactors, with “cradle-to-grave” fuel and reactor services
- Restrain technology transfers (licit and illicit)
- Move step-by-step to increased multinational control over sensitive fuel cycle facilities

Nuclear role in 3 greatest global energy challenges

- Energy supply without greenhouse emissions
 - Massive growth required for nuclear to play a significant role
- Reducing energy supply vulnerabilities (esp. oil)
 - Nuclear currently provides baseload electricity, oil little-used for that purpose in most countries
 - Nuclear cannot currently make major contribution to transport fuel
 - May change in future
- Providing energy to the world’s poor
 - Current huge, complex, expensive nuclear plants not the technology that will provide electricity to rural villages
 - May also change (at least somewhat) in future

Electricity <1/3 global primary energy – and most future demand growth in developing countries with modest nuclear contribution so far
Large-scale nuclear growth implies nuclear spread – the picture so far

The scale of the control problem...

- Making roughly 15 kilograms of highly enriched uranium (HEU) for one bomb requires ~ 3500 units of enrichment work
 - Current global civilian enrichment capacity enough to produce material for >13,000 weapons/yr – would have to triple for stabilization wedge on once-through fuel cycle

- Making one bomb from plutonium requires ~ 4-8 kilograms of plutonium
 - Current global civilian plutonium separation ~ 20 t/yr, enough for > 3,000 weapons/yr (capacity is larger, but underutilized)
 - Nuclear stabilization wedge with plutonium fuel cycle (mix of fast reactors and thermal reactors) would require reprocessing ~835 tonnes of plutonium and minor actinides/yr – amount needed to produce ~140,000 bombs

- Controls must prevent diversion of 1 part in 10-100,000, and limit the spread of the technology – daunting challenge
Addressing safeguards challenges

- Convince states to give IAEA resources, information, authority, personnel, technology it needs to do its job
 - Provide substantial increase in safeguards budget
 - Press for all states to accept Additional Protocol, make this condition of supply
 - Limit spread of fuel-cycle facilities
 - Provide information from intelligence, export control (denials, inquiries, etc.), other sources
 - Reform IAEA personnel practices to attract, retain best-qualified experts in key proliferation technologies
 - Reinvest in safeguards technology, people (e.g., “Next Generation Safeguards Initiative”)”
 - Adopt philosophy of “safeguards by design” for new facilities
 - Develop technologies and procedures to safeguard new fuel-cycle technologies before deploying them

A fragile revival? TMI + Chernobyl stopped nuclear growth

[Chart showing nuclear reactors and net operating capacity in the world from 1956 to 2004.]
Fukushima — what happened?

- Prolonged station blackout
 - Earthquake cut off off-site power
 - Tsunami swamped diesel generators (in basement)

- Also loss of heat sink
 - Tsunami swamped ocean pumps

- Result: cooling systems failed
 - Units 1-3 melted
 - Hydrogen explosions destroyed buildings
 - Major radiation releases (est.: ~15% of Chernobyl, but high uncertainty)
 - Large-scale evacuation, economic disruption, fear and stress
 - Many questions remain

Recommended next steps to respond to Fukushima

- First: more stringent national and international standards
 - Ability to respond to prolonged loss of off-site power
 - Ability to respond to damage to cooling systems
 - Emergency response
 - Protection against terrorist attack
 - Seismic, flood safety
 - Management of spent fuel

- Second: independent, international peer review
 - All countries operating major nuclear facilities should request

- Third: toward more binding obligations

- Fourth: expanded int’l cooperation — exchanging experience and…

- Long-term: shift toward greater “safety by design” and “security by design” in new reactors
Fukushima: evolving narratives

- The 1st story: extraordinary bad luck, few lessons
 - Extraordinarily bad luck: tsunami was so far beyond what could reasonably be expected that no one could realistically be expected to be prepared for such things
 - Few real lessons for other facilities, keep on as before

- The evolving story: a preventable tragedy, many lessons
 - Japanese had clear data showing the danger of large tsunamis years before
 - Many aspects of Japanese system — lack of real independence of the regulator, lack of authority for on-site manager, belief in absolute safety, pro-nuclear bias of “nuclear village” contributed to disaster
 - Many of these weaknesses — and a variety of related vulnerabilities — exist in many other countries as well
 - Happened in one of the richest, most experienced countries, with high regulatory effectiveness, low corruption — sobering reality

Fukushima: questions and lessons

- Questions:
 - Why didn’t Japanese regulators, operators, respond to data indicating a risk of very large tsunamis?
 - How can we structure incentives in organizations to get people to focus on fixing low-probability, high-consequence risks?
 - How can we avoid regulators becoming “captured” by the industries they regulate?

- Lessons:
 - Need better ability to cope with prolonged loss of power
 - Need faster ability to maintain, restore cooling
 - Need safer management of spent fuel pools
 - Need stronger emergency response
 - Need better approaches to public, international information and communication
 - Existing regulatory approaches are insufficient
Nuclear safety: complexities

- Huge quantity of energy, radioactive toxicity in small volume in core
 - Must be cooled continuously, or “meltdown” will occur
 - “Fire that won’t go out” — reactor keeps generating heat from intense radioactive decay, needs cooling, long after shut-down
 - Reactors need (a) water and (b) electricity to operate cooling systems to prevent accidents

- “Defense in Depth” philosophy
 - Multiple layers of protection — the fuel itself, the reactor vessel, the containment
 - Redundant safety systems
 - Are complex, tightly coupled systems inherently prone to accidents?

- Two major radiation releases in 14,400 reactor-years for commercial reactor — >10x more than regulatory safety goals

Fukushima: global reactions

- National reviews, widely varying decisions
 - Many countries: “stress tests,” in-depth inspections and reviews, more stringent safety standards in key areas
 - A few countries: nuclear phase-out (e.g., Germany, Switzerland)
 - Largest markets: likely continued nuclear growth (e.g., China, India, Russia…)

- Global institutions: modest steps
 - Little consensus at IAEA ministerial — new IAEA safety plan quite limited (though still unfolding, could strengthen)
 - WANO reviewing its procedures
 - Key focus is still national sovereignty over international accountability
 - Stark contrast to the response to Chernobyl — which led to the construction of much of the current safety regime

Security being almost entirely missed in these discussions…
Nuclear costs: a forgetting curve?

Nuclear energy’s share of the emissions gap under the IAEA high growth case
For a nuclear “wedge,” huge increase in construction needed

- Need to shift from 3 to 28 GWe/yr
- Nuclear must become dramatically more attractive to governments and utilities than it was before Fukushima – a difficult challenge
- Any further disaster, from accident or terrorism, would doom any realistic prospect for growth on this scale