
Lifecycle Consumption Model Description

Peter Maxted

August 27, 2017

Contents

1 Introduction 2

2 General Consumption Model 2

2.1 Dynamic Budget Constraint . 2

2.2 Income Process . 3

2.3 Utility and Value . 3

3 Consumption Model Simulation 4

3.1 Step 1: Model Calibration . 5

3.2 Step 2: Policy and Value Function Calculation 5

3.2.1 High-Level Description of Algorithm 6

3.2.2 Aside on V ectorization in Matlab . 8

3.3 Step 3: Simulation of Individual Behavior (Forward Induction) 8

3.3.1 Numerical Methods Aside on Simulation Step 10

4 Explanation of Matlab Code Files 10

4.0.1 Calibration . 10

4.0.2 Wrapper Function for Steps 2 and 3 11

5 Extension: Quasi-hyperbolic Discounting 12

5.1 Changes to Value Function . 12

5.2 Coding Details . 13

1

Lifecycle Consumption Model Description Page 2

1 Introduction

** All Matlab Code and written documents are works in progress. Please let me know of any

errors that you find or sections that are unclear.

The purpose of this document is to give a detailed description of the Matlab code used

to simulate simple buffer-stock consumption models. For users looking for a quick summary,

there is a much smaller README.txt file also included in the code folder.

Section 2 outlines the general form of the consumption model that this Matlab code

is designed to simulate. Section 3 focuses at a descriptive level on the algorithm I use to

simulate the consumption model. More detail on the code itself is given in Section 4. Section

4 is relatively short, however, since the majority of the Matlab coding details are left to the

comments in the files themselves. Instead, Section 4 is meant to discuss the purpose of each

Matlab file, and how each file relates to the algorithm of Section 3. Finally, the code allows

for exponential discounting, sophisticated quasi-hyperbolic discounting, and naive quasi-

hyperbolic discounting. These time preferences are outlined in Section 5. Throughout this

file I will try to refer to variables that actually exist in the Matlab code with the formatting

<variable>.

2 General Consumption Model

2.1 Dynamic Budget Constraint

First I outline the general consumption model that this code is intended to simulate. Starting

with the dynamic budget constraint,

xt+1 = R(xt − ct) + yt+1 + εt, (1)

where xt is cash on hand and ct is consumption in period t, R − 1 is the interest rate, yt

is expected income in period t, and εt is an i.i.d. noise term in the income process. This

code imposes the restriction that ct > 0. Though not required, the Matlab code allows for

liquidity constraints such that ct ≤ xt − L
R

for some exogenous liquidity constraint L (L is

denoted <borrowingLimit> in the code).1

1If borrowing constraint L is set by the user, the code forces the agent to choose consumption such that

R(xt − ct) ≥ L. Rearranging this condition yields ct ≤ xt − L
R . By the dynamic budget constraint, L < 0

means that the agent is allowed to take on debt.

Lifecycle Consumption Model Description Page 3

2.2 Income Process

The Matlab code assumes that each agent lives for only a finite number of years, denoted

by variable <yearsAlive>. The code also allows for this finite life to be split into work

and retirement, given by variables <yearsWork> and <yearsRet>, respectively. Income

can only be earned during working years, and cannot be earned in retirement. Denote the

income process yt = yt + εt. Included in the Matlab code are two choices for the income

process during working years. One option is deterministic — yt = 1 for all periods t in which

the agent is working. The other option is stochastic, and is parameterized such that yt ∼iid

Uniform[0.5, 1.5]. This parameterization implies that yt = 1 and εt ∼iid Uniform[−0.5, 0.5]

for all t in which the agent is working. Retirement in the model simply means yt = 0.

2.3 Utility and Value

The consumer is given log-utility in the Matlab code.2 For this section I’ll stick to exponen-

tial discounting, but the code also allows for both sophisticated and naive quasi-hyperbolic

discounting (more on this later in the document). Because each agent lives for only finite

time, the code simulates a non-stationary Bellman equation. Specifically, in each period t

the agent solves:

V (x, t) = max
c
u(c) + δEt[V (R(x− c) + yt+1, t+ 1)] (2)

Value function V (·, ·) is written with two inputs to make clear that there are two state

variables, assets x and the period t. There is one choice variable, which is consumption c.

Further, I assume that for all t > yearsAlive,

V (x, t) =

−∞ if x < 0

0 if x ≥ 0
.

This assumption on the value function ensures two useful properties: (i) the optimizing

agent will never die with negative assets (often called a No-Ponzi Condition); and (ii) the

optimizing agent will fully consume all remaining assets in the final period of life (i.e., the

policy function when t = yearsAlive is to set cyearsAlive = xyearsAlive). Explaining (i), if the

agent consumes more than cash on hand x in the final year of life, then the agent will pass

on negative assets to the next period and earn a value of −∞, which is clearly suboptimal.

Explaining (ii), since V (x, t) = 0 when x ≥ 0, the agent yields no utility from passing off

2This can easily be changed. See the batch file line <util = @(x) log(x);>, which defines the utility

function.

Lifecycle Consumption Model Description Page 4

positive assets to the next period. Since the agent does earn utility from consumption in the

final period of life, it will therefore be optimal to consume all remaining assets.3

One issue worth squaring away now is that you’ll see the consumption model described

above assumes that agents are finitely-lived. However, we may also want to use the Mat-

lab simulation for infinitely-lived agents. Luckily, the Bellman equation (2) is a contrac-

tion mapping when δ < 1.4 Therefore the simulation gets arbitrarily close to a stationary,

infinitely-lived, consumption model as yearsAlive increases. Thus, the user interested in

simulating an infinitely-lived stationary consumption model should set yearsAlive to a very

large value as this will approximate an infinitely-lived agent.

3 Consumption Model Simulation

Now that the analytical model has been outlined, the next step is to discuss how the con-

sumption model is simulated in Matlab. The simulation can be split broadly into 3 steps —

(1) model calibration; (2) policy and value function calculation; (3) simulation of individual

profiles. In the model calibration phase, the user enters the model parameters that they

want to simulate (e.g., R and δ). In the policy and value function calculation stage, the code

uses backward induction (as described in Lecture 5 of 2010C) to numerically calculate the

policy and value functions for the calibration specified by the user in step (1). Finally, the

simulation uses these policy functions to generate consumption profiles for 5000 simulated

agents. If the model is deterministic then all agents will follow exactly the same path of

consumption. However, if income is stochastic then each of the 5000 agents will follow a

potentially different path governed by their random income realizations. Each of these steps

is expanded below.

3The assumption that the agent derives no utility from passing off wealth after death is a very simple

assumption. I make this assumption so that the code aligns with the Value Function Iteration methodology

discussed in Lecture 5 of 2010C. However, one could add realism to the model by assuming that the agent

generates a bequest value from passing wealth off to her children. For interested students, there is a large

economic literature on bequests and the effect of bequest motives on lifecycle consumption/savings decisions.

In fact, for 2010C students it will come up next quarter when discussing Ricardian Equivalence with finite

lives / overlapping generations. A simple Google search of ‘bequest motive’ will get any interested student

started.
4This statement assumes that the agent is an exponential discounter.

Lifecycle Consumption Model Description Page 5

3.1 Step 1: Model Calibration

→ Relevant Matlab file for Step 1 is bufferstock batch.m

As long as the user is willing to stick to the consumption model outlined in Section 2, all

model calibration takes place in the file bufferstock batch.m.5 The parameters that the

user needs to input can be broadly split into two categories — model fundamentals and

simulation parameters. Model fundamentals, such as δ, R, yearsAlive, etc., are part of the

analytical consumption model described in Section 2. Simulation parameters, discussed in

much more detail shortly, govern how the analytical consumption model is simulated. For

example, the variable <xmax> determines the maximum value of cash on hand x for which

the policy function is calculated (<xmax> is purely a coding requirement — in the analytical

model of Section 2 there is no upper bound on assets). In general there is a tradeoff between

simulation accuracy and speed. Simulation parameters govern this tradeoff.

Model fundamentals were discussed in Section 2, and should be calibrated to fit the needs

of the user. Much more discussion, however, is needed for the simulation parameters labeled

<xjump> and <xmax> . The key difference between the analytical model of Section 2 and

the simulated Matlab model is that assets x are continuous in the analytical model, while

x must be discretized in the simulation. What does this mean? In the analytical model we

allow xt to be any number in the interval [L,∞). In the Matlab simulation, we force assets

xt to lie on the discrete grid [L, L + xjump, L + 2(xjump), ..., xmax].6 The discrete set

{L, L+xjump, L+2(xjump), ..., xmax} will be referred to as the asset grid, or simply the

grid. This process of creating a discrete grid on which assets must lie is known as discretizing

the state space. The variable <xjump> measures the step size of the discrete grid, and the

variable <xmax> controls the maximum size of the asset grid. Variable <borrowingLimit>

(referred to as L above) controls the minimum value of the asset grid (though I think of

<borrowingLimit> as a model fundamental instead of a simulation parameter). Finally,

though likely unclear at this point, the reason for discretizing the state space will become

apparent when I discuss the algorithm for calculating consumption and policy functions

(Step 2).

3.2 Step 2: Policy and Value Function Calculation

→ Relevant Matlab file for Step 2 is backwardInduction general.m

5Nonetheless, the code is written to be extended by users looking to add more functionality.
6For example, in Matlab the code [0:1:10] produces the vector [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Lifecycle Consumption Model Description Page 6

3.2.1 High-Level Description of Algorithm

Now I will discuss the algorithm for numerically calculating policy and value functions for

the model calibrated in Step 1. Recall that there are two state variables — period t and

assets x. Both of these state variables are discrete. Period t is in the set {1, 2, ..., yearsAlive}
and assets x are in the set {L, L+ xjump, L+ 2(xjump), ..., xmax} (recall this is called

the grid). There are yearsAlive number of time periods, and denote the size of the grid

by <xlen>. Since there are <yearsAlive> possible values for state variable t, and <xlen>

possible values for state variable x, in total there are yearsAlive×xlen total possible state

variable combinations.7

The algorithm used in this Matlab code calculates optimal behavior at every possible

state variable combination (x, t). We need a place to start this calculation, and this code

starts in the final period of life (t = yearsAlive). The reason to start at the end of life is as

follows. The Bellman equation (2) makes clear that in order to calculate behavior in period

t we need to know the value function in period t + 1. If I were to start the calculation at

the start of life (t = 1), I could not calculate optimal behavior without knowing the value

function in t = 2. Trying to calculate the value function in period t = 2 leads to the same

problem; I need to know the value function in t = 3. On the other hand, in Section 2.3 I

assumed the value of V (x, t) for all t > yearsAlive. Thus, I’ve seeded the model with an

assumed value function for all t > yearsAlive, and I can use this assumption to kick off the

backward induction.

Let’s start in period t = yearsAlive. In this period, there are <xlen> total points at

which we need to calculate the value function V (x, yearsAlive) and the consumption function

c(x, yearsAlive). The Bellman equation is V (x, t) = maxc u(c)+δEt[V (R(x−c)+yt+1, t+1)].

Since we assumed that for all t > yearsAlive,

V (x, t) =

−∞ if x < 0

0 if x ≥ 0
,

7For those really interested in numerical methods, a brief discussion of “The Curse of Dimensionality”

is warranted here. The algorithm I use calculates optimal behavior at every possible combination of state

variables. In the model discussed here, this means our Matlab code must calculate optimal behavior at

yearsAlive × xlen number of points. Let’s say this consumption model seems too simple, so you want to

add illiquid assets (e.g., 401(k) savings) to the model, denoted by z. Illiquid asset z will need to be discretized

into the set {0, zjump, 2zjump, ..., zmax} which has length zlen. Now, rather than calculating optimal

behavior at yearsAlive×xlen points, the code must calculate optimal behavior at yearsAlive×xlen×zlen
points. This could go on even further — say you want to add housing wealth, adding another hlen points to

the grid. Now, optimal behavior must be calculated at yearsAlive×xlen×zlen×hlen points. In general,

as we add more state variables the computational complexity of the problem grows exponentially.

Lifecycle Consumption Model Description Page 7

the Bellman in period t = yearsAlive reduces to V (x, yearsAlive) = maxc u(c) such that c ≤
x. Maximization here isn’t complicated — for any level of assets x the optimal consumption

decision is for the agent to consume all remaining assets and earn a utility flow u(x). Thus,

we now have a policy function in period t = yearsAlive of c(x, yearsAlive) = x. This simple

policy function gives us a value function in period t = yearsAlive of V (x, yearsAlive) =

u(x). As desired, in the period t = yearsAlive we’ve now calculated the consumption policy

function and the value function at all possible levels of x on the grid!

The next step in the algorithm is to use V (x, yearsAlive), which we just solved for, in

order to calculate Et[V (R(x − c) + yt+1, t + 1)] for t = yearsAlive − 1. In this simulation

the agent is assumed to know the income process. Therefore the agent is able to calculate

their expected continuation payoff Et[V (R(x− c) + yt+1, t+ 1)] for any level of savings x− c
in period t.

Now that we’ve calculated optimal behavior in period t = yearsAlive and used this to

calculate Et[V (R(x − c) + yt+1, t + 1)] for t = yearsAlive − 1, the code moves backward

one period in time to period t = yearsAlive − 1. The Bellman equation is now V (x, t) =

maxc u(c) + δEt[V (R(x− c) + yt+1, t+ 1)]. The benefit of backward induction is that we’ve

already calculated Et[V (R(x − c) + yt+1, t + 1)] for t = yearsAlive − 1. Thus, for each

level of assets x on the grid we simply need to find the value of consumption c to maximize

u(c) + δEt[V (R(x− c) + yt+1, t+ 1)].8 Just as before, we’ve now calculated the consumption

policy function c(x, yearsAlive− 1) and the value function V (x, yearsAlive− 1).

Next, the Matlab code uses V (x, yearsAlive− 1) in order to calculate Et[V (R(x− c) +

yt+1, t+ 1)] for t = yearsAlive− 2. Again, the code then moves back one period in time to

t = yearsAlive−2. The exact process described above is then repeated, moving backward in

time through periods t = yearsAlive−2, yearsAlive−3, ..., 1. After this process is complete,

the code will have calculated a consumption policy function and a value function at each

possible (x, t) pair. Thus, the code is now able to fully describe the behavior of an agent at

any possible point in the state space (x, t). This is exactly what is needed for the simulation

of individual consumption decisions, which is Step 3 of the code. Before describing Step

3, however, I will spend more time describing the Matlab coding aspects of this backward

induction algorithm.

Overall, this backward induction can be summarized with the following pseudo-code:

8There is one important step that I’m glossing over here, which is that consumption c must be chosen to

be a value such that R(x − c) lies on the grid. Thus, for each level of assets x there are only a discrete set

of possible consumption values, and the Matlab code picks the best one out of this finite set.

Lifecycle Consumption Model Description Page 8

Algorithm 1: Numerical Calculation of Consumption and Value Functions:

input : Calibration from Step 1

output: Consumption policy function and value function at each (x, t)

1 Set c(x, yearsAlive) = x and V (x, yearsAlive) = ln(x) ;

2 Set t = yearsAlive ;

3 Calculate Et−1V (R(xt−1 − ct−1) + yt, yearsAlive) ;

4 for t = yearsAlive− 1 to 1 do

5 for x ∈ {L,L+ xjump, L+ 2 xjump, ..., xmax} do
6 Pick c∗ to maximize ln(c) + δEt[V (R(x− c∗) + yt+1, t+ 1)] ;

7 Set c(x, t) = c∗. Set V (x, t) = ln(c∗) + δEt[V (R(x− c∗) + yt+1, t+ 1)] ;

8 Calculate Et−1V (R(xt−1 − ct−1 + yt, t) ;

9 end

10 end

3.2.2 Aside on V ectorization in Matlab

The above pseudo-code, included for intuition, does not perfectly describe the actual algo-

rithm in backwardInduction general.m. The reason for this is a Matlab coding trick known

as vectorization. The basic idea is that Matlab is fast with matrix operations and slow with

for-loops. The pseudo-code above uses nested for-loops (for-loops over both t and x) while

the Matlab code does not actually loop over x. Instead, for each period t I calculate optimal

consumption for all values of x at the same time. This code is certainly more difficult to

read, but it also improves runtime significantly.

My own personal tip is to first write Matlab code using for-loops, since for-loops are fairly

intuitive. Then, once the code has been written and de-bugged, go back and re-write the

code to take advantage of vectorization. Much more detail on vectorization can be found

online for those who are interested.

3.3 Step 3: Simulation of Individual Behavior (Forward Induc-

tion)

→ Relevant Matlab file for Step 3 is simulateDecisions.m

Now that the code has calculated optimal behavior at every possible combination of state

variables, we can use this information to simulate the behavior of 5000 artificial agents.

Importantly, while the calculation of value and policy functions made use of backward in-

duction, simulation of individual behavior will use forward induction. Specifically, the code

Lifecycle Consumption Model Description Page 9

simulates the behavior of 5000 artificial agents by starting with an assumed level of assets

in period t = 1, and then using consumption policy function c(x, t) and the dynamic budget

constraint (equation (1)) to create a consumption profile for each individual agent.

The first step of this process is to generate an income profile (a simulated income re-

alization in each period t) for each of the 5000 artificial agents. In the case where income

is deterministic, all agents will be given the same income realization of either yt = 1 or

yt = 0, depending on whether the agent is in working years or retirement years. If income

is stochastic then each agent, in each period t during which the agent works, will be given a

random income realization in the set {0.5, 0.5+xjump, 0.5+2∗xjump, ..., 1.5−xjump, 1.5}.
Thus, the realized income profile will potentially be different for each of the 5000 agents.

The code assumes that each agent starts in period t = 1 with just a single income

realization. Letting i index an individual agent, this means that xi1 = yi1 — each agent’s

asset level in period 1 is equal to her income realization in period 1. For each of the 5000

artificial agents, the code then uses the policy function calculated in Step 2 to determine the

consumption choice in period t = 1. Moving forward in time, assets for any individual i in

period t = 2 can be calculated using the dynamic budget constraint (1). Specifically, for any

agent i we have that period t = 2 assets are given by

xi2 = R(xi1 − ci1) + yi2.

Now that we know the asset level xi2 in period t = 2 for each individual i, we can again use

the consumption policy function to calculate the consumption choice of each i in period two.

Using these consumption choices, the dynamic budget constraint (1) can again be combined

with simulated income yi3 to give period t = 3 assets xi3. This process continues forward in

time until the final period t = yearsAlive. Upon termination, the code will have simulated

the consumption decisions of each of the 5000 agents in each period t.9

9If income is deterministic then each agent will make exactly the same choices in every period. In this

case, there is no need to simulate the behavior of 5000 agents. However, in the case where income is stochastic

each of the 5000 agents will be subject to a potentially different path of income realizations, and thus will

make different decisions over the lifecycle. This is known as ex − post heterogeneity. Specifically, each

agent in the simulation has exactly the same preferences and will behave in exactly the same way at a given

combination of state variables (x, t). However, stochastic income realizations mean that even though agents

in the simulation are ex−ante identical, there is heterogeneity ex−post in each agent’s individual time-path

of assets xt and consumption ct.

Lifecycle Consumption Model Description Page 10

3.3.1 Numerical Methods Aside on Simulation Step

The purpose of the simulation step is to generate a distribution of possible outcomes given

the stochastic income process and the calculated policy function. This method of generating

a distribution of outcomes by simulating consumption profiles for a large number of agents

is quite common in the seminal heterogeneous agent literature (e.g., Aiyagari (1994), Krusell

and Smith (1998)). However, I believe it is no longer accepted as the most accurate numerical

method. Instead, the histogram method of Young (2010) should be more accurate for this

consumption model. Coding the methodology of Young (2010) into the simulateDecisions.m

file is something for future work.

4 Explanation of Matlab Code Files

I will refer to the file bufferstock batch.m as the batch file from now on. The batch file has

two main purposes — (i) it is the file in which the user enters their desired Model Calibration

(Step 1); and (ii) it is a wrapper function that oversees Steps 2 and 3 of the simulation.10

For those interested in using the Matlab code as-is, the batch file is the only file that will

need to be edited.

4.0.1 Calibration

The batch file starts with 6 pre-specified cases of the general consumption model. For users

interested in calibrating the model themselves, the variable <step> should be set to 0. Within

the case 0 block, the variable <yearsWork> governs the number of years in which the agent

earns an income and the variable <yearsRet> governs the number of years the agent is re-

tired. The code automatically sets variable <yearsAlive> equal to yearsWork + yearsRet.

When variable <incomeCase> equals 1 the agent earns a deterministic income of yt = 1

in each working year. When <incomeCase> equals 2 the agent earns a stochastic income

of yt ∼ Uniform[0.5, 1.5] in each working year. <delta> is the discount factor. <beta>

and <beta hat> are used for simulating quasi-hyperbolic discounting. <borrowingLimit>

is the lower bound on the grid, and <xmax> is the upper bound on the grid. Unless the

user desires explicitly setting a binding lower bound on assets, I would recommend leav-

ing <borrowingLimit> commented out. The Matlab code is built to default into setting

<borrowingLimit> to a level at which it will not bind (i.e., just below the natural borrow-

ing limit). The user should also feel free to change the interest variable <R> (set by default

10Though the batch file does not simulate the consumption model itself, the bath file calls the functions

responsible for the simulation.

Lifecycle Consumption Model Description Page 11

to 1.05), which is located further down in the batch file.

With slightly more caution, variables <eolRepay> and <xjump> can also be changed.

By default the variable <eolRepay> equals 1, and this ensures that the agent dies with

non-negative assets by seeding the simulation with the value function

V (x, t) =

−∞ if x < 0

0 if x ≥ 0
for all t > yearsAlive.

Alternatively, setting <eolRepay> equal to 0 seeds the simulation with the simpler value

function V (x, t) = 0 for all t > yearsAlive.11

As discussed above, variable <xjump> governs the density of the grid. Picking the value of

<xjump> involves a tradeoff between accuracy and speed. A larger value of <xjump> creates

a sparser grid, and this means there are fewer points at which the Matlab code needs to

calculate policy and value functions (in Step 2). However, the smaller the value of <xjump>

the closer the discrete grid comes to replicating a continuous asset space.12

4.0.2 Wrapper Function for Steps 2 and 3

The second purpose of the batch file is to set up the Matlab workspace for Steps 2 and 3,

and then call the functions responsible for carrying out these steps.

The set-up for Step 2 begins with the creation of structs, which are a type of Matlab

storage structure. This simulation spans across multiple Matlab files, and structs are a useful

way of passing variables across functions.

The batch file calls the functions buildIncome.m and buildX .m . These are fairly short

files — buildIncome calibrates the income process and buildX creates the grid. These two

functions could have been written directly into the batch file. However, I separated them

out into functions in order to keep the batch file a bit cleaner.

Once the model is fully calibrated, the batch file calls the function backwardInduc-

tion general.m. This is the function which calculates value and policy functions at each

state combination (x, t) (Step 2). Once this function terminates, the batch file then calls

11From the standpoint of a consumption model it typically makes sense to impose a No-Ponzi condition,

which is why <eolRepay> equals 1 by default. However, for 2010c students interested in seeing iterative

solutions to Bellman equations it may be more intuitive to begin backward induction from the value function

V (x, t) = 0.
12An interesting exercise here is to plot <V (:, 1)> as a function of <xjump>. Recall that state space

discretization limits consumption to a discrete set of values. Thus, a large value for <xjump> means that the

agent’s consumption choice set is quite small. As <xjump> shrinks the agent in the discretized environment

becomes better able to replicate her optimal consumption level.

Lifecycle Consumption Model Description Page 12

the function simulateDecisions.m. SimulateDecisions is the function that simulates individ-

ual behavior for 5000 heterogeneous agents in the model (Step 3). Both of these files are

(hopefully) well commented, and follow the algorithm described in Sections 3.2 and 3.3. For

this reason I will not expand on them further in this document.

Finally, the batch file ends with sample code for plotting the output of the model. This

is just sample code included to serve as an example, and is welcome to be used / edited as

desired.

5 Extension: Quasi-hyperbolic Discounting

Thus far I have only focused on exponential discounting, but the Matlab code does also

allow for both sophisticated and naive quasi-hyperbolic discounting (e.g., Laibson (1997),

O’Donoghue and Rabin (1999) for more on quasi-hyperbolic preferences). I’ll outline both

in this extension. Note that this extension assumes the reader has some knowledge of so-

phisticated and naive quasi-hyperbolic discounting.

5.1 Changes to Value Function

Starting with the general consumption model of Section 2, the introduction of quasi-hyperbolic

discounting changes the value function of the agent. Specifically, the sophisticated present-

biased agent’s behavior is now described by the set of equations:

V (x, t) = u(c(x, t)) + δEt [V (R(x− c(x, t)) + yt+1, t+ 1)]

W (x, t) = u(c(x, t)) + βδEt [V (R(x− c(x, t)) + yt+1, t+ 1)]

c(x, t) = argmaxc u(c) + βδEt [V (R(x− c) + yt+1, t+ 1)]

Function V (x, t) is the continuation-value function, and accumulates utils exponentially.

Function W (x, t) is the current-value function, and accumulates utils quasi-hyperbolically.

The code also allows for naive present-bias. The naive present-biased agent’s behavior is

described by the set of equations:

V E(x, t) = u(cE(x, t)) + δEt

[
V E(R(x− cE(x, t)) + yt+1, t+ 1)

]
cE(x, t) = argmaxc u(c) + βEδEt

[
V E(R(x− c) + yt+1, t+ 1)

]
c(x, t) = argmaxc u(c) + βδEt

[
V E(R(x− c) + yt+1, t+ 1)

]
I use superscript E to denote the false expectation of the naive agent. Thus, βE is the naive

agent’s false belief of her present-bias coefficient. Full naivete is modeled by βE = 1, in which

Lifecycle Consumption Model Description Page 13

case the agent believes herself to be an exponential discounter. Partial native is modeled

by βE ∈ (β, 1). The function c(x, t) describes the actual consumption decision of the agent.

However, cE describes the expected consumption decision of the agent, since the agent is

naive about his true present bias coefficient β. For the purposes of backward induction, note

that the expected value function V E is calculated using expected consumption cE instead of

actual consumption c.

When simulating a model with quasi-hyperbolic discounting it is not uncommon to see

consumption pathologies in the consumption policy function. These pathologies are violations

of continuity and monotonicity of the consumption function. For more, see Harris and

Laibson (2003).

5.2 Coding Details

The batch file allows for the user to calibrate a model with quasi-hyperbolic discounting

through the two variables <beta> and <beta hat>. Note that <beta> and <beta hat>

correspond to β and βE, respectively. Unless specified otherwise, the default value of <beta>

is 1 (exponential discounting) and the default value of <beta hat> is whatever value <beta>

is set to (sophistication). For the user of the code, all that is required to implement quasi-

hyperbolic discounting is the setting of variables <beta> and <beta hat> in the batch file.

The implementation of quasi-hyperbolic discounting in the file backwardIndinction general.m

follows pretty directly from the formulas outlined in Section 5.1. In the case of sophisticated

quasi-hyperbolic discounting, the only change from the algorithm described in Section 3.2 is

that the utility earned in all future periods must be discounted by factor β when calculating

the optimal level of consumption. Naive quasi-hyperbolic discounting is slightly more com-

plicated, as the code needs to calculate both the realized consumption policy function and

the expected consumption policy function.13

References

Aiyagari, S Rao, “Uninsured idiosyncratic risk and aggregate saving,” The Quarterly

Journal of Economics, 1994, 109 (3), 659–684.

Harris, Christopher and David Laibson, “Hyberbolic Discounting and Consumption,”

Econometric Society Monographs, 2003, 35, 258–297.

13Function backwardIndinction general only returns the realized consumption policy function. However,

the expected consumption policy function also needs to be calculated in order to generate the expected value

function V E .

Lifecycle Consumption Model Description Page 14

Krusell, Per and Anthony A Smith Jr, “Income and wealth heterogeneity in the macroe-

conomy,” Journal of political Economy, 1998, 106 (5), 867–896.

Laibson, David, “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal of Eco-

nomics, 1997, 62, 443–479.

O’Donoghue, Ted and Matthew Rabin, “Doing it Now or Later,” American Economic

Review, 1999, 89, 103–124.

Young, Eric R, “Solving the incomplete markets model with aggregate uncertainty us-

ing the Krusell–Smith algorithm and non-stochastic simulations,” Journal of Economic

Dynamics and Control, 2010, 34 (1), 36–41.

	Introduction
	General Consumption Model
	Dynamic Budget Constraint
	Income Process
	Utility and Value

	Consumption Model Simulation
	Step 1: Model Calibration
	Step 2: Policy and Value Function Calculation
	High-Level Description of Algorithm
	Aside on Vectorization in Matlab

	Step 3: Simulation of Individual Behavior (Forward Induction)
	Numerical Methods Aside on Simulation Step

	Explanation of Matlab Code Files
	Calibration
	Wrapper Function for Steps 2 and 3

	Extension: Quasi-hyperbolic Discounting
	Changes to Value Function
	Coding Details

