
APPENDIX

A Numerical Methods Theory

This paper uses finite difference methods to solve for the equilibrium of the IG agent (equa-

tions (7) – (8)). This section follows Achdou et al. (2020), who provide an excellent set of

resources on these methods. I assume knowledge of finite difference methods here.

Barles and Souganidis (1991) show that a finite difference scheme converges to the unique

viscosity solution of an HJB equation as long as certain conditions hold. As detailed below,

these conditions do not necessarily hold when β < 1. This failure means that one cannot

directly solve the Bellman of the IG agent. The key algorithmic insight of this paper is that

the following two-step approach can be used to solve for the IG agent’s equilibrium. First,

solve the HJB equation of the dynamically consistent û agent. Second, compute the IG

agent’s equilibrium directly from the û agent using Propositions 10 and 11.

Failure of Monotonicity. Here I present a brief description of the problem: the Bellman

equation of the IG agent fails to satisfy a monotonicity property. I follow Tourin (2013)’s

treatment of Barles and Souganidis (1991). For simplicity, I assume here that income is

deterministic, with yt = y.

Let G denote the discretized grid over wealth a on which v(a) is solved numerically.

Assume this grid is uniformly spaced, and let ∆a denote the size of the grid increment. At

each gridpoint g ∈ G, define:

Sg = γvg − u(cg)−
vg+1 − vg

∆a

(y + rag − cg)+ − vg − vg−1

∆a

(y + rag − cg)−.

vg, vg+1, and vg−1 represent the value function at gridpoints g, g+ 1, and g− 1, respectively.

ag is the wealth value at gridpoint g, and cg is the consumption choice at gridpoint g.

For monotoncity to hold, Sg must be weakly decreasing in vg, vg+1, and vg−1. To show

that monotonicity fails when β < 1, assume that y+ rag − cg < 0. In this case, cg is defined
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implicitly by u′(cg) = β vg−vg−1

∆a
. Consider an increase in vg−1:

∂Sg
∂vg−1

= −u′(cg)
∂cg
∂vg−1

+
1

∆a

(y + rag − cg)− +
vg − vg−1

∆a

∂cg
∂vg−1

= (1− β)
vg − vg−1

∆a

∂cg
∂vg−1

+
1

∆a

(y + rag − cg)−,

where the last line uses the property that u′(cg) = β vg−vg−1

∆a
.

If β = 1 then monotonicity holds: ∂Sg
∂vg−1

< 0 since the first term drops out, and y+ rag−

cg < 0 by assumption.

If β < 1 then monotonicity may not hold. Since ∂cg
∂vg−1

> 0 the term (1−β)vg−vg−1

∆a

∂cg
∂vg−1

> 0

whenever β < 1. Now, it is possible for ∂Sg
∂vg−1

> 0, in which case monotonicity does not hold.

The above algebra points to the difficulty of using finite difference methods to solve for

the Bellman of the IG agent. Since this difficulty only arises when β < 1, finite difference

methods can still be used to solve for the equilibrium of the û agent. Given a solution to

the û agent, the equilibrium of the IG agent can then be backed out: Proposition 10 implies

that vj(a) = v̂j(a), and Proposition 11 defines cj(a) given ĉj(a).
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B Present Bias and Policy: A Simple Example

This section provides a simple example to show how government intervention can improve

the equilibrium of an economy with present-biased agents.48 I study a simple “Eat-the-Pie”

model of consumption-saving behavior. I assume that there is a single representative agent

with initial wealth a0. The model is deterministic, with yt ≡ ȳ. The borrowing limit is set

to the natural borrowing constraint of a = −ȳ
r

.

In this simple model, Proposition 5 implies that the IG agent consumes c(a) = ρ−(1−γ)r
γ−(1−β)

(a+

ȳ
r
). However, the first-best consumption level is č(a) = ρ−(1−γ)r

γ
(a+ ȳ

r
).49

For simplicity, I assume that ρ = r, γ = 1, and a0 > 0. With these three assumptions,

the first-best consumption level is č(a0) = ra0 + ȳ and the first-best savings level is š(a0) = 0.

In other words, it is optimal for the agent to consume the annuity value of their wealth plus

their deterministic income flow.

I now introduce a social planner to improve the consumption-saving decisions of the

representative IG agent. This social planner is allowed to use a combination of interest

rate subsidies and consumption taxes, subject to a balanced-budget constraint. Interest rate

subsidies encourage saving, while consumption taxes are a means of financing these subsidies.

Denote the consumption tax by φt, and the subsidized interest rate by rst . The social

planner runs a balanced budget for all t, so the interest rate subsidy of (rst − r)at must equal

the total tax revenue collected at each point in time.

With the introduction of consumption taxes, I will now use ct to denote gross consump-

tion expenditures at time t. However, the agent only gets to consume share 1− φt of gross

expenditures, with the rest going to taxes.

The social planner can recover the first-best equilibrium using a constant consumption

tax and interest rate subsidy. To implement the first-best equilibrium, the planner needs to

48I thank David Laibson for suggesting this example. A similar result is presented in Laibson (1998).
49As discussed in Section 5.4, IG preferences feature a single welfare criterion even though they are time-

inconsistent.
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choose rs and φ such that:

(1− φ)
ra0 + rȳ

rs

β
= ra0 + ȳ (36)

φ
ra0 + rȳ

rs

β
= (rs − r)a0 (37)

Under the simple calibration studied here, the IG agent will choose a gross consumption

expenditure of c(a) =
ra+ rȳ

rs

β
.50 However, actual consumption is only (1 − φ)c(a). Equation

(36) imposes that realized consumption is at its first-best level: (1 − φ)c(a0) = ra0 + ȳ.

Equation (37) is the balanced-budget condition. It says that tax revenues of φc(a0) must

equal the interest rate subsidy of (rs − r)a0.

One can show that the following set of policy tools produces the first-best equilibrium:

rs =
r

β

φ =
ra0(1− β)

ra0 + βȳ

For example, consider the calibration β = 0.75, r = 3%, ȳ = 1, and a0 = 3. The optimal

consumption tax is φ = 2.67% and the optimal subsidized interest rate is rs = 4%.

Welfare and Implementability when β = 1. Proposition 21 highlights the channels

through which present bias can matter for policymakers: present bias does not matter for

determining whether a policy is welfare-improving, but does matter for determining whether

a policy is feasible. This toy model can be used to formalize this discussion.

Proposition 21 implies that this interest rate subsidy plus consumption tax policy will

be welfare-improving for the β = 1 agent. However, this policy is not implementable in

an economy populated by a representative β = 1 agent. At time 0, the β = 1 agent will

consume r(a0 + ȳ
rs

), which will be too low to generate the requisite taxes needed to support

the interest rate subsidy of (rs − r)a0.

50This consumption function uses the property that a constant consumption tax does not change the gross
expenditure of the IG agent. This property is derived formally in the proof of Proposition 20.
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C Proofs

Throughout this appendix, it is assumed that the reader understands the construction of

the û agent. Details of the û construction are given in Section 4, and in Harris and Laibson

(2013).

C.1 Proof of Proposition 1

The proof of Proposition 1 relies on Proposition 10.

Lemma 22. The value function of the û agent, denoted v̂j(a), is unique.

Proof. See Harris and Laibson (2013) for full details. Intuitively, the û agent is an exponential

discounter who optimally choses consumption to maximize v̂j(a). Since there is only one

maximal value function, v̂j(a) must be unique.

The proof of Proposition 1 follows immediately from Lemma 22 and Proposition 10. In

particular, Lemma 22 says v̂ is unique, and Proposition 10 says v = v̂. Hence, v is unique.

C.2 Proof of Corollary 3

This proof extends the β = 1 case of Achdou et al. (2020). A similar result is given in Harris

and Laibson (2004). Taking a derivative of (7) with respect to a and applying the first-order

condition (8) gives

[
(ρ− r) + (1− β)c′j(a)

]
u′(cj(a)) = u′′(cj(a))c′j(a)sj(a) + λj(u

′(c−j(a))− u′(cj(a))).

Applying Ito’s Lemma to u′(cj(at)) gives Etdu′(cj(at)) = u′′(cj(at))c
′
j(at)dat+λj(u

′(c−j(a))−

u′(cj(a)))dt. Since dat = sj(at)dt, we have Etdu′(cj(at)) = u′′(cj(a))c′j(a)sj(a)dt+λj(u
′(c−j(a))−

u′(cj(a)))dt. Rearranging gives (13).
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C.3 Proof of Proposition 4

For full details, see Theorem 21 of Harris and Laibson (2004). The value function for the IG

agent is given by (see equation (7)):

ρvj(a) = u(cj(a)) + v′j(a)(yj + ra− cj(a)) + λj(v−j(a)− vj(a)).

If the constraint binds at a for income state j, then cj(a) = yj + ra. Thus,

ρvj(a) = u(yj + ra) + λj(v−j(a)− vj(a)).

Since the value function is continuous, ρvj(a) = lima→+a ρvj(a). Therefore:

u(yj + ra) + λj(v−j(a)− vj(a)) = lim
a→+a

[
u(cj(a)) + v′j(a)(yj + ra− cj(a)) + λj(v−j(a)− vj(a))

]
,

or simply

u(yj + ra) = lim
a→+a

[
u(cj(a)) + v′j(a)(yj + ra− cj(a))

]
.

Using equation (8) gives

u(yj + ra) = lim
a→+a

[
u(cj(a)) +

1

β
u′(cj(a))(yj + ra− cj(a))

]
.

This equation can be rearranged to yield:

lim
a→+a

u′(cj(a)) = β
lima→+a u(cj(a))− u(yj + ra)

lima→+a cj(a)− (yj + ra)
.

C.4 Proof of Proposition 5

The proof of Achdou et al. (2020)’s Proposition 2 applies to the û agent, giving

lim
a→∞

ĉj(a) =
ρ− (1− γ)r

γ
a.
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Since the IG agent sets cj(a) = 1
ψ
ĉj(a) (see Proposition 11), this gives

lim
a→∞

cj(a) =
1

ψ

ρ− (1− γ)r

γ

=
ρ− (1− γ)r

γ − (1− β)
a

The proof for lim
s→∞

sj(a) is similar.

C.5 Proof of Corollary 6

Using Itô’s Lemma, Et dcj(at)/dtcj(at)
=

c′j(a)sj(a)+λj(c−j(at)−cj(at))
cj(a)

. Equations (15) and (16) give

lim
a→∞

Et dcj(at)/dtcj(at)
= rβ−ρ

γ−(1−β)
. Taking a derivative with respect to r completes the proof.

C.6 Proof of Proposition 10

In this section I prove value function equivalence between the IG agent and the û agent.

This proof is similar to Harris and Laibson (2013) and Laibson and Maxted (2020), and is

included for complete detail.

Remark 23. Most of the complexity in this proof arises in allowing for a to bind. The proof

simplifies when a is the natural borrowing limit.

The û Agent’s HJBVI. To begin, I express the û agent’s value function recursively. In the

model of Section 3.1, v̂j(a) is a viscosity solution to the following Hamilton-Jacobi-Bellman

Variational Inequality (HJBVI):51

0 = min

{
ρv̂j(a)−max

ĉ
û+(ĉ) + v̂′j(a)(yj + ra− ĉ) + λj(v̂−j(a)− v̂j(a)), v̂j(a)− v̂∗j

}
, (38)

51For details on HJBVIs, and for additional economic applications, see the Stopping Time Problems at
https://benjaminmoll.com/codes/.
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where v̂∗j =
u(yj+ra)+λj v̂−j(a)

ρ+λj
.52 Additionally, HJBVI equation (38) is subject to the following

boundary condition at a:

0 ≤
[
v̂′j(a)− ∂û+(ψ(yj + ra))

∂ĉ

] (
v̂j(a)− v̂∗j

)
. (39)

This boundary condition is a shorthand way to restrict the consumption decision of the

û agent at the borrowing limit a. In particular, it ensures that the û agent either sets

ĉj(a) ≤ ψ(yj + ra) or else sets ĉj(a) = yj + ra (details below).

The “variational inequality” structure of equation (38) captures the option value that is

inherent in the û utility function. The left branch of equation (38) is the standard HJB of an

exponential discounter with utility function û+. The right branch of equation (38) captures

the agent’s ability to “stop.” Stopping yields the value v̂∗j =
u(yj+ra)+λj v̂−j(a)

ρ+λj
. This stopping

condition can be thought of as giving the û agent the option to trade away all wealth above

a in exchange for a utility flow of u(yj + ra) that persists until the agent’s income state

changes.53

For a > a it will always be optimal to select the left branch of equation (38) (i.e., do not

“stop”). When a > a the û agent can always choose ĉ such that û+(ĉ) = u(yj + ra), and

this utility flow is attained without trading away all wealth above a.

For a = a, the û agent faces a choice. If the agent chooses the left branch of equation (38)

then the lower utility function û+ is obtained. But, the benefit of choosing the left branch

is that ĉj(a) ≤ ψ(yj + ra) and therefore wealth is accumulated since ŝj(a) > 0. If the agent

chooses the right branch of equation (38) at a = a then the agent earns a larger utility flow

of u(yj + ra), but remains stuck at wealth level a. Thus, equation (38) captures the tradeoff

that the û agent faces at a = a.

The boundary condition in equation (39) is a way to restrict the behavior of the û

agent at a. The û agent must choose either to “continue” by setting ĉj(a) ≤ ψ(yj + ra),

or else to “stop.” Stopping implies v̂j(a) = v̂∗j , in which case equation (39) holds. If the

agent chooses to continue, meaning that v̂j(a) ≥ v̂∗j , boundary condition (39) imposes that

52This implicitly assumes that a > −y1
r . If a = −y1

r then v̂∗j = −∞. In this case, v̂∗j is never chosen.
53If the agent chooses this alternate “stopping” option, their value function is given by ρv̂j(a) = u(yj +

ra) + λj(v̂−j(a)− v̂j(a)). Solving for v̂j(a) gives the formula for v̂∗j .
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v̂′j(a) ≥ ∂û+(ψ(yj+ra))

∂ĉ
. Since the û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a) in the continuation region, this

lower bound on v̂′j(a) ensures that ĉj(a) ≤ ψ(yj + ra).

Proof Intuition. The intuition for this proof is as follows. Assume that vj(a) = v̂j(a) and

a > a. Then, differential equations (7) and (38) can be combined to yield:

u(cj(a))− v′j(a)cj(a) = û+(ĉj(a))− v̂′j(a)ĉj(a).

Utility function û is reverse-engineered so that this condition holds.

The IG Agent: A Modified Bellman Equation. Following Theorem 2 of Harris and

Laibson (2013), let f+(α) be the unique value of c satisfying u′(c) = α. Let h+(α) =

u(f+(βα)) − αf+(βα). Since u′(cj(a)) = βv′j(a) for a > a, it is the case that h+(v′j(a)) =

u(f+(βv′j(a)))− v′j(a)f+(βv′j(a)) = u(cj(a))− v′j(a)cj(a).

Next, let f
j
(α) be the unique value of c satisfying u′(c) = max{u′(yj + ra), α}. Let

hj(α) = u(f
j
(βα))− αf

j
(βα).

Define:

hj(α, a) =

h
+(α) if a > a

hj(α) if a = a

.

Function h can be used to rewrite equation the Bellman equation of the IG agent (equations

(7) and (8)) as follows:

ρvj(a) = v′j(a)(yj + ra) + λj(v−j(a)− vj(a)) + hj(v
′
j(a), a). (40)

The û Agent: A Modified Bellman Equation. At a = a, the û agent faces a choice to

“continue” or to “stop”. Continuing attains utility function û+ with consumption ĉj(a) ≤

ψ(yj + ra). Stopping attains utility function u with consumption ĉj(a) = yj + ra.

Lemma 24. The û agent will choose to continue at a when v̂′j(a) > 1
β
(yj + ra)−γ. The û

agent will choose to stop when v̂′j(a) < 1
β
(yj + ra)−γ.

Proof. If the û agent chooses to continue at a then the û agent sets
∂û+(ĉj(a))

∂ĉ
= v̂′j(a). This
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implies ĉj(a) = ψ(βv̂′j(a))−
1
γ . This consumption choice yields a value at a of

ρv̂j(a) = û+(ĉj(a)) +
ψγ

β
ĉj(a)−γ(yj + ra− ĉj(a)) + λj(v̂−j(a)− v̂j(a)). (41)

If the û agent chooses to stop, the value at a is given by

ρv̂j(a) = u(yj + ra) + λj(v̂−j(a)− v̂j(a)). (42)

Comparing (41) and (42), one can show that the û agent is indifferent between the two

choices when v̂′j(a) = 1
β
(yj + ra)−γ (which implies ĉj(a) = ψ(yj + ra)). The û agent chooses

value function (41) when v̂′j(a) > 1
β
(yj + ra)−γ, and value function (42) when v̂′j(a) <

1
β
(yj + ra)−γ.

Using Lemma 24, I now proceed as in the IG case. For the û-agent, let f̂+(α) be the unique

value of ĉ satisfying ∂û+(ĉ)
ĉ

= α. Let ĥ+(α) = û+(f̂+(α)) − αf̂+(α). Since the û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a) for a > a, it is the case that ĥ+(v̂′j(a)) = û+(f̂+(v̂′j(a)))− v̂′j(a)f̂+(v̂′j(a)) =

û+
j (ĉj(a))− v̂′j(a)ĉj(a).

Next, let f̂
j
(α) be the unique value of ĉ satisfying:

ĉ =

ψ(βα)−
1
γ if α ≥ 1

β
(yj + ra)−γ

yj + ra otherwise

.

Let ĥj(α) = ûj(f̂ j(α), a)− αf̂
j
(α).

Define:

ĥj(α, a) =

ĥ
+(α) if a > a

ĥj(α) if a = a

.

Using Lemma 24, function ĥ can be used to rewrite the Bellman equation of the û agent

(equation (38)) as follows:

ρv̂j(a) = v̂′j(a)(yj + ra) + λj(v̂−j(a)− v̂j(a)) + ĥj(v̂
′
j(a), a) (43)
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From inspection, we can see that equations (40) and (43) are identical if and only if hj and

ĥj are the same. This can be confirmed directly.

C.7 Proof of Proposition 11

For a > a, equation (8) specifies that the IG agent sets u′(cj(a)) = βv′j(a). The û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a). Imposing the value function equivalence that vj(a) = v̂j(a) (Proposition

10) gives:

∂u(cj(a))

∂c
= β

∂û+(ĉj(a))

∂ĉ
.

This implies

cj(a) =
1

ψ
ĉj(a).

For a = a, consider first the case where ĉj(a) ≤ ψ(yj + ra). If the û agent sets ĉj(a) ≤

ψ(yj + ra) then this implies that v̂′j(a) ≥ ∂û+(ψ(yj+ra))

∂ĉ
= 1

β
(yj + ra)−γ. Since vj(a) = v̂j(a)

by value function equivalence (Proposition 10), this also means that βv′j(a) ≥ (yj + ra)−γ.

In this case, equation (8) specifies that the IG agent sets u′(cj(a)) = βv′j(a). The argument

that was just used for a > a continues to hold here.

Next, consider the case where ĉj(a) = yj + ra. If the û agent sets ĉj(a) = yj + ra then it

must be that v̂′j(a) ≤ 1
β
(yj + ra)−γ (Lemma 24). By optimality condition (8), the IG agent

also sets cj(a) = yj + ra.

C.8 Proof of Proposition 13

This proof uses the property that the û agent behaves identically to a standard exponential

agent when a is the natural borrowing limit (Remark 12).

First consider the case where r ≤ ρ. The Euler equation of the standard exponential

agent implies that č(a) ≥ y+ ra for all a ≥ 0 (see Achdou et al. (2020)). Since the IG agent

sets c(a) = 1
ψ
ĉ(a) = 1

ψ
č(a), the IG agent strictly dissaves for all a ≥ 0 when r ≤ ρ.

Next consider the case where r ∈ (ρ, ρ
β
). The standard exponential agent consumes
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according to č(a) = ρ−(1−γ)r
γ

(a + y
r
) for a ≥ 0 (see e.g. Fagereng et al. (2019) for a proof).

The IG agent therefore sets c(a) = 1
ψ
č(a) = ρ−(1−γ)r

γ−(1−β)
(a + y

r
) for a ≥ 0. One can show that

s(a) = y + ra− c(a) < 0 whenever r < ρ
β
. Thus, the IG agent strictly dissaves for all a ≥ 0

when r ∈ (ρ, ρ
β
).

In both cases the IG agent strictly dissaves for all a ≥ 0. This means that the IG agent

dissaves at a = 0, completing the proof that s(0) < 0 whenever r < ρ
β
. This holds regardless

of how large Γ(0) is.

Note that this proof does not rely on some sort of consumption discontinuity at a = 0.

The consumption function c(a) is continuous at a = 0. To show this, recall that the IG

agent’s value function is given by

ρv(a) = u(c(a)) + v′(a)(ς(a)a+ y − c(a)).

The IG agent sets u′(c(a)) = βv′(a). Therefore

ρv(a) = u(c(a)) +
c(a)−γ

β
(ς(a)a+ y − c(a)).

Since v(a) is continuous and ς(a)a is continuous, c(a) is also continuous at a = 0.

C.9 Proof of Proposition 14

Value Function Uniqueness. I first prove that the IG agent’s intrapersonal game fea-

tures a unique value function.

Lemma 25. For the two-asset model described in Section 5.2, the value function of the û

agent, denoted v̂j(a, ζ), is equivalent to the value function vj(a, ζ) of the IG agent.

Proof. In this extended model, v̂j(a, ζ) is a viscosity solution to the following Hamilton-

Jacobi-Bellman Variational Inequality (HJBVI):

0 = min

{
v̂j(a, ζ)− v̂∗j (ζ), ρv̂j(a, ζ)−max

ĉ,d̂
û+(ĉ) +

∂v̂j(a, ζ)

∂a
(yj + ς(a)a− d̂− χ(d̂, ζ)− ĉ)

+
∂v̂j(a, ζ)

∂ζ
(ζrζ + d̂) + λj(v̂−j(a, ζ)− v̂j(a, ζ)) +

1

2

∂2v̂j(a, ζ)

∂ζ2
(ζσζ)2

}
, (44)
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where v̂∗j (ζ) =
u(yj+ra)+λj v̂−j(a,ζ)

ρ+λj
.54 HJBVI equation (44) is subject to the following boundary

condition at a:

0 ≤
[
v̂′j(a, ζ)− ∂û+(ψ(yj + ra))

∂ĉ

] [
v̂j(a, ζ)− v̂∗j (ζ)

]
. (45)

Given this setup, the proof of value function equivalence is the same as Proposition 10.

Asset allocation choice dj(a, ζ) adds no additional difficulty because the û agent and the IG

agent both utilize the same first-order condition to choose dj(a, ζ).

Given Lemma 25, the proof of value function uniqueness is the same as Proposition 1.

Independence of Asset Allocation Decision and β. When a is the natural borrowing

limit, the proof that dj(a, ζ) is independent of β is as follows. By Lemma 25, vj(a, ζ) =

v̂j(a, ζ). Given value function equivalence, equation (27) implies that the IG agent chooses

the same illiquid asset policy function as the û agent: dj(a, ζ) = d̂j(a, ζ). When a is the

natural borrowing limit the û agent behaves identically to a standard exponential agent

(Remark 12). Thus, dj(a, ζ) = d̂j(a, ζ) = ďj(a, ζ).

C.10 Proof of Proposition 16

The (potentially naive) IG agent sets u′(cj(a, ζ)) = β
∂vEj (a,ζ)

∂a
. By Lemma 25, one can

construct a û agent using βE such that v̂j(a, ζ) = vEj (a, ζ). This û agent chooses con-

sumption such that
∂û+(ĉj(a,ζ))

∂ĉ
=

∂v̂j(a,ζ)

∂a
. This implies that

∂v̂j(a,ζ)

∂a
= (ψE)γ

βE
ĉj(a, ζ)−γ, where

ψE = γ−(1−βE)
γ

.

Using the value function equivalence property that v̂j(a, ζ) = vEj (a, ζ):

u′(cj(a, ζ)) = β
(ψE)γ

βE
ĉj(a, ζ)−γ.

Rearranging gives

cj(a, ζ) =

(
βE

β

) 1
γ 1

ψE
× ĉj(a, ζ).

54This implicitly assumes that a > −y1
r . If a = −y1

r then v̂∗j (a) = −∞. In this case, v̂∗j is never chosen.
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To complete the proof, note that the û agent behaves identically to a standard exponential

agent when a does not bind (Remark 12). This implies that the û agent sets ĉj(a, ζ) = čj(a, ζ)

regardless of β and βE. Therefore cj(a, ζ) =
(
βE

β

) 1
γ 1
ψE
× čj(a, ζ), as desired.

To see when consumption is increasing in naivete, consider:

∂cj(a, ζ)

∂βE
∝ 1

γ

(
βE

β

) 1−γ
γ 1

β

1

ψE
−
(
βE

β

) 1
γ 1

ψE
1

γ − (1− βE)

∝ 1

βE
− 1

ψE

For βE < 1, one can show that ψE > βE when γ > 1, and ψE < βE when γ < 1. Thus,

consumption is increasing in naivete when γ > 1, and decreasing in naivete when γ < 1.

C.11 Proof of Corollary 19

In the model of Section 3, the expected continuation-value function vEj (a) is characterized

as follows:

ρvEj (a) = u(cEj (a)) +
∂vEj (a)

∂a
(yj + ra− cEj (a)) + λj(v

E
−j(a)− vEj (a)), (46)

u′(cEj (a)) =

β
E ∂vEj (a)

∂a
if a > a

max{βE ∂vEj (a)

∂a
, u′(yj + ra)} if a = a

. (47)

Equations (46) – (47) are identical to (7) – (8) except that the true short-run discount factor

β is replaced by the perceived discount factor βE. The agent’s actual consumption decision

is given by:

u′(cj(a)) =

β
∂vEj (a)

∂a
if a > a

max{β ∂v
E
j (a)

∂a
, u′(yj + ra)} if a = a

.

Let sEj (a) = yj + ra − cEj (a) denote the perceived savings rate. Taking a derivative of
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(46) with respect to a and applying the first-order condition u′(cEj (a)) = βE
∂vEj (a)

∂a
gives

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
∂vEj (a)

∂a
=
∂2vEj (a)

∂a2
sEj (a) + λj

(
∂vE−j(a)

∂a
−
∂vEj (a)

∂a

)
.

Multiplying through by β and using the property that u′(cj(a)) = β
∂vEj (a)

∂a
gives:

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
u′(cj(a)) = u′′(cj(a))

∂cj(a)

∂a
sEj (a) + λj (u′(c−j(a))− u′(cj(a))) .

Applying Ito’s Lemma gives Etdu′(cj(at)) = u′′(cj(at))c
′
j(at)sj(at)+λj(u

′(c−j(a))−u′(cj(a)))dt:

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
u′(cj(a)) = Et[du′(cj(at))/dt] + u′′(cj(a))

∂cj(a)

∂a
(sEj (a)− sj(a))

= Et[du′(cj(at))/dt] + u′′(cj(a))
∂cj(a)

∂a
(cj(a)− cEj (a)).

The first-order conditions of u′(cEj (a)) = βE
∂vEj (a)

∂a
and u′(cj(a)) = β

∂vEj (a)

∂a
imply that cEj (a) =(

β
βE

) 1
γ
cj(a). Thus,

[
(ρ− r) +

(
1− βE

)( β

βE

) 1
γ ∂cj(a)

∂a

]
u′(cj(a)) = Et[du′(cj(at))/dt] + u′′(cj(a))

∂cj(a)

∂a
cj(a)

(
1−

(
β

βE

) 1
γ

)
.

Dividing through by marginal utility and using the property that γ = −cu′′(c)
u′(c)

:

[
(ρ− r) +

(
1− βE

)( β

βE

) 1
γ ∂cj(a)

∂a

]
=

Et[du′(cj(at))/dt]
u′(cj(a))

− γ ∂cj(a)

∂a

(
1−

(
β

βE

) 1
γ

)
.

Rearranging yields the desired result.

C.12 Proof of Proposition 20

Step 1: Value Function Equivalence for the Naive Agent (γ 6= 1). Recall that the

û utility function is constructed so that the value function of the sophisticated IG agent is

equivalent to the value function of an exponential agent with utility function û. The first
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step of this proof generalizes this construction to allow for naivete. I construct a utility

function, denoted ˆ̂u, such that the realized value function of the (potentially naive) IG is

equivalent to the value function of an exponential agent with utility function ˆ̂u. I refer to

this agent as the ˆ̂u agent.

Note that when βE 6= β the realized value function of the naive IG agent does not equal

the naif’s expected value function. As given in the main text, the expected continuation-

value function is vEt = Et
[∫∞
t
e−ρ(s−t)u(cEs )ds

]
. However, the realized value function is

vRt = Et
[∫ ∞

t

e−ρ(s−t)u(cs)ds

]
.

vR is based on the naif’s realized consumption, while vE is based on their perceived con-

sumption.

Let ˆ̂u(c) = xc1−γ−1
1−γ . This is a positive affine transformation of CRRA utility function u(c)

whenever x > 0. When this is the case, the ˆ̂u agent will behave identically to a standard

exponential agent. Thus, I will use čj(a, ζ) to refer to the consumption of the ˆ̂u agent.

In order to generate value function equivalence between the (possibly naive) IG agent

and the ˆ̂u agent, I construct ˆ̂u so that the following condition holds for all a > a:

u(cj(a, ζ))−
∂vRj (a, ζ)

∂a
cj(a, ζ) = ˆ̂u(čj(a, ζ))−

∂vRj (a, ζ)

∂a
čj(a, ζ). (48)

This condition ensures that vRj (a, ζ) = ˆ̂vj(a, ζ) whenever a does not bind in equilibrium. See

the proof of Proposition 10 for details.

I want to solve for x such that equation (48) holds. From Proposition 16, note that

čj(a, ζ) = αcj(a, ζ), where α = ψE
(

β
βE

) 1
γ
. Additionally, the ˆ̂u agent sets čj(a, ζ) such that

xčj(a, ζ)−γ =
∂vRj (a,ζ)

∂a
. Using these properties in equation (48) gives:

cj(a, ζ)1−γ

1− γ
− xα−γcj(a, ζ)1−γ =

x(αcj(a, ζ))1−γ

1− γ
− x(αcj(a, ζ))1−γ.
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This can be rearranged to yield:

x =
αγ

1− γ + αγ
.

Note that x = ψγ

β
in the case of sophistication (βE = β), in which case ˆ̂u(c) = û(c).

Step 2: The Effect of a Consumption Tax. I now introduce a constant perpetual

consumption tax of τ ∈ [0, 1). Given consumption tax τ ∈ [0, 1), let čj(a, ζ) denote the

gross consumption expenditure rate of the standard exponential agent.55 Here I show that a

consumption tax of τ does not affect the exponential agent’s gross consumption expenditure.

With no tax, the standard exponential agent chooses consumption to maximize v̌:

v̌j(a, ζ) = max
č

Et
[∫ ∞

t

e−ρ(s−t)u(čs)ds

]
.

With a consumption tax, the standard exponential agent chooses consumption to maximize:

v̌j(a, ζ; τ) = max
č

Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
.

Note that u((1−τ)c) is a positive affine transformation of u(c). Thus, policy function čj(a, ζ)

is unaffected by consumption tax τ . The only effect of the tax is that for τ > 0, čj(a, ζ)

denotes gross consumption expenditure. The agent only gets to consume (1−τ)čj(a, ζ), with

the rest going to taxes.

Step 3: The Welfare Effect of Present Bias (γ 6= 1). Since ˆ̂u is a positive affine trans-

formation of u, the ˆ̂u agent behaves identically to a standard exponential agent. Additionally,

value function equivalence implies that the realized value function of the IG agent equals the

value function of the ˆ̂u agent whenever a does not bind in equilibrium: vRj (a, ζ) = ˆ̂vj(a, ζ).

This was shown in Step 1 of this proof.

The final step is to derive the consumption tax τ that equates the realized value function

of the IG agent (vRj (a, ζ)) with the value function of a standard exponential agent facing a

55In other words, the agent spends č to consume (1− τ)č.
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consumption tax (v̌j(a, ζ; τ)). Using value function equivalence, the realized value function

of the IG agent is:

vRj (a, ζ) = ˆ̂vj(a, ζ) = Et
[∫ ∞

t

e−ρ(s−t) ˆ̂u(ˆ̂cs)ds

]
. (49)

The value function of a standard exponential agent facing a consumption tax is:

v̌j(a, ζ; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (50)

The key to this proof is to note that ˆ̂cj(a, ζ) = čj(a, ζ). Therefore the consumption

path in the integral of equation (49) is identical to the gross consumption expenditure path

in equation (50) (this hold state by state, so it also holds in expectation). Thus, setting

equation (49) equal to equation (50) is as simple as finding the value of τ such that:

ˆ̂u(c) = u((1− τ)c).

This implies that x = (1− τ)1−γ. Rearranging gives

τ = 1−
(

αγ

1− γ + γα

) 1
1−γ

.

Special Case: γ = 1. In the special case of γ = 1 the naif and the sophisticate behave

identically (Proposition 16). The realized value function vRj (a, ζ) is therefore independent of

βE. So, I calculate the γ = 1 case under the assumption of sophistication, βE = β.

I again derive the consumption tax τ that equates the realized value function of the IG

agent (vRj (a, ζ)) with the value function of a standard exponential agent facing a consumption

tax (v̌j(a, ζ; τ)). Using value function equivalence, the realized value function of the IG agent

is:

vRj (a, ζ) = v̂j(a, ζ) = Et
[∫ ∞

t

e−ρ(s−t)û(ĉs)ds

]
. (51)
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The value function of a standard exponential agent facing a consumption tax is:

v̌j(a, ζ; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (52)

Since ĉj(a, ζ) = čj(a, ζ), the consumption path in the integral of equation (51) is identical

to the gross consumption expenditure path in equation (52). As above, I need to find the

value of τ such that:

û(c) = u((1− τ)c).

When γ = 1 this implies that − ln(β) + β−1
β

= ln(1− τ). Rearranging gives

τ = 1−
exp

(
β−1
β

)
β

.

The Effect of β and βE. First, I show that τ is decreasing in α. The derivative

∂τ

∂α
=
−1

1− γ

(
αγ

1− γ + γα

) γ
1−γ
(

γαγ−1

1− γ + γα
− γαγ

(1− γ + γα)2

)

implies that

sgn

(
∂τ

∂α

)
= sgn(γ − 1)× sgn

(
1− α

1− γ + γα

)
, or equivalently

sgn

(
∂τ

∂α

)
= sgn(γ − 1)sgn(1− γ).

Thus, τ is always decreasing in α.

The derivative of α with respect to β is:

∂α

∂β
=

ψE

γβE

(
β

βE

) 1−γ
γ

> 0.

As stated in the main text, this implies that ∂τ
∂β
< 0.
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The derivative of α with respect to βE is:

∂α

∂βE
=

1

γ

(
β

βE

) 1
γ

− 1

γ

(
β

βE

) 1
γ ψE

βE
.

So, ∂α
∂β

> 0 when βE > ψE, and ∂α
∂β

< 0 when βE < ψE. Since βE > ψE when γ < 1 (and

vice versa), this implies that α is increasing in βE when γ < 1, and decreasing in βE when

γ > 1. This also implies that ∂τ
∂βE

< 0 when γ < 1, and ∂τ
∂βE

> 0 when γ > 1. As stated in

the main text, naivete increases the welfare cost of present bias when γ > 1.

C.13 Proof of Proposition 21

This follows from the proof of Proposition 20, which shows that the realized continuation-

value function of the IG agent is a positive affine transformation of the value function for the

standard exponential agent. Accordingly, improving the (realized) welfare of the IG agent

is equivalent to improving the welfare of the standard exponential agent.
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D Model Solution with Naivete

This section replicates the numerical example of Section 3.3 under the assumption of complete

naivete. To generate an equilibrium interest rate of 3%, I set β = 0.75, βE = 1, and

ρ = 2.45%. The calibration is otherwise identical to Section 3.3.

Overall the results are qualitatively similar. The biggest difference between the consump-

tion of the naif and the sophisticate occurs near a. Though the naif still overconsumes near

the borrowing constraint, Figure 5 illustrates that the naif overconsumes by less than the

sophisticate. As described in the main text, when the consumer is sophisticated their present

bias interacts with the effective planning horizon to increase consumption near a. This effect

does not arise under naivete because the naif trusts all future selves.

Figure 5: Equilibrium Consumption-Saving Decisions. The figure plots the equilib-
rium consumption function for the βE = β calibration (sophistication) and the βE = 1
calibration (naivete).
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Figure 6: The Distribution of Wealth. This figure shows the stationary wealth distribu-
tion for the βE = β calibration and the βE = 1 calibration.

Figure 7: MPCs. This figure plots quarterly MPCs for the βE = β calibration and the
βE = 1 calibration.
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