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Announcements

I Lecture Room Change: We are now in the Belfer Case Study
Room in the South Building (S020)

I Problem Set 0 is Posted.
I When is it due?

I Thursday, September 15th, by 6:00pm

I Where can I find it?
I Look in the “Assignments” tab of the Gov 2000 page in

Canvas

I What should I submit?
I A beautifully formatted writeup with your solutions in .pdf

format
I A working R script file (.R) that actually produces the

solutions in your writeup
I Rmarkdown (.rmd) files are fine too; we’ve set Canvas up to

accept those.

I TF Office Hours
I Mayya: Wednesdays, 4:00pm - 6:00pm, CGIS Cafe
I David: Tuesdays, 4:00pm - 6:00pm, CGIS Cafe
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What is Probability?

Intuition

I Most of us have encountered probability at some point. When
we “think in probabilistic terms”, we’re usually imagining
something like this:

# of possibilities I’m interested in

total # of possibilities

I What’s the probability that I flip “heads” on a single coin
toss? 1

2

I What’s the probability that I win the lottery? Also 1
2 , right? I

mean you either win or you lose, am I right?
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What is Probability?

Counting

I The trick often rests in figuring out how to correctly count the
number of possibilities in the numerator and denominator.

I Sometimes counting is easy. For instance:

I Suppose the lottery is just a raffle. Everyone who purchases a
ticket puts a duplicate with their ticket number into a giant
hat. 1,000,000 people buy tickets. When the lottery closes,
the tickets in the hat are thoroughly shuffled and exactly 1 is
drawn. The owner of that ticket wins the jackpot. If you
purchased one ticket, your probability of winning the lottery is:

1

1, 000, 000
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What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

I But sometimes counting is hard (seriously). For instance:
I Suppose the lottery works more like the Powerball. 5 of the 6

winning numbers are drawn, without replacement, from
integers 1-59. The 6th can be any integer 1-35. Winning
tickets have the correct 6 numbers (first 5 in any order). If you
purchased one ticket, what is your probability of winning the
lottery now (even if you’re not the sole winner)?

I Well, you’ve got your 1 ticket so the numerator is still 1. But
what’s the denominator?

I The denominator should represent all of the possible unique
combinations of 6 numbers that could be drawn. That’s equal
to:

1(
59!

(59−5)!5!

)
(35)

=
1

175, 223, 510
= Yea, good luck w/ that

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



What is Probability?

Counting

How did we know that? Suppose you have n objects and you’re
trying to count ways to choose a subset of size k from those
objects. Use this as a guide when counting possibilities:

Order Matters Order Doesn’t Matter
(aab 6= aba) (aab = aba)

With Replacement nk
(n+k−1

k

)
Without Replacement n!

(n−k)!

(n
k

)
Where:

I n! = n(n − 1)(n − 2)(n − 3)...(1)

I There are n! ways to arrange n objects

I
(n
k

)
can be read as “n choose k” and indicates the formula

n!
(n−k)!k!
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What is Probability?

Counting
Important tips to consider when applying these formulas:

I You’ll almost never be asked to count outcomes in such
certain terms (e.g. how many ways can I choose 5 objects
from 60 objects without replacement?) So you’ll have to think
about how those formulas fit into the design of your process

I You’ll often have to apply combinations of these formulas (see
lottery example)

I It’s helpful to think about your possible outcomes as vectors,
or sequences of events. What actually constitutes a unique
sequence? How many elements can they all have?
I e.g. 3 of a kind, in poker could be {J♣, J♠, J♥} or
{A♣,A♠,A♥}, etc.

I Finally, make sure you’re accounting for all of the variation in
your process (e.g. suit and rank, regular lotto numbers and
powerball, etc.)
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What is Probability?

Definition

I In practice, probability frequently concerns questions and data
generating processes that are too complex even to express in
our näıve ratio form.

I But we need a way to express those too! So let’s begin
defining them.

I Formally, probability is a mathematical model of uncertain
outcomes in the real world

I Probability is a model that conforms to a particular set of
rules (axioms) and is expressed in a specific type of language

I We’ll discuss the axioms of probability at length throughout
this section, but first let’s define some specific concepts that
will help us introduce those axioms in concise terms
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our näıve ratio form.

I But we need a way to express those too! So let’s begin
defining them.

I Formally, probability is a mathematical model of uncertain
outcomes in the real world

I Probability is a model that conforms to a particular set of
rules (axioms) and is expressed in a specific type of language

I We’ll discuss the axioms of probability at length throughout
this section, but first let’s define some specific concepts that
will help us introduce those axioms in concise terms

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Theory Review

I Set:
I Notation: S (or any other letter of the alphabet, typically)
I Defined as: any well defined collection of elements. If some

element x is an element of a set S , we can argue x ∈ S (read
as: x is in S)

I Note that the “null set”, or set containing no elements, can be
written as S = { } or as S = ∅

I Sample Space:
I Notation: Ω
I Defined as: set of all possible outcomes from some process

I Event:
I Notation: A (these are typically defined in single letters or

phrases)
I Defined as: Any collection of possible outcomes from some

process. Any subset of Ω, including Ω itself. Given event A in
Ω, we can say A ⊂ Ω (read as: A is a subset of Ω)
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Example: Pick A Card, Any Card

I The real-world process: Suppose you’re drawing cards from
a standard, 52-card deck of playing cards

I Sample Space: Ω = 13 rank cards in each of 4 suits

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥

I Event: Drawing a queen. A = {Q♣ Q♠ Q♦ Q♥}
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Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

Let A and B be two events in some sample space Ω, then:

I Complements:
I Notation: AC

I Definition: The complement of some event or set is everything
in Ω that isn’t in that event or set. Note that ΩC = ∅

I e.g. in our previous example, the complement of picking a
red card is picking a black card

I Union:
I Notation: A ∪ B
I Definition: The union of two events A and B is the event that

A or B occurs. In other words, its the event that you observe
any of the elements in A or B

I e.g. If A is the event that you draw a club and B is the event
that you draw a queen, then A ∪ B is the event that you draw
a queen or a club: Q ∪ ♣

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Set Operations

I Intersection:
I Notation: A ∩ B
I Definition: The intersection of two events A and B is the

event that both A and B occur, or the event that you observe
only elements contained in both A and B.

I e.g. If A is the event that you draw a club in our previous
example and B is the event that you draw a queen, then A∩B
is the event that you draw the queen of clubs: Q ∩ ♣ = Q♣

I Disjoint Events:
I Notation: A ∩ B = ∅
I Definition: Two events A and B are said to be disjoint if they

are mutually exclusive. In other words, if A occurs then we
know that B cannot have occurred and vice-versa.

I e.g. If A is the event that you draw a club and B is the event
that you draw a spade, then A ∩ B = ∅ because no single card
can belong to multiple suits.
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is the event that you draw the queen of clubs: Q ∩ ♣ = Q♣
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Properties of Set Operations

I Commutative:
I A ∪ B = B ∪ A
I A ∩ B = B ∩ A

I Associative:
I A ∪ (B ∪ C ) = (A ∪ B) ∪ C
I A ∩ (B ∩ C ) = (A ∩ B) ∩ C

I Distributive:
I A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
I A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

I de Morgan’s Laws:
I (A ∪ B)C = AC ∩ BC

I (A ∩ B)C = AC ∪ BC
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Axioms of Probability

Probability just quantifies how likely or unlikely it is that the events
we’ve been defining in this section will come to pass. Before we
start thinking about how to do that math, let’s define three basic
axioms of probability:

I Nonnegativity:
I For any event A, P(A) ≥ 0

I Normalization:
I P(Ω) = 1

I Additivity:
I For any sequence of disjoint events A1,A2,A3,A4, ...Ak :

P

(
k⋃

i=1

Ai

)
=

k∑
i=1

P(Ai )
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A Quick Note on Notation

I Given any events A1,A2,A3,A4, ...Ak :

I
k⋃

i=1

Ai = A1 ∪ A2 ∪ A3 ∪ ...Ak

I P

(
k⋃

i=1

Ai

)
= P(A1 ∪ A2 ∪ A3 ∪ ...Ak)

I
k⋂

i=1

Ai = A1 ∩ A2 ∩ A3 ∩ ...Ak

I P

(
k⋂

i=1

Ai

)
= P(A1 ∩ A2 ∩ A3 ∩ ...Ak)

I Just as we use summation notation to summarize a series, we
can use the large union or intersection signs you see above to
indicate that we want the union or intersection of a long
sequence of events!
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Additional Properties of Probability

We can derive all the properties of probability from the three
axioms we just discussed:

I For any event A : 0 ≤ P(A) ≤ 1
I P(AC ) = 1− P(A)
I P(∅) = 0
I If A ⊂ B, P(A) ≤ P(B)
I For any two events A and B:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

I For any sequence of k events A1,A2,A3, ...Ak (which need
not be disjoint):

P

(
k⋃

i=1

Ai

)
≤

k∑
i=1

P(Ai )
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Conditional Probability

I Notation: P(A | B) (read as: probability of A given B)

I Definition: Given two events A and B, the conditional
probability of A given B refers to the probability that A
occurs given that we know B has already occurred. If
P(B) > 0, we can express this as:

P(A | B) =
P(A ∩ B)

P(B)

I In this example, we are conditioning our analysis on the
assumption that B has occurred. In practice, all probability is
conditional probability; you’re almost always making implicit
assumptions about the process that generates your data.
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Example: Conditional Probability

Suppose the table below represents the composition of the U.S.
Senate, and you’re surveying senators at random:

Democrats Republicans Independents Total

Men 39 42 2 83
Women 12 5 0 17

Total 51 47 2 100

I What’s the probability of choosing a female senator?

I P(Female) = 17
100 = 0.17

I What’s the probability of choosing a female, Republican
senator?

I P(Female ∩ Republican) = 5
100 = 0.05

I What’s the probability that a randomly selected Republican
senator is female?

I P(Female | Republican) = P(Female ∩ Republican)
P(Republican) = 5

47 = 0.106
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Properties of Conditional Probability

I First, a conditional probability PSA:

I The rules of probability apply to the left-hand side of the
conditioning bar in a probability expression.

I Everything on the right hand side represents what you already
know about the world. You can’t do mathematical operations
on that.

I So, even if two events B and C are disjoint:

P(A | B ∪ C ) 6= P(A | B) + P(A | C )

I You can, however, perform mathematical operations on the
left hand side.

I If two events A1 and A2 are disjoint:

P(A1 ∪ A2 | B) = P(A1 | B) + P(A2 | B)
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Multiplication Rule

I Definition for two events:
I Given any two events, A1 and A2:

P(A1 ∩ A2)︸ ︷︷ ︸
Joint Distribution

= P(A1)︸ ︷︷ ︸
Marginal

Distribution

P(A2 | A1)︸ ︷︷ ︸
Conditional
Distribution

I We can derive the joint distribution of two (or more) events
using the marginal and conditional distributions for those
events!

I Definition for three events:
I Given any three events, A1,A2, and A3:

P(A1 ∩ A2 ∩ A3) = P(A3 | A2 ∩ A1)P(A2 | A1)P(A1)
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Multiplication Rule

We can generalize the multiplication rule to k events:

P(A1 ∩ A2 ∩ A3 ∩ ...Ak) =P(Ak | Ak−1 ∩ Ak−2 ∩ ...A1)

P(Ak−1 | Ak−2 ∩ Ak−3 ∩ ...A1)

P(Ak−2 | Ak−3 ∩ Ak−4 ∩ ...A1)...

P(A2 | A1)P(A1)
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Example: Multiplication Rule

Suppose we draw three cards at random from a standard 52-card
deck of playing cards. What is the probability that we draw three
aces?

I P(Ace1 ∩ Ace2 ∩ Ace3) = ??

I Apply the multiplication rule!

I P(Ace1 ∩ Ace2 ∩ Ace3) = P(Ace3 | Ace2 ∩ Ace1)P(Ace2 |
Ace1)P(Ace1)

I What do these individual probabilities actually correspond to?

I P(Ace1) = 4
52 (4 aces in the full deck)

I P(Ace2 | Ace1) = 3
51 (3 remaining aces in 51 remaining cards)

I P(Ace3 | Ace2 ∩ Ace1) = 2
50 (2 remaining aces in 50 remaining

cards)

I P(Ace1 ∩ Ace2 ∩ Ace3) =
(

4
52

) (
3
51

) (
2
50

)
= 0.00018
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Law of Total Probability

Ω

B

I In the set above, how do we calculate the probability of B?

I Parition Ω into disjoint events:
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Law of Total Probability

Ω

B

A1 A2 A3

I Law of Total Probability
I Partition Ω into a set of disjoint events, A1,A2,A3, ...Ak such

that
k⋃

i=1

Ai = Ω

I Given the partition above, the Law of Total Probability
(LOTP), states:

P(B) =
k∑

i=1

P(B | Ai )P(Ai )
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Bayes’ Rule

Before we get into this, another important probability PSA:

P(A | B) 6= P(B | A)
Seriously, that’s not a thing. Think about it:

I P(Being smart | Enrolling in Gov2k) = High!

I P(Enrolling in Gov2k | Being smart) = Pretty low!

I We don’t have room for all of the smart people in the world.
We barely had room for all of you in K354. Plus, lots of smart
people who aren’t you are too far away and too busy for
Gov2k. (Ain’t nobody got time for that)

I Well, that’s good to know. But what if we have P(A | B), but
we really want to know P(B | A)? What do we do?
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Bayes’ Rule

We talk to the reverend:

I Bayes’ Rule
I If P(B) > 0, then:

P(A | B) =
P(B | A)P(A)

P(B)
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Proof: Bayes’ Rule

I To prove Bayes’ Rule (or Bayes’ Theorem), let’s begin with
the definition of conditional probability:

P(B | A) =
P(A ∩ B)

P(A)

I Let’s rearrange, multiplying both sides by P(A):

P(B | A)P(A) = P(A ∩ B)

I Ok, but what’s P(A ∩ B)? If we recall the definition of
conditional probability again, this time for P(A | B), we get:

P(A | B) =
P(A ∩ B)

P(B)
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Proof: Bayes’ Rule

I Now we can plug in our first expression for P(A ∩ B):

P(A | B) =
P(B | A)P(A)

P(B)

I And that’s Bayes’ rule!
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Example: Bayes’ Rule

Cancer Testing
Suppose that a certain rare cancer is present in 1 in every 10,000
people (0.0001). A test for the cancer exists, and the test correctly
classifies people with 99% accuracy. (That is, if you have the
cancer, the test comes up positive correctly 99% of the time, and if
you don’t have the cancer, the test will suggest you’re cancer-free
correctly 99% of the time). Suppose you get tested and it comes
up positive. What’s the probability that you actually have the
cancer?
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Example: Bayes’ Rule

I Let’s begin by defining some events:

I Let A = the event that you actually have the cancer
I Let B = the event that you test positive

I Now let’s plug these into Bayes’ Rule:

P(A | B) =
P(B | A)P(A)

P(B)

I In words, that’s:

P(Cancer | + test) =
P( + test | Cancer)P(Cancer)

P( + test)
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Example: Bayes’ Rule

I So let’s plug in what we know:

P(Cancer | + test) =
P( + test | Cancer)P(Cancer)

P( + test)

P(Cancer | + test) =
(0.99)(0.0001)

P( + test)

I Hmm, what do we do with this P( + test)? Do we have the
unconditional probability of testing positive? No. We know
the conditional probabilities of both testing positive when you
have cancer and testing negative when you don’t have cancer.
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Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what do we apply there? The LOTP! Here’s how it works:

I Let’s partition P(+ test) into all of the disjoint possibilities:

P(+ test) = P(+ test | Cancer)︸ ︷︷ ︸
We know this, it’s 0.99

P(Cancer)︸ ︷︷ ︸
0.0001

+

P(+ test | No Cancer)︸ ︷︷ ︸
This is a false positive, so 1 - 0.99

P(No Cancer)︸ ︷︷ ︸
(1−0.0001)=0.9999

I Plugging back into our Bayes’ rule equation, this becomes:

P(Cancer | + test) =
(0.99)(0.0001)

0.99 · 0.0001 + (1− 0.99) · 0.9999
= 0.0098

Mayya Komisarchik Gov 2000 Section 1: Introduction to Probability



Example: Bayes’ Rule

I So what’s the intuition here?

I We’re talking about an incredibly rare cancer. Even though
you’ve tested positive, your probability of having the disease is
still extremely low!
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Independence

Given two events, A and B:

I Definition: Two events are independent if the fact that one
occurs has no impact on the probability of the other occuring.
That is, if A and B are independent, knowing that A has
already occurred gives us no information about whether or not
B will occur - and vice-versa.

I Notation: A |= B
I If A |= B holds, it follows that:

P(A ∩ B) = P(A)P(B)

and further:

P(A | B) =
P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

I B gives us no information about A!
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