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A 1-slide summary of Bayesian inference

1 Beliefs about an unknown parameter θ:

Prior distribution: θ ∼ π

2 Update beliefs using Baye’s rule:

Posterior distribution: θ ∼ f (θ|D) =
f (D|θ)π(θ)

f (D)
=

f (D|θ)π(θ)∫
f (D|θ)π(θ)dθ

Boils down to calculating (or approximating) such posterior distribution

If π(θ) is a conjugate prior for f (D|θ), can find posterior analytically.

Otherwise, find approximation with simulation method: MCMC
(Markov Chain Monte Carlo).
(Importance weighting is another simulation method that allows to
get an estimate of posterior expectation of a function h(θ)).
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Conjugate priors

If the posterior distribution f (θ|D) is in the same family of distributions as
the prior distribution π(θ), the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior for the
likelihood function. In these cases, we can analytically derive the posterior
density f (θ|D).

For example:
Likelihood: D|θ ∼ N(θ,Σ)

Prior: θ ∼ N(µ,Ω)

⇒ Posterior: θ|D = d ∼ N(µ+ Ω(Σ + Ω)−1(d − µ),Ω− Ω(Ω + Σ)−1Ω)
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Conjugate priors

Exercise: Find the posterior distribution in the following cases:

1 Likelihood: X1, ...,Xn ∼ Be(θ), Prior:
θ ∼ Beta(α, β) = 1

B(α,β)θ
α−1(1− θ)β−1

2 Likelihood: X ∼ Bin(j , θ), Prior: θ ∼ Beta(α, β)

3 Likelihood: X1, ...,Xn ∼ P(Xi = j) = θj where Xi ∈ {1, 2, ..., k} and∑
j θj = 1, Prior:

θ ∼ Dir(α1, ..., αk) = const · θα1−1
1 · θα2−1

2 · ... · θαk−1
k

4 Likelihood: X1, ...,Xn ∼ exp(α) = αe−αXi , Prior:
α ∼ Γ(a, b) = const · αa−1 · e−bα

5 Likelihood: X1, ...,Xn ∼ Pareto(x , α) = α xα

xα+1 , Prior: α ∼ Γ(a, b)

For more cases, see Wikipedia page on Conjugate Prior.
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MCMC
Idea: simulation-based technique for generating draws from a target
density φ(θ).

In particular, for our Bayesian framework:

Target density: π(θ|D)︸ ︷︷ ︸
≡φ(θ)

=
1

f (D)︸ ︷︷ ︸
≡[

∫
φ̃(θ)dθ]−1>0

f (D|θ)π(θ)︸ ︷︷ ︸
≡φ̃(θ)

-It is difficult to compute f (D) numerically if dimension of θ is high, thus
difficult to compute φ(θ) numerically.

-Method allows us to just use only φ̃(θ) to make draws from φ(θ).

-How? Construct a Markov Chain on parameter space Θ, {θj}∞j=1 whose

stationary distribution is φ(θ). Starting from θ0, simulate a long Markov
Chain θ1, ..., θJ . After chain has reached it stationary distribution, any
further draws will be distributed according to φ(θ).
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MCMC
Makov Chain: a stochastic process that satisfies the Markov property:

{θj}∞j=1 where θj ∈ Θ

θj+1|(θj , θj−1, ...) ∼ θj+1|θj

Can be understood as a rule for (stochastically) stepping through elements
of Θ, where the next step is determined only by the current position:

θj : current position

ζ : proposal for next step drawn from a distribution ζ ∼ p(ζ|θj)
α(ζ|θj) : acceptance probability of the proposal

θj+1 : next step

So, if the chain is at θj , the next step will be:

θj+1 =

{
ζ with prob α(ζ|θj)
θj with prob 1− α(ζ|θj)
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MCMC

Such a Markov Chain of random draws θj converges to a stationary
distribution φ(θ) as j →∞ (under mild conditions). In other words, both
θj and θj+1 are distributed according to φ(θ) as j →∞ (this is why you
have a “burnt-in period”: you throw away the first k draws of your
simulated Markov Chain because you still haven’t reached convergence).

So, basically, need to find the acceptance probability α(ζ|θ) (given a
proposal density p(ζ|θ)) such that his holds.

Metropolis-Hastings is one possible algorithm that achieves this.
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MCMC: Metropolis-Hastings
Given φ(θ) and p(ζ|θ), suggested acceptance probability:

α(ζ|θj) = min

{
1,
φ(ζ)p(θj |ζ)

φ(θj)p(ζ|θj)

}
= min

{
1,
φ̃(ζ)p(θj |ζ)

φ̃(θj)p(ζ|θj)

}

Note 1: φ(ζ)
φ(θj )

= φ̃(ζ)

φ̃(θj )
, so only need to work with φ̃!

Note 2:

If φ̃(ζ)p(θj |ζ)

φ̃(θj )p(ζ|θj ) ≥ 1, α(ζ|θj) = 1 so always accept proposal.

If φ̃(ζ)p(θj |ζ)

φ̃(θj )p(ζ|θj ) < 1, 0 < α(ζ|θj) < 1 so accept with some probability.

Note 3: If p(θj |ζ) = p(ζ|θj) we are always accepting proposal if this leads
to an increase in the posterior density and we are sometimes accepting the
proposal if it leads to a decrease. This is not trying to maximize the
posterior density, but rather trying to stay within regions of values of θ for
which the posterior is high and sometimes visit those regions for which it is
low.
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MCMC: Metropolis-Hastings

In particular, for our Bayesian framework:

φ(θ) = f (θ|D) =
f (D|θ)π(θ)

f (D)

φ(ζ) = f (ζ|D) =
f (D|ζ)π(ζ)

f (D)

α(ζ|θj) = min

{
1,

f (ζ|D)p(θj |ζ)

f (θj |D)p(ζ|θj)

}
= min

{
1,

f (D|ζ)π(ζ)p(θj |ζ)

f (D|θj)π(θj)p(ζ|θj)

}
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MCMC: Metropolis-Hastings

Algorithm:

1 Pick θ0

2 For each j = 0, ..., J − 1
1 Draw ζ ∼ p(ζ|θj)
2 Draw u ∼ U[0, 1]

3 θj+1 =

{
ζ if u ≤ f (D|ζ)π(ζ)p(θj |ζ)

f (D|θj )π(θj )p(ζ|θj ) ≡ ρ
j (i.e., with prob ρj)

θj if u > f (D|ζ)π(ζ)p(θj |ζ)
f (D|θj )π(θj )p(ζ|θj ) ≡ ρ

j (i.e., with prob 1− ρj)
3 Drop the first k values of your chain and use the empirical distribution

of θk+1, ..., θJ as the estimate for the posterior distribution f (θ|D).

Note: If u ∼ U[0, 1]:

P(u ≤ ρj) = ρj if ρj ≤ 1

P(u ≤ ρj) = 1 if ρj > 1
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MCMC: Metropolis-Hastings

So the three ingredients that we need for the algorithm are: the likelihood,
the prior and the proposal density.

To complete our algorithm, need to pick the proposal density p(.|.). One
alternative is to pick a symmetric proposal, which implies:

p(ζ|θj) = p(θj |ζ)

For example, the Random Walk Metropolis-Hastings suggests a normal
density.

Note: p(ζ|θj) = p(θj |ζ) = p̃(ζ − θj) when p(.|.) is a multivariate normal
density.
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MCMC: Metropolis-Hastings

Exercise: Problem Set 7, Exercise 2 asked you to implement the Random
Walk Metropolis-Hastings algorithm.

Likelihood: f (D|θ) :

[
D1

D2

]
∼ N

([
θ1θ2

θ1/θ2

]
, I2×2

)
Prior: π(θ) :

[
θ1

θ2

]
∼ N(0, 10× I2×2)

Proposal: f (ζ|θ) :

[
ζ1

ζ2

]
|
[
θ1

θ2

]
∼ N

([
θ1

θ2

]
,

1

4
× I2×2

)
Remember the functional form for a multivariate normal density, where z
and γ are k × 1:

f (z |γ) = (2π)−
k
2 det(Σ)−

1
2 e−

1
2

(z−γ)′Σ(z−γ)
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MCMC: Metropolis-Hastings
Algorithm:

1 Pick θ0

2 For each j = 0, ..., J − 1
1 Draw ζ ∼ p(ζ|θj)
2 Draw u ∼ U[0, 1]

3 θj+1 =

{
ζ if u ≤ f (D|ζ)π(ζ)

f (D|θj )π(θj )

θj if u > f (D|ζ)π(ζ)
f (D|θj )π(θj )

f (D|θ) =
1

2π
e
− 1

2

D1

D2

−
 θ1θ2

θ1/θ2

′D1

D2

−
 θ1θ2

θ1/θ2



f (D|ζ) =
1

2π
e
− 1

2

D1

D2

−
 ζ1ζ2

ζ1/ζ2

′D1

D2

−
 ζ1ζ2

ζ1/ζ2



π(θ) ∼ N(0, 10× I2×2) π(ζ) ∼ N(0, 10× I2×2)
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Importance weighting

A simpler simulation method that allows to simulate posterior expectation
(rather than overal posterior distribution):

Want to compute Ef (θ|D)[r(θ)|D] (posterior expectation of r(θ))

Can be expressed:
Ef (θ|D)[r(θ)|D] =

∫
r(θ)f (θ|D)dθ =

∫
r(θ) f (D|θ)π(θ)∫

f (D|θ)π(θ)dθ
dθ =

∫
r(θ)f (D|θ)π(θ)dθ∫
f (D|θ)π(θ)dθ

Method suggests a way of taking draws from numerator and from
denominator (separately). For a continuous posterior distribution,
propose a h(θ) that is a continuous density that’s everywhere positive:

Numerator:
∫ r(θ)f (D|θ)π(θ)

h(θ) h(θ)dθ = Eh(θ)

[
r(θ)f (D|θ)π(θ)

h(θ)

]
Denominator:

∫ f (D|θ)π(θ)
h(θ) h(θ)dθ = Eh(θ)

[
f (D|θ)π(θ)

h(θ)

]
You “re-weight” using 1

h(θ) .
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Importance weighting

Simulation: take an iid sample of draws from h(θ) and estimate
expectations with sample means:

Numerator: 1
J

∑J
j=1

[
r(θj )f (D|θj )π(θj )

h(θj )

]
Denominator: 1

J

∑J
j=1

[
f (D|θj )π(θj )

h(θj )

]
So take as consistent estimate of posterior expectation:

1
J

∑J
j=1

[
r(θj )f (D|θj )π(θj )

h(θj )

]
1
J

∑J
j=1

[
f (D|θj )π(θj )

h(θj )

]
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Importance weighting

While consistent estimates, computational performance very sensitive
to choice of h(θ). In particular, need many draws J to attain
convergence if h(θ) is very different from f (D|θ)π(θ):

I I will get many θj draws of values for which h(θ) has high density; these
are weighted low (since h(θj) large) and also f (D|θj)π(θj) is small.

I I will get few draws θj of values for which h(θ) has low density; these
are highly weighted (since h(θj) is small) and also f (D|θj)π(θj) is large.

So we get many small values and a few very large values of
f (D|θj )π(θj )

h(θj )
. High variance means I need more simulations to achieve

convergence to expectation. Numerical performance depends on
proposal h(θ).
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A few final comments

In MCMC, can sample within chain θk+1, ..., θJ to reduce serial
correlation.

Convergence quite sensitive to proposal h(θ) in importance weighting:
need many simulations if h(θ) very different from posterior density.

With MCMC, a “bad” proposal p(ζ|θj) can also lead to slow
convergence. Rule of thumb: tune it so that you’re not always
accepting or always rejecting. But! Pset exercise was an example in
which, because the posterior density was bimodal, you wanted a
proposal that would explore space by proposing extreme moves (high
variance); your rate of acceptance was “lower” than rule of thumb
but you achieved convergence and didn’t get stuck in one of the two
regions.
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Estimators based on posterior distribution
We found/simulated the posterior distribution, which summarizes
everything we know about θ after seeing the data. Now we can use
summary statistics of this posterior to derive estimators and do inference.

Mode of posterior distribution (“maximum a posteriori”)

θ̂ = argmax
γ

f (γ|D)

Note: argmax
γ

f (γ|D) = argmax
γ

f (D|γ)π(γ). If flat prior (π(θ) = 1) this

leads to the MLE. A non-flat prior will weight the different regions of the

parameter space (more intuitions to come in exercises of next section).

Mean of posterior distribution:

θ̂ = Ef (θ|D)[θ|D = d ]

Next section: we’ll discuss how the posterior mean can be shown to be the

Bayesian estimator based on quadratic square loss, i.e, the decision function

that is the best according to the Bayesian criteria in decision theory, and

how this relates to a variance-bias trade-off.
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Choosing the prior
We discussed in lecture criteria for choosing a prior: comes out naturally based on
specific context, subjective, consensus/knowledge, mathematical convenience
(conjugate priors), default rule (flat prior), use data to learn about it (Empirical
and Hierarchical Bayes).

Empirical Bayes: goes one step further and estimates the prior using data;
specifically, assume model for prior (π(.|γ)) and estimate the
“hyperparameter” (γ) by maximizing marginal likelihood (f (D|γ)) (aka, do
MLE). Then, compute the posterior distribution and, for example, its
mean,c by plugging-in this estimated hyperparameter into the prior.

θ ∼ π(.|γ)

f (D|γ) =

∫
f (D|θ)π(θ|γ)dθ

γ̂ = argmax
γ

f (D|γ)

f (θ|D) =
f (D|θ)π(θ|γ̂)∫
f (D|θ)π(θ|γ̂)dθ

θ̂EB = Ef (θ|D;γ̂)[θ|D = d ] =

∫
θ

f (D|θ)π(θ|γ̂)∫
f (D|θ)π(θ|γ̂)dθ

dθ
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Choosing the prior

Hierarchical Bayes: goes one step further and imposes a prior on the
hyperparameter (called a “hyperprior”); then compute the posterior
density of θ and hyperparameter γ as usual.

θ ∼ π(.|γ)

γ ∼ π̃

f (θ, γ|D) =
f (D|γ)π(θ|γ)π̃(γ)∫ ∫
f (D|γ)π(θ|γ)π̃(γ)dθdγ
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