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Bayesian v Frequentist
Frequentist:

Assumes data is sampled from some “true” distribution F0 = F (., θ0), where
θ0 is the “true” parameter and is fixed.

Data is random so every estimator has a sampling distribution; there’s a
notion of “repeated experiments”, i.e, if we could repeat the experiment
of drawing a sample of a given size N from the population distribution under
the “true” parameter...

I ...what are the properties of the estimator? Bias (is it correct on
average over infinite repeated samples?), variance. Estimators judged
based on whether they work well across many repetitions.

I ...what can we say about the “true” parameter? Confidence set: if the
“true” parameter where θ0, then this value would be covered by the set
95% of the time over infinite repeated samples.

Confidence sets: statements about the probability of observing the data that
we observe if θ0 adopted a certain value and one could repeat the
experiment of drawing data from model. Conclusions that are valid 95% of
the time in repeated experiments where new data is drawn from the true
distribution given the fixed θ0.
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Bayesian v Frequentist

Bayesian:

Has beliefs (a prior) about the unknown parameter θ before we
collect/see the data. Then data updates beliefs. Posterior distribution
summarizes everything we know about θ after seeing the data.

Conditions on data, doesn’t ask what would’ve happened under
repeated experiements but rather what is the one thing that did
happen. Given this one sample draw and my prior beliefs...

I ...what is the updated belief on the distribution of θ? Posterior density.
Summarize with: posterior mean, posterior credible sets, etc.

Posterior credible sets: statements about the posterior probability of θ
adopting a certain value, given the observed data (and the model,
and the prior).
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Posterior credible sets v Confidence sets
Bayesian 1− α posterior credible interval (CR): an interval with posterior
probability equal to 1− α:

Pf (θ|D)(θ ∈ CR(D)) = 1− α

In particular, an equal-tailed set considers the α
2 and 1− α

2 posterior quantiles
to build this interval.

How does it compare to a frequentist 1− α confidence set (CS)? Remember
this has coverage at least 1− α for all possible “true” θ0, i.e.:

inf
θ0

Pf (D|θ0)(θ0 ∈ CS(D)) = 1− α

- Small samples: credible sets don’t in general have correct coverage from
frequentist perspective:

Pf (D|θ0)(θ0 ∈ CR(D)) < 1− α

- Large samples: as N →∞ (+correct model specification, regularity conditions)

theorems (Berstein-von Mises, Cherenozhukov and Hong) imply that credible sets

have a frequentist interpretation, aka they are the confidence sets that a

frequentist would build based on asymptotic normality.
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Posterior credible sets v Confidence sets
Exercise: Pset 7, Exercise 1 asked you to derive a 95% confidence interval
and a 95% credible interval in a specific example and show that the
coverage of the first is at least 95% while the second has coverage 0.

Some technical hints to remember:

X ∼ N(µ, σ2) ⇒ f (x) =
1

σ
φ

(
x − µ
σ

)
If Z = X but restricted to interval [a, b]:

f (z) = 1{z ∈ [a, b]}
φ
( z−µ

σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
F (z) =

Φ
( z−µ

σ

)
− Φ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
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Posterior credible sets v Confidence sets
You observe a single data point D ∼ N(θ, 1) and want to estimate θ using
maximum likelihood. In particular, you are given the additional info that θ
is non-negative.

Likelihood: f (d |θ) = φ (d − θ) =
1√
2π

e−
1
2

(d−θ)2

“Unrestricted” MLE estimator and confidence set:

θ̂U = argmax
θ
− (D − θ)2

θ̂U = D

CSU = [θ̂U − 1.96, θ̂U + 1.96] = [D − 1.96,D + 1.96]

Coverage:

Pθ0(θ0 ∈ CSU) = Pθ0(−1.96 ≤ θ̂U − θ0 ≤ 1.96) = 0.95 ∀θ0

⇒ inf
θ0

Pθ0(θ0 ∈ CSU) = 0.95
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Posterior credible sets v Confidence sets

“Restricted” MLE estimator and confidence set (imposes θ ≥ 0):

θ̂R = argmax
θ
− (D − θ)2

s.t. θ ≥ 0

θ̂R = max{D, 0}

CSR = [θ̂R−1.96, θ̂R + 1.96]∩R+ =

{
CSU ∩ R+ if D ≥ 0

[−1.96, 1.96] ∩ R+ if D < 0

Coverage:
inf
θ0∈R+

Pθ0(θ0 ∈ CSR) ≥ 0.95

To prove this, need to show θ0 ∈ CSU ∩R+ ⇒ θ0 ∈ CSR because this
implies 0.95 = inf

θ0∈R+

Pθ0(θ0 ∈ CSU) ≤ inf
θ0∈R+

Pθ0(θ0 ∈ CSR)
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Posterior credible sets v Confidence sets

Bayesian estimator considered is the posterior mean. The prior
incorporates the knowledge of θ being non-negative but otherwise is
flat.

Prior: π(θ) = 1{θ ∈ R+}

Find the posterior:

f (θ|d) =
f (d |θ)π(θ)∫
f (d |θ)π(θ)dθ

=
φ (d − θ) 1{θ ∈ R+}∫
φ (d − θ) 1{θ ∈ R+}dθ

= 1{θ ∈ R+}
φ (d − θ)∫

R+
φ (d − θ) dθ

= 1{θ ∈ R+}
φ (θ − d)∫

R+
φ (θ − d) dθ

= 1{θ ∈ R+}
φ (θ − d)

1− Φ(−d)

This is a truncated normal density for θ ∼ N(d , 1) and the restriction
θ ∈ R+!
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Posterior credible sets v Confidence sets

Credible set:
CR = [θ.025, θ.975]

Pf (θ|d)(θ ≤ θ.025) =
Φ(θ.025 − d)− Φ(−d)

1− Φ(−d)
= 0.025

Pf (θ|d)(θ ≤ θ.975) =
Φ(θ.975 − d)− Φ(−d)

1− Φ(−d)
= 0.975

⇒ CR =
[d +Φ−1(0.025(1−Φ(−d)+Φ(−d)), d +Φ−1(0.975(1−Φ(−d)+Φ(−d))]

Coverage:
inf
θ0∈R+

Pθ0(θ0 ∈ CR) = 0

To see this, take one value in the set R+, namely 0. Because 0 < θ.025 in
the posterior distribution, it is not included in CR. So P0(0 ∈ CR) = 0.
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Shrinkage and penalized estimators
Frequentist methods for high-dim models often rely on shrinkage or
penalization, which is similar to imposing prior. Examples:

James-Stein estimator
Remember exercise 4) when we were discussing risk functions? You
observe D = (D1, ...,Dk) and want to estimate θ = (θ1, ..., θk):

Likelihood: Di ∼ N(θi , 1)

θ̂JS =

(
1− k − 2∑k

i=1 D
2
i

)
D

This shrinkage estimator can be derived as a (sort of) Empirical Bayes
estimator. In particular, considers the posterior mean derived from this
likelihood + a normal prior, and estimates hyperparameters of prior using
data.

Prior: θi ∼ N(0,Ω)
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Shrinkage and penalized estimators
Posterior mean:

E [µ|D] = Ω(1 + Ω)−1D =
Ω

1 + Ω
D =

(
1− 1

Ω + 1

)
D

(Note: the MLE estimator is θ̂ = D. So Ω
1+Ω is shrinking the MLE

estimator toward 0.)
Final step is to estimate Ω using the data D. In particular, note that:

Marginal: D ∼ N(0, (Ω + 1)Ik)

||D||2 =
k∑

i=1

D2
i ∼ (Ω + 1)χ2

k

So an unbiased estimator of Ω
1+Ω is k−2∑k

i=1 D
2
i

⇒ we arrive at the

James-Stein estimator!
(PS: the Empirical Bayes estimator would estimate Ω by maximizing the
marginal likelihood f (D|Ω))
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Shrinkage and penalized estimators

Ridge regression Pset 10, Exercise 2 asked you to work through two
types of penalized estimators (ridge and lasso). In particular, ridge
regression solves:

β̂ = argmin
β

(Y − Xβ)′(Y − Xβ) + λβ′β

β̂ = argmin
β

∑
i

(Yi − Xiβ)2 + λ

k∑
j=1

β2
j

Where λ
∑k

j=1 β
2
j imposes a “penalty” for choosing a β that is too large.
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Shrinkage and penalized estimators

The exercise asked you to find the estimator (solve the min problem) and
find the bias and variance of the estimator. For simplicity, it told you to
work with the assumption that X ′X is diagonal. The more general solution
yields:

β̂ = argmin
β

Y ′Y − 2Y ′Xβ + β′X ′Xβ + λβ′β

FOC:
−X ′Y + X ′Xβ + λβ̂ = 0⇒ β̂ = [X ′X + λ · I ]−1X ′Y

Note that λ · I is shrinking the OLS β̂ closer to 0. The higher the penalty
parameter λ, the more it shrinks.
This estimator can be derived even when there is multicollinearity, for
example due to the fact that k > N (while OLS can’t).
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Shrinkage and penalized estimators
The ridge regression estimator can be derived as a Bayesian estimator in
the following context:

Y = Xβ + ε ; ε|X ∼ N(0, σ2 · I )

Likelihood: Y |Xβ ∼ N(Xβ, σ2 · I )

Prior: β|X ∼ N(0, γ2 · I )

Posterior mean:

E [β|Y ,X ] =

(
X ′X +

σ2

γ2
· I
)−1

X ′Y

So the term σ2

γ2 · I is shrinking the OLS estimator closer to 0 (but less so

the higher the variance of the prior). If we take λ = σ2

γ2 , then this is the
ridge regression estimator and the penalty parameter can be motivated as
the ratio of the variance of the likelihood over the prior (the lower the
variance of the prior, the more you penalize in order to remain close to 0).
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Bayesian v Frequentist

So we’ve seen examples where the Bayesian estimator (e.g., the posterior
mean) shrinks the MLE toward 0 (could be some other a priori value). An
Empirical/Hierarchical Bayes estimator, moreover, would go one step
further to learn from the data how much shrinkage is needed.

Frequentist penalized/shrinkage estimators do the same (examples: JS,
ridge regression). In fact, we’ve seen how these estimators can be derived
as Bayesian estimators.

In conclusion, one can find links between the Bayesian and Frequentist
approaches: consistency of posterior mean and the frequentist MLE,
posterior credible sets and frequentist confidence sets, Bayesian estimators
and frequentist shrinkage/penalized estimators, etc.
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