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Identification meets inference/estimation...
...or ECON2140 meets ECON2120 :)

Model

Identifying assumptions ⇓ ⇑ (1) Identification

Population distribution of observable variables

Sampling ⇓ ⇑ (2) Estimation, Inference

Observations

We’ll assume n iid obervations D = (D1, ...,Dn). We observe D and want
to infer/estimate F or features of F .
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Identification meets inference/estimation...
...or ECON2140 meets ECON2120 :)
So how does one go about estimating the identified objects from the
models we’ve seen?
⇒ Most require estimating some conditional expectation.

Nonparametric estimation:
I Plug-in principle estimation:

F the sample analog of an expectation is a mean
F great if Xi discrete and not many support points:

Ê [Yi |Xi = x ] =
1
n

∑
Yi1{Xi = x}

1
n

∑
1{Xi = x}

F but issues when Xi has many support points relative to n or is
continuous

I Other nonparametric estimators:
F basically, the plug-in estimation version for continuous variables
F coming to theaters soon...
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Identification meets inference/estimation...
...or ECON2140 meets ECON2120 :)

Parametric estimation:
I extremum estimators

F m-estimation. E.g.: MLE, OLS, NLS
F GMM. E.g.: OLS, IV (2SLS)
⇒ Efficient GMM E.g.: OLS, IV (2SLS) if homoskedasticity
⇒ Two-step GMM estimators

F Minimum distance. E.g.: IV

We’ll look at properties of these estimators:

Consistency

Asymptotic distribution ⇒ particularly interested in the s.e.
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Notation convention I use for derivatives:

β︸︷︷︸
k×1

=

β1
...
βk

 ; m(β)︸ ︷︷ ︸
1×1

; g(β)︸︷︷︸
L×1

=

g1(β)
...

gL(β)


Then:

∂m(β)

∂β︸ ︷︷ ︸
k×1

=


∂m
∂β1

...
∂m
∂βk

 ;
∂2m(β)

∂β∂β′︸ ︷︷ ︸
k×k

=


∂2m

∂β1∂β1
. . . ∂2m

∂β1∂βk
...

. . .
...

∂2m
∂βk∂β1

. . . ∂2m
∂βk∂βk

 ;
∂g(β)

∂β︸ ︷︷ ︸
L×k

=


∂g1
∂β1

. . . ∂g1
∂βk

...
. . .

...
∂gL
∂β1

. . . ∂gL
∂βk


These are the gradient, Hessien, Jacobian, respectively.
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Extremum estimators: a summary

Identified object we wish to estimate (estimand):

β0 = argmin
β

Q(β)

Estimator:
β̂ = argmin

β
Q̂n(β)

Properties:

Consistency: β̂
p→ β0 as n→∞

Assymptotic normality:
√
n(β̂ − β0)

d→ N(0,V )

(Reference: Newey & McFadden (1994) chapter in Handbook of
Econometrics)
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Extremum estimators: a summary

Extremum Consistency Theorem:

If there is a function Q(β) and a vector β0 ∈ B such that:

1 Q(β) is uniquely minimized at β0

2 B is compact

3 Q(β) is continuous

4 Q̂n(β) converges uniformly in probability to Q(β):

supβ|Q̂n(β)− Q(β)| p→ 0

Then, β̂
p→ β0.
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Extremum estimators: a summary

Uniform convergence in probability is a key condition. It says that for each
ε > 0, the entire function Q̂n(β) is inside the sleeve |Q(β)− ε,Q(β) + ε|
with probability approaching 1.

Lemma:

Let Q̂n(β) = 1
n

∑
m(Di , β) and Q(β) = E [m(Di , β)].

If:

1 Di are iid

2 B is compact

3 m(d , β) is continuous at each β with prob one

4 ∃ M(d) such that |m(d , β)| ≤ M(d) for all β and E [M(Di )] <∞

Then Q(β) is continous and Q̂n(β) satisfies uniform convergence.
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Extremum estimators: a summary
Asymptotic Normality Theorem:

If β̂
p→ β0:

1 β0 is in the interior of B
2 Q̂n(β) is twice constinuously differentiable in a neighborhood N if θ0

3
√
n ∂
∂β Q̂n(β0)

d→ N(0,Ω)

4 ∂2

∂β∂β′ Q̂n(β) converges uniformly in probability to ∂2

∂β∂β′Q(β), which is
continuous at β0:

supβ∈N

∣∣∣∣ ∂2

∂β∂β′
Q̂n(β)− ∂2

∂β∂β′
Q(β)

∣∣∣∣ p→ 0

5 ∂2

∂β∂β′Q(β0) is invertible

√
n(β̂ − β0)

d→ N

(
0,

[
∂2

∂β∂β′
Q(β0)

]−1

Ω

[
∂2

∂β∂β′
Q(β0)

]−1
)
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Extremum estimators: m-estimation

β0 = argmin
β

E [m(Di , β)]

FOC:
∂

∂β
E [m(Di , β0)] = E

[
∂

∂β
m(Di , β0)

]
= 0

Estimator:

β̂m = argmin
β

1

n

∑
m(Di , β)

√
n(β̂−β0)

d→ N

(
0,

[
∂2

∂β∂β′
E [m(Di , β0)]

]−1

Ω

[
∂2

∂β∂β′
E [m(Di , β0)]

]−1
)

Giselle Montamat Extremum Estimators 10 / 37



Extremum estimators: m-estimation

Key observations from where to derive this:

∂
∂β

(
1
n

∑
m(Di , β̂)

)
= ∂

∂β

(
1
n

∑
m(Di , β0)

)
+ ∂2

∂β∂β′
(

1
n

∑
m(Di , β

∗)
)

(β̂ − β0) = 0

√
n ∂
∂β

(
1
n

∑
m(Di , β0)

)
= 1√

n

∑(
∂
∂β

m(Di , β0)
)

d→ N

E

[
∂

∂β
m(Di , β0)

]
︸ ︷︷ ︸

=0

,Ω


Where, with iid data:

Ω = Var

(
∂

∂β
m(Di , β0)

)
=

E


 ∂

∂β
m(Di , β0)− E

[
∂

∂β
m(Di , β0)

]
︸ ︷︷ ︸

=0


 ∂

∂β
m(Di , β0)− E

[
∂

∂β
m(Di , β0)

]
︸ ︷︷ ︸

=0


′
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Example: NLS
Di = (Yi ,Xi ) has CEF: E [Yi |Xi ]
Remember Problem Set 4, Exercise 2:

E [(Yi − h(Xi , θ))2] = E [(Yi − E [Yi |Xi ])
2] + E [(E [Yi |Xi ]− h(Xi , θ))2]

Our model (family of conditional expectations): h(x , θ)

If our model is well specified, there exists a θ0 such that
E [Yi |Xi ] = h(Xi , θ0), so:

θ0 = argmin
θ
E [(Yi − h(Xi , θ))2]

θ0 is the unique minimum (and thus θ0 is identified) if
P(h(Xi , θ) 6= h(Xi , θ0)) > 0 (⇔ P(h(Xi , θ) = h(Xi , θ0)) < 1) ∀θ 6= θ0.
(And, on the contrary, there is no unique min if there are two distinct
values θ0 and θ′0 for which P(h(Xi , θ

′
0) = h(Xi , θ0)) = 1)

θ̂NLS = argmin
θ

1

n

∑
(Yi − h(Xi , θ))2
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Example: NLS

If our model is miss-specified, there is no θ0 such that E [Yi |Xi ] = h(Xi , θ0)
(we’re looking at the wrong parametric family of CEFs), so:

θ∗0 = argmin
θ
E [(Yi − h(Xi , θ))2] = argmin

θ
E [(E [Yi |Xi ]− h(Xi , θ))2]

Then θ̂NLS is estimating the θ∗0 for which h(Xi , θ
∗
0), which is within our

family of CEFs, is the best approximation to the true conditional
expectation E [Yi |Xi ] (“best” in the sense that it minimizes the mean
squared error).
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Example: NLS
Exercise: Problem Set 4, Exercise 2 walked you through an example of an
extremum estimator and asked you to prove consistency.

Model:
Yi = T ′i β0 + εi ; Ti ⊥ εi ; εi ∼ N(0, σ2

0)

Di = (Ti ,Y
∗
i ) ; Y ∗i = min{Yi , c}

Find what the CEF is:

E [Y ∗i |Ti ] = Φ

(
c − T ′i β0

σ0

)T ′i β0 −
φ
(

c−T ′
i β0

σ0

)
Φ
(

c−T ′
i β0

σ0

)σ0

+

[
1− Φ

(
c − T ′i β0

σ0

)]
c

Notice that it is a function of β0: E [Y ∗i |Ti ] ≡ h(Ti , β0).

Determine that OLS of Y ∗i on Ti converges to the BLP of Y ∗i given
Ti , but this doesn’t identify β0:

β̂OLS
p→ E [TiT

′
i ]−1E [TiY

∗
i ] ≡ β̃

β̃ 6= β0 = E [TiT
′
i ]−1E [TiYi ]

Giselle Montamat Extremum Estimators 14 / 37



Example: NLS
Recall the properties of a CEF:

E [f (Ti )(Y ∗i − E [Y ∗i |Ti ])] = 0⇒ E [f (Ti )(Y ∗i − h(Ti , β0))] = 0

For any function f (.). This result helps establish that β0 minimizes
the objective function set up in the following step.
Establish an objective function that is uniquely minimized at β0 (and
prove this):

β0 = argmin
β

E [(Y ∗i − h(Ti , β))2]

The associated NLS estimator is:

β̂NLS = argmin
β

1

n

∑
(Y ∗i − h(Ti , β))2

Show that β̂NLS
p→ β0. Based on the Extremum Consistency

Theorem, need to check that conditions 1-4 are satisfied. The tricky
one is to show 4. Since our case corresponds to the type
Q̂n(β) = 1

n

∑
m(Di , β) and Q(β) = E [m(Di , β)], where

m(Di , β) ≡ m(Ti ,Y
∗
i , β) ≡ Y ∗i − h(Ti , β), we can use Lemma.
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Extremum estimators: GMM

We know/assume that β0 is identified by moment conditions: E [g(Di , β0)] = 0.

β0 = argmin
β

E [g(Di , β)]′ W E [g(Di , β)]

FOC:

E

[
∂g(Di , β)

∂β′

]′
︸ ︷︷ ︸

k×L

W︸︷︷︸
L×L

E [g(Di , β)]︸ ︷︷ ︸
L×1

= 0

Estimator:

β̂GMM = argmin
β

[
1

n

∑
g(Di , β)

]′
Ŵ

[
1

n

∑
g(Di , β)

]
FOC: [

1

n

∑ ∂g(Di , β̂GMM)

∂β′

]′
︸ ︷︷ ︸

k×L

Ŵ︸︷︷︸
L×L

[
1

n

∑
g(Di , β̂GMM)

]
︸ ︷︷ ︸

L×1

= 0

Note 1: linear GMM estimators are available in closed form, eg, OLS and 2SLS.

Note 2: if system is just-identified, choice of Ŵ is inconsequential.
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Extremum estimators: GMM

√
n
(
β̂GMM − β0

)
p→ N

(
0, (G ′WG )−1G ′WΩWG (G ′WG )−1

)
G ≡ E

[
∂g(Di , β0)

∂β′

]′
Ω ≡ E [g(Di , β0)g(Di , β0)′]

Efficient GMM: considers W = Ω−1

√
n
(
β̂GMM − β0

)
p→ N

(
0, (G ′Ω−1G )−1

)
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Extremum estimators: GMM

Notice that efficient β̂GMM requires one to have a consistent estimate Ŵ
of W = Ω−1, where Ω ≡ E [g(Di , β0)g(Di , β0)′]. But note that Ω depends
on β0! So we need a consistent estimator of β0 to get a consistent
esttimator for W , to get the efficient GMM esimtator...

Efficient GMM estimator derived in two steps:

1 Obtain an initial consistent estimator β̂1
GMM of β0 using some known

positive definite Ŵ (eg, I ). Use β̂1
GMM to obtain a consistent

estimate of Ω:

Ω̂ =
1

n

∑
g(Di , β̂

1
GMM)g(Di , β̂

1
GMM)′

2 Obtain the efficient GMM estimator β̂2
GMM using Ω̂ from previous

step.
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Extremum estimators: minimum distance

βMD = argmin
β

r(δ0, β)′ W r(δ0, β)′

Say that we have a consistent estimator for δ0 and W : δ̂ and Ŵ .

β̂MD = argmin
β

r(δ̂, β)′ Ŵ r(δ̂, β)′

An example is moment-matching, in which δ0 = E [Z ], where functional
form of expectation is given by a model E [Z ] = h(β0).
So define r(δ0, β) = δ0 − h(β0) and use a consistent estimator of δ0, which
leads to:

β̂MD = argmin
β

(δ̂ − h(β)) Ŵ (δ̂ − h(β))′
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Example: 2SLS

Exercise: Problem Set 3, Exercise 2 asks you to show that the IV estimator
is an example of a GMM estimator and a minimum distance estimator.

Zi is L× 1 and Ti is k × 1

2SLS (IV) estimand from where we derive the 2SLS (IV) estimator is:

β2SLS =
(
E [TiZ

′
i ]E [ZiZ

′
i ]
−1E [ZiT

′
i ]
)−1

E [TiZ
′
i ]E [ZiZ

′
i ]
−1E [ZiYi ]
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Example: 2SLS
Can be seen as a special case of GMM:
Moment condition: E [Ziui ] = 0 where Yi = T ′i β0 + ui

β2SLS = argmin
β

1×L︷ ︸︸ ︷
E [Zi (Yi − T ′i β)]′︸ ︷︷ ︸

E [g(Di ,β)]′

L×L︷ ︸︸ ︷
E [ZiZ

′
i ]−1︸ ︷︷ ︸

W

L×1︷ ︸︸ ︷
E [Zi (Yi − T ′i β)]︸ ︷︷ ︸

E [g(Di ,β)]

FOC:
k×L︷ ︸︸ ︷

E [TiZ
′
i ]︸ ︷︷ ︸

E
[
∂g(Di ,β)
∂β

]′
−1

E [ZiZ
′
i ]︸ ︷︷ ︸

W

L×1︷ ︸︸ ︷
E [Zi (Yi − T ′i β2SLS)]︸ ︷︷ ︸

E [g(Di ,β)]

= 0

From this FOC, it is clear that we get the formula for β2SLS from previous slide.

Remember GMM objective function:

βGMM = argmin
β

E [g(Di , β)]′ W E [g(Di , β)]

FOC:

E

[
∂g(Di , βGMM)

∂β

]′
WE [g(Di , βGMM)] = 0
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Example: 2SLS

So 2SLS is the GMM estimator that considers weight matrix
W = E [ZiZ

′
i ]
−1.

√
n
(
β̂2SLS − β0

)
p→ N

(
0, (G ′WG )−1G ′WΩWG (G ′WG )−1

)
G ≡ E

[
TiZ

′
i

]
Ω ≡ E [Ziuiu

′
iZ
′
i ] = E [u2

i ZiZ
′
i ]

W = E [ZiZ
′
i ]
−1

We can further distinguish two cases: if the error is homoskedastic (in
which case 2SLS is the GMM estimator with smaller variance) and if isn’t.
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Example: 2SLS

1) Error is homoskedastic: E [u2
i |Zi ] = σ2

Ω = E [E [u2
i ZiZ

′
i |Zi ]] = σ2E [ZiZ

′
i ]

Efficient GMM takes W = σ2Ω−1 = E [ZiZ
′
i ]
−1

(or W = Ω−1 = (σ2E [ZiZ
′
i ])
−1 since multiplying by a constant is

inoquous).

This is exactly what 2SLS does! So 2SLS is the efficient GMM estimator
under homoskedasticity and the variance simplifies:

√
n
(
β̂2SLS − β0

)
p→ N

(
0, (G ′Ω−1G )−1

)
G = E [TiZ

′
i ]

Ω = σ2E [ZiZ
′
i ]
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Example: 2SLS

1) Error is not homoskedastic:

Ω = E [u2
i ZiZ

′
i ]

Efficient GMM takes W = Ω−1 where now Ω is NOT σ2E [ZiZ
′
i ].

So 2SLS in NOT the efficient GMM estimator under heteroskedasticity.
The big chunky formula for the variance can’t be simplified:

√
n
(
β̂2SLS − β0

)
p→ N

(
0, (G ′WG )−1G ′WΩWG (G ′WG )−1

)
G ≡ E

[
TiZ

′
i

]
Ω ≡ E [u2

i ZiZ
′
i ]

W = E [ZiZ
′
i ]
−1
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Example: 2SLS

Even under heteroskedasticity, many prefer to use 2SLS, which is NOT the
efficient GMM. If we wanted an efficient GMM estimator, remember the
two steps:

1 Obtain a consistent estimator β̂ of β0 using some known positive

definite Ŵ . For example, could choose Ŵ =
(

1
n

∑
ZiZ

′
i

)−1
, which

gives the 2SLS estimator.
Obtain the residuals ûi = Yi − X ′i β̂. A consistent estimate of Ω is:

Ω̂ =

(
1

n

∑
û2
i ZiZ

′
i

)−1

2 Obtain the efficient GMM estimator using Ŵ = Ω̂−1.
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Example: 2SLS

Can be seen as a special case of minimum distance:

β2SLS = argmin
β

(δRF − δFSβ)′︸ ︷︷ ︸
r(δ0,β)′

E [ZiZ
′
i ]︸ ︷︷ ︸

W

(δRF − δFSβ)︸ ︷︷ ︸
r(δ0,β)

Where:
δRF = E [ZiZ

′
i ]−1E [ZiYi ]

δFS = E [ZiZ
′
i ]−1E [ZiT

′
i ]

Note: δRF − δFSβ is like “effect of Z on Y ” - “effect of Z on T” × “effect of T
on Y ”. β is the minimizer of this triangulation.

Remember minimum distance objective function:

βMD = argmin
β

r(δ0, β)′ W r(δ0, β)′
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Example: 2SLS

Not super obvious that solving this min problem leads to the β2SLS formula:

δRF − δFSβ = E [ZiZ
′
i ]−1E [ZiYi ]− E [ZiZ

′
i ]−1E [ZiT

′
i ]β

= E [ZiZ
′
i ]−1(E [ZiYi ]− E [ZiT

′
i ]β)

= E [ZiZ
′
i ]−1E [Zi (Yi − T ′i β)]

So:
β2SLS = argmin

β
(δRF − δFSβ)′︸ ︷︷ ︸

r(δ0,β)′

E [ZiZ
′
i ]︸ ︷︷ ︸

W

(δRF − δFSβ)︸ ︷︷ ︸
r(δ0,β)

β2SLS = argmin
β

E [Zi (Yi − T ′i β)]′E [ZiZ
′
i ]−1E [ZiZ

′
i ]E [ZiZ

′
i ]−1E [Zi (Yi − T ′i β)]

β2SLS = argmin
β

E [Zi (Yi − T ′i β)]′E [ZiZ
′
i ]−1E [Zi (Yi − T ′i β)]
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m-estimation v GMM
Exercise: Problem Set 3, Exercise 2 also asks you to think in which cases can an
m-estimator be seen as a GMM estimator.

Remember m-estimator objective function:

βm = argmin
β

E [m(Di , β)]

FOC:
∂E [m(Di , β)]

∂β
= 0

Assuming we can interchange derivation and integration (expectation):

E

[
∂m(Di , β)

∂β

]
= 0

From this moment conditions, we can define a GMM objective function and
derive a GMM estimator.
But! These are moment conditions that hold at βm (the global min of the

minimization problem) but potentially also at local mins or saddle points. If there
are local min or saddle points, then the FOC will be picking those up and thus
the βGMM can deliver different answers than m-estimation.
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A disgression on: quantile regressions

τ -quantile of the distribution of Yi :

yτ ≡ inf {y : P(Yi ≤ y) ≥ τ} = F−1(τ)

Moment condition that quantile yτ satisfies:

τ = F (yτ )

τ − F (yτ ) = 0

τ − P(Yi ≤ yτ ) = 0

τ − E [1{Yi − yτ ≤ 0}] = 0

E [τ − 1{Yi − yτ ≤ 0}] = 0
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A disgression on: quantile regressions

The following function (written in three different ways)...

ρτ (u) = (τ − 1{u ≤ 0})u

=

{
(1− τ)|u| if u ≤ 0

τ |u| if u > 0

= τmax{u, 0}+ (1− τ)min{u, 0}

...has derivative:
∂ρτ (u)

∂u
= τ − 1{u ≤ 0}

So we can write the moment condition as:

E

[
∂ρτ (Yi − yτ )

∂yτ

]
= −E [τ − 1{Yi − yτ ≤ 0}] = 0
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A disgression on: quantile regressions
Based on this moment condition, M-estimation problem:

yτ = argmin
yτ

E [ρτ (Yi − yτ )]

FOC :
∂

∂yτ
E [ρτ (Yi − yτ )] = E

[
∂ρτ (Yi − yτ )

∂yτ

]
= 0

That is:

yτ = argmin
yτ

E [(τ − 1{(Yi − yτ ) ≤ 0})(Yi − yτ )]

FOC : E [τ − 1{Yi − yτ ≤ 0}] = 0

Note: remember how we concluded that under loss
L(δ(X ), θ) = (τ − 1{θ − δ(X ) ≤ 0})(θ − δ(X )), the solution to
min
δ(X )

Ef (θ|X )[L(δ(X ), θ)] is the posterior τ quantile of θ, ie, δ(X ) = θτ?
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Conditional quantile regressions and quantile IV

Suppose that, conditional on Xi , the τ quantile of Yi is linear:

yτ = X ′i βτ

βτ = argmin
βτ

E [ρτ (Yi − X ′i βτ )]

= argmin
βτ

E [(τ − 1(Yi − X ′i βτ ≤ 0))(Yi − X ′i βτ )]

FOC:
E [τ − 1(Yi − X ′i βτ ≤ 0)Xi ] = 0
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Conditional quantitle rgeressions and quantile IV

Conditional quantile regression estimator (Koenker and Bassett 1978):

β̂τ = argmin
b

1

N

∑
i

(τ − 1(Yi − X ′i b ≤ 0))(Yi − X ′i b)

Note: need numerical method to solve that is not gradient-based.

Extend the framework of linear IV to quantile IV (Chernozhukov and
Hansen 2004, 2005):

Linear IV: goes from moment condition E [(Yi − X ′i β)Xi ] = 0 to
E [(Yi − X ′i β)Zi ] = 0

Quantile IV: goes from moment condition
E [τ − 1(Yi − X ′i βτ ≤ 0)Xi ] = 0 to E [τ − 1(Yi − X ′i βτ ≤ 0)Zi ] = 0
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