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Instrumental Variables (without additional covariates)
Model:

Yi = β0 + β1Ti ,1 + ui

WLOG (since we include a constant) E [ui ] = 0
But! E [Ti ,1ui ] 6= 0 (so Cov(Ti ,1, ui ) 6= 0)

β1 is not identified by BLP of Yi on a constant and Ti ,1 (i.e.,

β1 6=
Cov(Yi ,Ti,1)
Var(Ti,1)

). We need something more...an instrument Zi ,1. It is a

variable that satisfies:

(Relevance) Cov(Ti ,1,Zi ,1) 6= 0
(Exclusion) E [Zi ,1ui ] = 0 (so Cov(Zi ,1, ui ) = 0)

Then β1 is identified by the following “IV object” (Exercise: show!):

β1 =
Cov(Yi ,Zi ,1)

Cov(Ti ,1,Zi ,1)
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Instrumental Variables (without additional covariates)

More generally:
Yi = T ′i β + ui

⇒ If Yi = β0 +β1Ti ,1 + ui (i.e., Ti = [1 Ti ,1]′) and Zi is L× 1, with L ≥ 1:

β1 =
E [Ti ,1Z

′
i ]E [ZiZ

′
i ]
−1E [ZiYi ]

E [Ti ,1Z ′i ]E [ZiZ ′i ]
−1E [ZiTi ,1]

Exercise: show that when Zi = [1 Zi ,1]′ (i.e, it includes a constant and a

single instrument), we get β1 =
Cov(Yi ,Zi,1)
Cov(Ti,1,Zi,1)

⇒ If Ti is k × 1 and Zi is L× 1, with L ≥ k :

β =
(
E [TiZ

′
i ]E [ZiZ

′
i ]
−1E [ZiT

′
i ]
)−1

E [TiZ
′
i ]E [ZiZ

′
i ]
−1E [ZiYi ]
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Instrumental Variables (without additional covariates)
This object can be recovered from a two-stage procedure (2SLS):

1 First stage: regress endogenous variable(s) on instrument(s) (include a
constant in Zi )

E∗[Ti |Zi ] = E [TiZ
′
i ]E [ZiZ

′
i ]−1Zi ≡ T̂i

(Note: in this formula, Zi can be L× 1 and Ti can be k × 1. E∗[Ti |Zi ] is k × 1:

each row contains the BLP of one endogenous variable (i.e., one component of

Ti ). If k = 1 then E [TiZ
′
i ]E [ZiZ

′
i ]
−1Zi is 1× 1 and so it is equal to its transpose:

E∗[Ti |Zi ] = Z ′i E [ZiZ
′
i ]
−1E [ZiTi ] which is the familiar notation

“X ′i β = X ′i E [XiX
′
i ]
−1E [XiYi ]” that you’re used to when there’s only one

dependent variable being regressed against covariates.)

2 Second stage: regress dependent variable on prediction from previous step

E∗[Yi |T̂i ] = T̂ ′i E [T̂i T̂
′
i ]−1E [T̂iYi ]︸ ︷︷ ︸
=β

Exercise: show that β = E [T̂i T̂
′
i ]−1E [T̂iYi ]

Exercise: show how these formulas simplify for the case in which Ti = [1 Ti,1]

and Zi = [1 Zi,1] (i.e., it includes a constant and a single instrument).
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Instrumental Variables (without additional covariates)

IV object (2SLS estimand) can be seen as a GMM estimand derived from
the following moment condition:

E [Ziui ] = 0

E [Zi (Yi − T ′i β)]︸ ︷︷ ︸
L×1

= 0

This is a linear system of L equations and k unknowns.

Note: by including a constant in Zi , we include E [ui ] = 0 in our system of
equations.
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Instrumental Variables (without additional covariates)
Let’s look at the IV object if system is just-identified and over-identified:

β =
(
E [TiZ

′
i ]E [ZiZ

′
i ]−1E [ZiT

′
i ]
)−1

E [TiZ
′
i ]E [ZiZ

′
i ]−1E [ZiYi ]

If L = k, notice that we can simplify this formula: E [TiZ
′
i ] and E [ZiT

′
i ] are

k × k and full rank (by relevance assumption), so they are invertible (and
remember: (AB)−1 = B−1A−1)

β = E [ZiT
′
i ]−1

(
E [TiZ

′
i ]E [ZiZ

′
i ]−1

)−1
E [TiZ

′
i ]E [ZiZ

′
i ]−1E [ZiYi ]

β = E [ZiT
′
i ]−1E [ZiYi ]

We could arrive at this result by solving the system of equations from before:

E [Zi (Yi − T ′i β)] = 0

E [ZiYi ] = E [ZiT
′
i ]β

Since E [ZiT
′
i ] is invertible:

β = E [ZiT
′
i ]−1E [ZiYi ]
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Instrumental Variables (without additional covariates)

Exercise: show what the moment conditions look like in the case in which
Ti = [1 Ti ,1] and Zi = [1 Zi ,1] (i.e., one endogenous regressor and one
instrument).

E [Zi (Yi − T ′i β)] = 0[
E [Yi − β0 − β1Ti ,1]

E [Zi ,1(Yi − β0 − β1Ti ,1)]

]
=

[
0
0

]
Exercise: show that β0 = E [Yi ]− β1E [Ti ,1] and β1 =

Cov(Yi ,Zi,1)
Cov(Ti,1,Zi,1)

.

Conclusion:
Cov(Yi ,Zi,1)
Cov(Ti,1,Zi,1)

identifies the β1 from a model

Yi = β0 + β1Ti ,1 + ui that satisfies the moment conditions E [ui ] = 0 and
E [Zi ,1ui ] = 0 (but doesn’t satisfy the moment condition E [Ti ,1ui ] = 0).
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Instrumental Variables (without additional covariates)

If L > k , can combine the L equations (moment conditions) and
obtain k linear combinations. (A particular example of this would be
to assign weight 0 to L− k of them, so essentially dropping them to
get a just-identified system).

The IV object (2SLS estimand) essentially considers weight
E [TiZ

′
i ]E [ZiZ

′
i ]
−1 and solves the following system of k equations and

k unknowns:

E [TiZ
′
i ]E [ZiZ

′
i ]
−1︸ ︷︷ ︸

k×L

E [Zi (Yi − T ′i β)]︸ ︷︷ ︸
L×1

= 0
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Instrumental Variables (without additional covariates)

Let’s look at an example:

Yi = β0 + β1Ti ,1 + ui

Where E [Ti ,1ui ] 6= 0, so Ti ,1 is endogenous.

Suppose there are two instruments available:

E [Zi (Yi − T ′i β)] = 0 E [Yi − β0 − β1Ti ,1]
E [Zi ,1(Yi − β0 − β1Ti ,1)]
E [Zi ,2(Yi − β0 − β1Ti ,1)]

 =

0
0
0


Note that we are assuming that β0 and β1 satisfy all three equations
(moment conditions).
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Instrumental Variables (without additional covariates)

The issue is that, while this is true in population moments, when we
replace these equations with their sample analogs (means instead of
expectations) in order to obtain estimators β̂0 and β̂1 then we (most likely)
end up with three linear equations where none is a linear combination of
the others, so the system will have no solution. Remember:

System of linear equations: suppose we have L equations and k unknowns.

If L = k (just-identified system): one solution

If L > k (over-identified system): no solution

If L < k (under-identified system): ∞ solutions

So we can first work with the population system of moment conditions to
derive a just-identified system and then motivate our estimators as a
solution to the sample analog of that system.
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Instrumental Variables (without additional covariates)
We first combine the equations available to create a system of k equations. This
is achieved by pre-multiplying our system by a matrix D (nonrandom) that is
k × L. The β0 and β1 that we are trying to retrieve satisfy this new system.

D × E [Zi (Yi − T ′i β)] = 0[
D11 D12 D13

D21 D22 D23

] E [Yi − β0 − β1Ti,1]
E [Zi,1(Yi − β0 − β1Ti,1)]
E [Zi,2(Yi − β0 − β1Ti,1)]

 =

0
0
0


β = (DE [ZiT

′
i ])
−1

(DE [ZiYi ])

For instance, 2SLS considers D = E [TiZ
′
i ]E [ZiZ

′
i ]−1.

This new system motivates an estimator β̂ for β by replacing D with a D̂ (that is
consistent) and the expectations with means.

We require that DE [ZiT
′
i ] is nonsingular, and that there is a D̂ that converges in

probability to D and D̂ 1
n

∑
ZiT

′
i is nonsingular. While any D under these

conditions will motivate an estimator of β that is consistent (β̂
p→ β), some will

be “better” than others (example: efficiency). For instance, the 2SLS estimator is

the efficient GMM estimator under homoskedasticity.
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Instrumental Variables
Model (same but adding covariates):

Yi = X ′i α + βTi + ui

WLOG (because Xi includes a constant) E [ui ] = 0

E [Xiui ] = 0 (so Cov(Xi,j , ui ) = 0 for all the other j components of Xi )

But! E [Tiui ] 6= 0 (so Cov(Ti , ui ) 6= 0)

β is not identified by BLP of Yi on Xi and Ti . We need something more...an
instrument Zi . It is a variable that satisfies:

(Relevance) Cov(Ti ,Zi ) 6= 0

(Exclusion) E [Ziui ] = 0 (so Cov(Zi , ui ) = 0)

Then β is identified by the following “IV object” (Exercise: show!):

β =
Cov(Yi , Z̃i )

Cov(Ti , Z̃i )
=

E [Yi Z̃i ]

E [Ti Z̃i ]

Where Z̃i is the residual from regressing Zi on Xi .
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Instrumental Variables

More generally:
Yi = X ′i α + T ′i β + ui

⇒ If Yi = X ′i α + βTi + ui and Zi is L× 1, with L ≥ 1:

β =
E [Ti Z̃

′
i ]E [Z̃i Z̃

′
i ]
−1E [Z̃iYi ]

E [Ti Z̃ ′i ]E [Z̃i Z̃ ′i ]
−1E [Z̃iTi ]

⇒ If Ti is k × 1 and Zi is L× 1, with L ≥ k :

β =
(
E [Ti Z̃

′
i ]E [Z̃i Z̃

′
i ]
−1E [Z̃iT

′
i ]
)−1

E [Ti Z̃
′
i ]E [Z̃i Z̃

′
i ]
−1E [Z̃iYi ]

Where Z̃i is the residual from regressing Zi on Xi .
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Instrumental Variables

In what cases do we have a model where Ti is “endogenous”? (And so its
coefficient can’t be identified by BLP).

IV estimator motivated in different contexts:

1 Simulatenous equation bias (“reverse causation”)

2 Measurement error bias

3 Omitted variable bias (OVB)

That is, people have shown that in these contexts, the “IV object” can
identify the desired structural parameter (the coefficient on Ti ).

But basically, all these can be seen as an OVB problem.
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Instrumental Variables

OBV:

Yi = α + βTi + γAi + vi︸ ︷︷ ︸
ui

WLOG (since we include a constant) E [vi ] = 0

E [Tivi ] = 0 (so Cov(Ti , vi ) = 0)

E [Aivi ] = 0 (so Cov(Ai , vi ) = 0)

If we could regress Yi on a constant, Ti and Ai (ECON2120: “long
regression”), then β is identified. Assumptions imply that BLP recovers
the coefficients of the model: E ∗[Yi |1,Ti ,Ai ] = α + βTi + γAi
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Instrumental Variables

But suppose that instead we regress Yi on a constant and Ti only
(ECON2120: “short regression”):

E ∗[Yi |1,Ti ] = E ∗[α + βTi + γAi + vi |1,Ti ]

= α + βTi + γE ∗[Ai |1,Ti ]

Auxiliary regression: E ∗[Ai |1,Ti ] = φ0 + φ1Ti where φ1 = Cov(Ai ,Ti )
Var(Ti )

E ∗[Yi |1,Ti ] = α + βTi + γE ∗[Ai |1,Ti ]

= α + γφ0 + (β + γφ1)Ti

So unless Cov(Ti ,Ai ) = 0, the BLP E ∗[Yi |1,Ti ] doesn’t allow to identify
β. Instead, it identifies β + γφ1, where γφ1 is the “OVB”.
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Instrumental Variables

IV to the rescue! β can be identified by the “IV object” Cov(Yi ,Zi )
Cov(Yi ,Ti )

for a Zi

that satisfies Cov(Zi , γAi + vi︸ ︷︷ ︸
ui

) = 0 (exclusion) and Cov(Ti ,Zi ) 6= 0

(relevance):

Cov(Yi ,Zi ) = Cov(α + βTi + γAi + vi ,Zi ) = βCov(Ti ,Zi )

So far we haven’t said anything about causality. Let’s see a model that
introduces the notion of causality and how the “IV object” helps identify a
causal effect.
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Linear model of constant causal effects

Simple model with causal interpretation:

Yi = Yi (Ti ) = α + βTi + ui

In particular, if Ti ∈ {0, 1}:

Yi (0) = α + ui

Yi (1) = α + β + ui

⇒ TE ≡ Yi (1)− Yi (0) = β

Yi = Yi (1)Ti + Yi (0)(1−Ti ) = Yi (0) + (Yi (1)− Yi (0))Ti = α+ βTi + ui

So model assumes no heterogeneity of treatment effects.

Goal is to identify β = TE = Yi (1)− Yi (0) (constant for every i).
Note: TE = ATE because TE is constant.
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Linear model of constant causal effects

1) Easy case:

WLOG (since we introduce a constant) E (ui ) = 0

Assume E [Tiui ] = 0 (so Cov(Ti , ui ) = 0) (treatment is independent
of potential outcomes)

⇒ under these identifiying assumptions, β identified by BLP:

β = TE = ATE =
Cov(Yi ,Ti )

Var(Ti )

Exercise: Show that Cov(Yi ,Ti )
Var(Ti )

= E [Yi |Ti = 1]− E [Yi |Ti = 0]
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Linear model of constant causal effects

2) Adding some more structure to the model:

Yi = Yi (Ti ) = α + βTi + γAi + vi︸ ︷︷ ︸
≡ui

Ai is additional control that affects potential outcomes

WLOG (since we introduce a constant) E (vi ) = 0

Assume E [Aivi ] = 0 (so Cov(Ai , vi ) = 0)

Assume E [Tivi ] = 0 (so Cov(Ti , vi ) = 0) and Ai observed
(treatment is independent of the unobservable stuff that affects
potential outcomes, and the observable stuff we can control for
because...it’s observed.)
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Linear model of constant causal effects

⇒ under these identifiying assumptions, β is identified by BLP of Yi on a
constant and two regressors Ti , Ai .

β = TE = ATE =
{
E (XiX

′
i )
−1E (XiYi )

}
2,2

=
Cov(Yi , T̃i )

Var(T̃i )
=

E (Yi T̃i )

E (T̃ 2
i )

Where Xi = [1 Ti Ai ] and T̃i is the residual from regressing Ti against a
constant and Ai (remember Frisch-Waugh-Lovell?).

3) But! Suppose Ai is unobserved and Cov(Ti ,Ai ) 6= 0 (example: Ai is
ability, Ti is education, and smarter kids select into better schools). In
other words, treatment is not independent of unobserved stuff that affects
potential outcomes.

⇒ BLP of Yi on a constant and Ti can’t identify β. There is OVB.
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Linear model of constant causal effects

Instrumental variables: suppose there is an instrument Zi ∈ {0, 1} that
satisfies:

(Relevance) Cov(Ti ,Zi ) 6= 0

(Exclusion) Cov(ui ,Zi ) 6= 0 (it only impacts observed outcome Yi

through Ti ; that is, it doesn’t affect potential outcomes)

⇒ β is identified by:

β = TE = ATE =
Cov(Yi ,Zi )

Cov(Ti ,Zi )

Exercise: Show that Cov(Yi ,Zi )
Cov(Ti ,Zi )

= E [Yi |Zi=1]−E [Yi |Zi=0]
E [Ti |Zi=1]−E [Ti |Zi=0]

Conclusion: in a linear model of constant causal effects with a
binary endogenous treatment and a binary instrument, Cov(Yi ,Zi )

Cov(Ti ,Zi )

identifies the TE (which is also the ATE).
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Nonparametric model of heterogenous treatment effects

More general model with causal interpretation (we still assume
Ti ∈ {0, 1}):

Yi = Yi (1)Ti + Yi (0)(1− Ti ) = Yi (0) + (Yi (1)− Yi (0))Ti

We don’t want to make any further assumptions about (Yi (1)− Yi (0)).
So model assumes heterogeneity of treatment effects.

Goal is to identify ATE = E [Yi (1)− Yi (0)].

1) Easy case: Ti ⊥ (Yi (0),Yi (1))
⇒ under these identifiying assumptions, ATE identified by:

ATE =
Cov(Yi ,Ti )

Var(Ti )

Exercise: Show that Cov(Yi ,Ti )
Var(Ti )

= E [Yi |Ti = 1]− E [Yi |Ti = 0]
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Nonparametric model of heterogenous treatment effects
2) Ti 6⊥ (Yi (0),Yi (1))

Instrumental variables: suppose there is an instrument Zi ∈ {0, 1} that
satisfies:

(Relevance) Cov(Ti ,Zi ) 6= 0

(Exclusion) + (Independence) Yi is not a function of Zi and
Zi ⊥ Yi (1),Yi (0)

Also: Zi ⊥ Ti (1),Ti (0)
⇒ ATE is identified for compliers (LATE) -under monotonicity- by:

LATE =
Cov(Yi ,Zi )

Cov(Ti ,Zi )

Exercise: Show that Cov(Yi ,Zi )
Cov(Ti ,Zi )

= E [Yi |Zi=1]−E [Yi |Zi=0]
E [Ti |Zi=1]−E [Ti |Zi=0]

Note: if we use another instrument, then we uncover another LATE in the
sense that there will be another set of compliers for that other instrument.
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Recap
We’ve studied the potential outcomes model:

Yi = Yi (1)Ti + Yi (0)(1− Ti )

(Implicit is SUTVA assumption)

Identifying assumptions on how treatment is assigned - cases discussed:

1) T is randomly assigned: {Yi (1),Yi (0)} ⊥ Ti

2) T is not randomly assigned: {Yi (1),Yi (0)} 6⊥ Ti

3) T is not randomly assigned but there is random assignment of an
instrument Z : {Yi (1),Yi (0),Ti (1),Ti (0)} ⊥ Zi

4) T is randomly assigned conditional on a set of observable
characteristics X : {Yi (1),Yi (0)} ⊥ Ti | Xi

5) T is not randomly assigned but there is random assignment of an
instrument Z if we condition on a set of observables X :
{Yi (1),Yi (0),Ti (1),Ti (0)} ⊥ Zi | Xi
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Regression discontinuity
Still within the framework of potential outcomes model, but now instead
of relying on random assignment of treatment (or instrument) as
identifying assumption, the key assumption is that there is some “running”
variable according to which treatment (or instrument) is assigned.

Sharp RD: running variable determines if you received treatment or not

Ti = Ti (R) =

{
0 if R < r∗

1 if R ≥ r∗

Yi = Yi (1)1{R ≥ r∗}+ Yi (0)1{R < r∗}
Fuzzy RD: running variable determines if you received instrument or not

Zi = Zi (R) =

{
0 if R < r∗

1 if R ≥ r∗

Ti = Ti (1)1{R ≥ r∗}+ Ti (0)1{R < r∗}
Yi = Yi (1)Ti + Yi (0)(1− Ti )
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Analogies to help you remember
Random assignment of T (Case 1)):

1 Key assumption: Yi (0),Yi (1) ⊥ Ti

2 Treatment is independent of potential outcomes, so people are
“intrinsically” the same (on average), except that some got treatment and
some didn’t. So compare those in treated v non-traded groups to identify
causal effect of treatment.

3 Can identify ATE:

E [Yi (1)]− E [Yi (0)] = E [Yi |Ti = 1]− E [Yi |Ti = 0]

Sharp RD:

1 Key assumption: E [Yi (0)|Ri ] and E [Yi (1)|Ri ] continuous at Ri = r∗.

2 People “close to” R = r∗ are “intrinsically” the same (on average), except
some got treatment and some didn’t. So compare their outcomes to identify
causal effect of treatment.

3 Can identify a ATE at R = r∗:

E [Yi (1)|Ri = r∗]− E [Yi (0)|Ri = r∗] = lim
r↓r∗

E [Yi |Ri = r ]− lim
r↑r∗

E [Yi |Ri = r ]
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Analogies to help you remember
Random assignment of Z (Case 3)):

1 Key assumption: Yi (0),Yi (1),Ti (0),Ti (1) ⊥ Zi

2 + exlcusion, monotonicity, first stage

3 Can identify LATE:

E [Yi (1)− Yi (0)|Ti (1) > Ti (0)] =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Ti |Zi = 1]− E [Ti |Zi = 0]

Fuzzy RD:

1 Key assumption: E [Yi (1)|Ri ], E [Yi (0)|Ri ], E [Ti (1)|Ri ] and E [Ti (0)|Ri ] are
continuous at Ri = r∗

2 + exclusion, monotonicity, first stage, all conditional on Ri = r∗

3 Can identify a LATE at R = r∗:

E [Yi (1)−Yi (0)|Ti (1) > Ti (0),Ri = r∗] =

lim
r↓r∗

E [Yi |Ri = r ]− lim
r↑r∗

E [Yi |Ri = r ]

lim
r↓r∗

E [Ti |Ri = r ]− lim
r↑r∗

E [Ti |Ri = r ]
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