
Statistical Decision Theory
Bayesian and Quasi-Bayesian estimators

Giselle Montamat

Harvard University

Spring 2020

Giselle Montamat
Statistical Decision Theory Bayesian and Quasi-Bayesian estimators 1 /

46



Statistical Decision Theory
Framework to make a decision based on data (e.g., find the “best”
estimator under some criteria for what “best” means; decide whether to
retain/reward a teacher based on observed teacher value added estimates);
criteria to decide what a good decision (e.g., a good estimator; whether to
retain/reward a teacher) is.

Ingredients:

Data: “X”

Statistical decision: “a”

Decision function: “δ(X )”

State of the world: “θ”

Loss function: “L(a, θ)”

Statistical model (likelihood): “f (X |θ)”

Risk function (aka expected loss):

R(δ, θ) = Ef (X |θ)[L(δ(X ), θ)] =

∫
L(δ(X ), θ)f (X |θ)dX
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Statistical Decision Theory

Objective: estimate µ(θ) (could be µ(θ) = θ) using data X via δ(X ).
(Note: here the decision is to choose an estimator; we’ll see another example

where the decision is a binary choice).

Loss function L(a, θ): describes loss that we incur in if we take action a
when true parameter value is θ. Note that estimation (“decision”) will be
based on data via δ(X ) = a, so loss is a function of the data and the true
parameter, ie, L(δ(X ), θ).

Criteria for what makes a “good” δ(X ), for a given θ: the expected
loss (aka, the risk) has to be small, where the expectation is taken over X
given model f (X |θ) for a given θ.
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Quadratic loss

One example of a loss function is quadratic loss:

L(δ(X ), θ) = (δ(X )− µ(θ))2

For quadratic loss, the risk function is the MSE (mean squared error) and
can be expressed in terms of variance and bias:

R(δ, θ) = Ef (X |θ)
[
(δ(X )− µ(θ))2

]
R(δ, θ) = Varf (X |θ)(δ(X )) +

(
Ef (X |θ) [(δ(X )]− µ(θ)

)2
Exercise: Show that the MSE can be expressed as the sum of variance plus
the square of the bias.
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Risk function

Exercises: for each of the following exercises, compute the risk function
(aka expected loss) based on squared error loss of the suggested decision
functions (estimators). Provide intuition about what each decision
function is doing and compare them based on this risk.

1) You observe a single data point X ∼ N(µ, 1) and your objective is to
estimate µ. You consider the following (family of) decision functions:
δ(X ) = α + βX .

2) You observe N iid data points: Xi ∼ N(µ, 1) and your objective is to
estimate µ. You consider the following two decision functions:
δ1(X ) = X1 and δ2(X ) = X̄ .
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Risk function

3) You observe a single data point X ∼ N(µ, σ) where σ is known and
your objective is to estimate µ. You consider the following decision
functions:

1 δ1(X ) = α + βX
2 δ2(X ) = 1(X < −λ)(X + λ) + 1(X > λ)(X − λ)
3 δ3(X ) = 1(|X | > κ)X

4) You observe a single data point X ∼ N(µ, I ) where X and µ are k × 1
and your objective is to estimate µ. You consider the following
decision functions:

1 δ1(X ) = X

2 δ2(X ) =

(
1− k−2∑k

j=1 X
2
j

)
X

3 δ3(X ) = max

{
1− k−2∑k

j=1 X
2
j

, 0

}
X
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Optimality criteria

Because R(δ, θ) depends on θ, we need a criteria to compare decision
functions δ(X ) across all possible θ (ie, what decision function generates
the “smallest” expected loss across possible values for θ, aka, how to
choose an overall “good” rule?).

Optimality criteria:

1 Admissibility: δ(X ) is not dominated by another decision rule

2 Minimax: δ(X ) has the best possible worst-case performance

3 Bayes criteria: δ(X ) has the lowest weighted average risk
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Bayes criteria
A δ is better relative to another if a weighted average of risk over θ (aka
weighted average of expected loss over θ, aka integrated risk) is lower.
That is, assign weights to different values of θ according to a prior and
average the risk across θ using these weights.

Prior: π(θ)

Posterior: f (θ|X )

Integrated risk:

R(δ, π) =

∫
R(δ, θ)π(θ)dθ (A)

R(δ, π) =

∫
R(δ, π|X )︸ ︷︷ ︸
Posterior

expected loss:
Ef (θ|X )[L(δ(X ),θ)|X ]=∫

L(δ(X ),θ)f (θ|X )dθ

f (X )dX (B)
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Bayes criteria

The usefulness of being able to express (A) as (B) is that minimizing the
integrated risk boils down to minimizing the posterior expected loss by
choosing δ(X ) (for a given X ). Note that in order to do this, we need to
find the posterior f (θ|X ).

Exercise: show that you can express (A) as (B).
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Bayes criteria+Quadratic loss

The optimal decision function δ(X ) under quadratic loss based on
Bayes criteria is...the posterior mean!

R(δ, π|X ) = Ef (θ|X )[L(δ(X ), θ)|X ]

= Ef (θ|X )[(δ(X )− µ(θ))2|X ]

= Varf (θ|X )[µ(θ)|X ] +
[
δ(X )− Ef (θ|X )[µ(θ)|X ]

]2
⇒ δ∗(X ) = argmin

δ(X )
R(δ, π|X ) = Ef (θ|X )[µ(θ)|X ]

Note: under δ∗(X ), we then have R(δ, π|X ) = Varf (θ|X )[µ(θ)|X ].
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Bayes criteria+Quadratic loss

Exercise: you observe a single data point X ∼ N(θ, 1), you have a prior
θ ∼ N(0, τ2) and you’re asked to find the optimal estimator for θ under
Bayes criteria with quadratic loss. How does this estimator depend on the
variance of the prior?

Hint: Remember normal conjugate distributions:

Likelihood: D|θ ∼ N(θ,Σ)

Prior: θ ∼ N(µ,Ω)

⇒ Posterior: θ|D = d ∼ N(µ+ Ω(Σ + Ω)−1(d − µ),Ω− Ω(Ω + Σ)−1Ω)
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Bayes criteria+Quadratic loss

Example:

Data: Z1, ...,Z50

Bernoulli likelihood: f (Zi |θ) = Be(θ) (ie, P(Zi = 1|θ) = θ)

Beta prior: π(θ) = Beta(α, β)

Beta posterior:

f (θ|Z ) = Beta(α +
∑
i

Zi , β +
∑
i

(1− Zi ))

(See exercise on Conjugate Priors from Section 6).

The optimal estimator of θ based on Bayes criteria and quadratic loss is
the posterior mean:

Ef (θ|Z)[θ|Z ] =
α +

∑
i Zi

α +
∑

i Zi + β +
∑

i (1− Zi ))
=
α +

∑
i Zi

α + β + N
=

α
N + Z̄
α+β
N + 1
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Bayes criteria+Quadratic loss
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Bayes criteria+Quadratic loss

As an estimator of θ0 = Ef (Zi |θ=θ0)[Zi ] (frequentist perspective), posterior
mean can be compared to MLE estimator in terms of bias and variance:

MLE estimator of θ0:

δMLE (Z ) = argmin
δ(Z)

log
(

Πi{θZi (1− θ)1−Zi}
)

= Z̄

1) It is unbiased:
Ef (Zi |θ0)[Z̄ ] = θ0

2) Variance:

Var(Z̄ ) =
Var(Zi )

N
=
θ0(1− θ0)

N
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Bayes criteria+Quadratic loss
The posterior mean, as an estimator δ(Z ) of θ0:

δBC (Z ) = Ef (θ|Z)[θ|Z ] =
α
N + Z̄
α+β
N + 1

=
α
N

α+β
N + 1

+
1

α+β
N + 1

Z̄

1) It is biased (in finite samples) unless the prior happens to be centered
around θ0:

Ef (Z |θ0)[δBC (Z )] =
α
N + Ef (Z |θ0)[Z̄ ]

α+β
N + 1

=
α
N + Ef (Z |θ0)[Zi ]

α+β
N + 1

=
α
N + θ0
α+β
N + 1

Note that
α
N
+θ0

α+β
N

+1
= θ0 if α

α+β = θ0 (ie, the prior has mean θ0).

2) Its variance (in finite samples) is lower than that of the MLE estimator:

Var(δBC (Z )) =

(
1

α+β
N + 1

)2
Var(Zi )

N
=

(
1

α+β
N + 1

)2
θ0(1− θ0)

N
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Bayes criteria+Quadratic loss
The bias is reduced as N goes to infinity because posterior distribution
allows data to swamp the prior:

lim
N→∞

δBC (Z ) = lim
N→∞

Z̄ = Ef (Zi |θ0)[Zi ] = θ0
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Bayes criteria+Absolute loss

The optimal decision rule δ(X ) under absolute error loss based on
Bayes criteria is...the posterior median!

Exercise: you observe a single data point X ∼ f (X |θ), you have some prior
π(θ) and you are asked to estimate µ(θ) (a real-valued function of θ)
under Bayes criteria based on the following loss function:

L(δ(X ), θ) = (µ(θ)− δ(X ))(τ − 1(µ(θ) ≤ δ(X )))

In particular, what is the estimator when τ = 0.5?
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Bayes criteria

Bayes criteria ⇔ Admissibility criteria

⇒ If the risk function is continuous in θ for all δ, and the prior is
everywhere positive, then the Bayes decision rule is admissible.

⇐ Complete Class Theorem: All admissible rules are Bayes decision rules
(aka optimal according to Bayes criteria) under some prior, if certain
conditions are satisfied.
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Bayesian estimators: properties
If we take the posterior mean of f (θ|X ) as estimator θ̂ of θ0 (frequentist
perspective), natural question is: what are the properties of this estimator?

Small sampling distribution? Biased? Variance?
(Note frequentist nature of this question: if one could draw data repeated

times from likelihood, and true parameter is θ0, what would θ̂ look like?)

Variance-bias trade-off: the posterior mean will generally be a
biased estimator (in finite samples) unless the prior happens to be
centered around the truth. But the posterior mean lowers the
variance, and also allows data to swamp prior (and thus eliminate
bias) as N goes to infinity.

Consistency and asymptotic distribution as N →∞?

Berstein-von Mises: the posterior distribution concentrates around
the MLE of θ0 as N →∞.
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Bayesian estimators: properties

First, a reminder of the asymptotic normality result for MLE:

√
N(θ̂MLE − θ0)

d→ N
(
0,H−1JH−1

)

Hessian : H = E

[
∂2log(f (D|θ0))

∂θ∂θ′

]
Jacobian : J = E

[
∂log(f (D|θ0))

∂θ

(
∂log(f (D|θ0))

∂θ

)′]
If likelihood correctly specified, Information Matrix Equality holds:
H = −J. √

N(θ̂MLE − θ0)
d→ N

(
0, J−1

)
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Bayesian estimators: properties

Berstein-von Mises: the posterior distribution concentrates around the
MLE of θ as N →∞:

θ|θ̂MLE
approx∼ N

(
θ̂MLE ,

1

N
J−1

)
Note: model (likelihood) must be correctly specified.

Remember the intuition from the previous exercise: the posterior mean is
biased in finite samples if prior is far from the “truth” (θ0). But! As
N →∞ data predominates over prior in determining the posterior
distribution; the posterior distribution centers around the MLE estimator,
which is unbiased. The posterior mean is a consistent estimator for θ0.
Moreover, Bayesian 95% credible intervals are asymptotic valid frequentist
confidence intervals.
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Side note: Quasi-Bayes

Posterior distribution: θ ∼ f (θ|D) =
f (D|θ)π(θ)

f (D)
=

f (D|θ)π(θ)∫
f (D|θ)π(θ)dθ

We can re-write:

f (D|θ) = exp

(
N

1

N
log(f (D|θ))

)
= exp

N
1

N

∑
i

log(f (Di |θ))︸ ︷︷ ︸
l(θ)



Posterior distribution: θ ∼ f (θ|D) =
exp

(
N 1

N

∑
i log(f (Di |θ))

)
π(θ)∫

exp
(
N 1

N

∑
i log(f (Di |θ))

)
π(θ)dθ
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Side note: Quasi-Bayes

Posterior distribution: θ ∼ f (θ|D) =
exp

(
N 1

N

∑
i log(f (Di |θ))

)
π(θ)∫

exp
(
N 1

N

∑
i log(f (Di |θ))

)
π(θ)dθ

Quasi-posterior distribution: θ ∼ f Q(θ|D) =
exp

(
N(−Q̂N(θ))

)
π(θ)∫

exp
(
N(−Q̂N(θ))

)
π(θ)dθ
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A reminder about MLE: Maximum Likelihood Estimator

A reminder of the asymptotic normality result for MLE:

√
N(θ̂MLE − θ0)

d→ N
(
0,H−1JH−1

)

Hessian : H = E

[
∂2log(f (D|θ0))

∂θ∂θ′

]
Jacobian : J = E

[
∂log(f (D|θ0))

∂θ

(
∂log(f (D|θ0))

∂θ

)′]
If likelihood correctly specified, Information Matrix Equality holds:
H = −J. √

N(θ̂MLE − θ0)
d→ N

(
0, J−1

)
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A reminder about EE: Extremum Estimator

A reminder of the asymptotic normality result for EE:

√
N(θ̂EE − θ0)

d→ N
(
0,H−1ΩH−1

)

Hessian : H =
∂2Q(θ0)

∂θ∂θ′

Ω = Varasymp

(√
N
∂

∂θ
Q̂n(θ0)

)
If Generalized Information Matrix Equality holds: H = Ω.

√
N(θ̂EE − θ0)

d→ N
(
0,H−1

)
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(Quasi) Bayesian procedures & large sample interpretations

Berstein-von Mises: under correct specification of likelihood, as
N →∞:

f (θ|D)
approx∼ N

(
θ̂MLE ,

1

N
J−1

)
So: Bayesian procedures have a frequentist intepretation in large
samples.

Cherenozhukov and Hong:

f Q(θ|D)
approx∼ N

(
θ̂EE ,

1

N
H−1

)
So: Quasi-Bayesian procedures have a frequentist interpretation in
large samples.

Note: if (generalized) information equality holds, can use posterior
standard deviation, multiplied by N, as estimate of asymptotic standard
deviation of MLE/EE estimates (aka, the frequentist standard errors).
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(Quasi) Bayesian procedures & large sample interpretations

Exercise: Pset 8 - Exercise 1 and Pset 9 - Exercise 1 asked to to
implement quasi-Bayesian procedures in these two contexts:

GMM objective function based on method of simulated moments:

E

[
m(Yi )−

1

S

∑
m(Y s

i (θ0))

]
= 0⇒

1

N

∑[
m(Yi )−

1

S

∑
m(Y s

i (θ))

]
= 0

Q̂N (θ) =

(
1

N

∑[
m(Yi )−

1

S

∑
m(Y s

i (θ))

])′
Ŵ

(
1

N

∑[
m(Yi )−

1

S

∑
m(Y s

i (θ))

])

GMM objective function based on quantile IV:

E [(τ − 1{Yi < ατ + βτPi})Zi ] = 0⇒
1

N

∑
(τ − 1{Yi < ατ + βτPi})Zi = 0

Q̂N (θ) =

(
1

N

∑
[(τ − 1{Yi < ατ + βτPi})Zi ]

)′
Ŵ

(
1

N

∑
[(τ − 1{Yi < ατ + βτPi})Zi ]

)

For Ŵ , you’re told to use the continuously updating GMM objective
function approach, so Ŵ = V̂ar(g(Di , θ)).
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Statistical decision theory: another example
Exercise: Pset 8, exercise 2 asks you about decision-making with regard to a
teacher j’s value added, θj . Specifically, the decision is a binary action aj ∈ {0, 1}
(example: retain/don’t retain, reward/don’t reward, where 1 corresponds to
retaining or rewarding) based on observed estimates θ̂j (ie, you make a decision
based on an estimate of θj).

Goal: reward/retain teachers with θj above some threshold value θ∗.

Possible loss functions considered:

1 You count a loss of 1 if you decide aj = 1 for a teacher j that has θj < θ∗,
and if aj = 0 for a teacher j that has θj > θ∗:

L(a, θ) =
∑
j

(aj1{θj < θ∗}+ (1− aj)1{θj > θ∗})

2 You count a loss of θ∗ − θj if you decide aj = 1 for a teacher j that has
θj < θ∗, and a loss of θj − θ∗ if aj = 0 for a teacher j that has θj > θ∗:

L(a, θ) =
∑
j

(ajmax{θ∗ − θj , 0}+ (1− aj)max{θj − θ∗, 0})
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Statistical decision theory: another example

Data: for each teacher j = 1, ..., J you observe an estimate θ̂j .

(Moreover, you are given observations for covariates Xj and the standard
error for the estimated value added σj ; in the notation that follows I
suppress the conditioning on Xj and σj to simplify notation).

To make a optimal decision according to Bayes criteria, need to minimize
posterior risk (aka posterior expected loss). This requires finding a
posterior density for θj .

Ingredients:

Likelihood (for θ̂j conditional on θj): θ̂j ∼ N(θj , σj) = f (θ̂j |θj)
Prior (for θj): θj ∼ π(θj |β)

Hyperprior (for β): β ∼ π(β)

Likelihood (for θ̂j conditional on β): θ̂j ∼ f (θ̂j |β)
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Statistical decision theory: another example

You are asked to find the posterior desity of β, the (joint) posterior density
of both θ and hyperparameter β, and the posterior density of θj .

f (β|D) =
f (D|β)π(β)∫
f (D|β)π(β)dβ

f (θ, β|D) =
f (D|β)π(θ|β)π(β)∫ ∫
f (D|β)π(θ|β)π(β)dθdβ

=
f (D, θ|β)π(β)∫ ∫
f (D, θ|β)π(β)dθdβ

(Remember Hierarchical Bayes from past section?)

f (θj |D) =

∫ ∫
f (θ, β|D)dβdθ−j

So we need to find f (D|β) and f (D, θ|β). Where in our case D = θ̂.
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Statistical decision theory: another example

f (θ̂|β) = Πj f (θ̂j |β) = Πj

∫
f (θ̂j , θj |β)dθj = Πj

∫
f (θ̂j |θj)π(θj |β)dθj

f (θ̂, θ|β) = Πj f (θ̂j , θj |β) = Πj f (θ̂j |θj)π(θj |β)

Once we’ve found the posterior for θj , let’s find the optimal decision by

minimizing the posterior expected loss, i.e.: Ef (θ|θ̂)[L(δ(θ̂), θ)|θ̂].

For loss function 1:
Ef (θ|θ̂)[L(δ(θ̂), θ)|θ̂] =∑

j

(
δj(θ̂)Ef (θ|θ̂)[1{θj < θ∗}|θ̂] + (1− δj(θ̂))Ef (θ|θ̂)[1{θj > θ∗}|θ̂]

)
=
∑
j

(
δj(θ̂)P[θj < θ∗|θ̂] + (1− δj(θ̂))P[θj > θ∗|θ̂]

)

δ∗j (θ̂) =

{
1 if P[θj < θ∗|θ̂] < P[θj > θ∗|θ̂]

0 if P[θj < θ∗|θ̂] > P[θj > θ∗|θ̂]

I.e., reward the teachers for whom the posterior probability of being above the

threshold exceeds that of being below.
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Statistical decision theory: another example

For loss function 2:
Ef (θ|θ̂)[L(δ(θ̂), θ)|θ̂] =∑

j

(
δj(θ̂)Ef (θ|θ̂)[max{θ∗ − θj , 0}|θ̂] + (1− δj(θ̂))Ef (θ|θ̂)[max{θj − θ∗, 0}|θ̂]

)

δ∗j (θ̂) =

{
1 if Ef (θ|θ̂)[max{θ∗ − θj , 0}|θ̂] < Ef (θ|θ̂)[max{θj − θ∗, 0}|θ̂]

0 if Ef (θ|θ̂)[max{θ∗ − θj , 0}|θ̂] > Ef (θ|θ̂)[max{θj − θ∗, 0}|θ̂]

I.e, reward teachers when the posterior expected amount by which they exceed

the threshold is larger than that by which they fall short.
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